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Abstract

Despite a true antipathy to the subject Hardy contributed deeply to modern probability.
His work with Ramanujan begat probabilistic number theory. His work on Tauberian theorems
and divergent series has probabilistic proofs and interpretations. Finally Hardy spaces are a
central ingredient in stochastic calculus. This paper reviews his prejudices and accomplishments
through these examples.
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1 Hardy

G.H. Hardy was a great hard analyst who worked in the first half of the twentieth century. He
was born on February seventh, 1877, in Surrey and died on December first, 1947 at Cambridge. C.P.
Snow’s biographical essay on Hardy which opens modern editions of Hardy’s A Mathematician’s
Apology gives a good non-mathematical picture of Hardy. Titchmarsh’s obituary gives a bit of a
mathematical overview. It is reprinted in his collected works which comprise seven thick volumes
containing Hardy’s 350 papers.

Hardy had a close connection to the London Mathematical Society, serving as its President in
1926-1928 and almost continuously on its council. He left his estate to the Society and his personal
library now resides in the LMS headquarters in Russell Square.

Hardy is most celebrated today for his work in analytical number theory. He was the first to
prove that Riemann’s zeta function had infinitely many zeros on the critical line. Working jointly
with Ramanujan, he developed the circle method for extracting information on the coefficients of
generating functions with complicated singularities. They used the circle method to give extremely
accurate approximations to the number of partitions of n. In work with Littlewood, the circle
method gave definitive answers for many instances of ‘Waring’s problem’ on the representation of
integers as sums of nth powers. These methods have been refined and amalgamated into modern
number theory; A splendid accessible development of the classical work appears in Ayoub (1963).
Modern developments may be found in Vaughn (1997).

2 Hardy and Probability

I want to argue that Hardy had no knowledge of probability theory and indeed had a genuine
antipathy to the subject. To begin with, Hardy loved clear rigorous argument. At the time he
worked, the mathematical underpinnings of probability were a vague mess; random variables were
defined as the observed values of random quantities. Mark Kac (1985, Chapter 3) has given a
splendid picture of what it was like to work in probability at this time. It was only in 1933 that
Kolmogorov gave a measure theoretic interpretation of probability; a random variable was defined
as a measurable function. Then one could see that early workers in probability; Bernoulli, Laplace,
Gauss, Chebychev, Markov were doing mathematics after all.

Probability would surely have been part of applied mathematics for Hardy. He had very little
use for applications writing ‘very little of mathematics is useful and that little is comparatively
dull’. His student Titchmarsh wrote “...His instinct was for the purest of mathematics. I worked
on the theory of Fourier integrals under his guidance for a good many years before I discovered for
myself that his theory has applications in applied mathematics, if the solution of certain differential
equations can be called applied. I never heard him refer to these applications.”

Hardy wasn’t alone in his lack of interest in probability. Alan Turing did his fellowship thesis
at Cambridge in 1933. (Turing was at Kings College, Hardy at Trinity.) Turing gave an elegant
proof of the classical central limit of probability; this theorem had in fact been proved in at least
three ways before. Turing rediscovered Lindeberg’s proof of 1922. So little of probability was known
in mathematical circles of Oxford and Cambridge that the thesis was granted. Further details and
background may be found in Zabell (1995).

Hardy’s collaborator Littlewood did have a feel for probability as a perusal of his ‘Mathemati-
cians Miscellany’ shows. Indeed, late in life he developed a curiosity about parapsychology and
published refined tail bounds for the binomial distribution (Littlewood 1969). As far as I know,
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Ramanujan also had no feel for probability. My only evidence for this is that very refined estimates
which can be seen as properties of the Poisson distribution are developed by Ramanujan without
note of their probabilistic content. See Diaconis (1983) for further details.

Curiously, Hardy’s most well known work outside mathematics has probabilistic underpinnings.
This is his celebrated letter to Science (July 10, 1908) on what is now called ’Hardy-Weinberg
Equilibrium’. This addressed the problem of why dominant traits don’t just take over. In the
simplest setting, the trait is determined by a single allele which can be of type A or a with A
dominant. Children inherit one copy of each of their parents’ alleles and so can be {A,A}, {A, a},
{a, a}, the first two possibilities producing the dominant trait. If the original proportions of these
three pairings in a large population are p, 2q, r with p+2q+r = 1, under random mating (where the
pairs are split apart and randomly combined) the new proportions are (p+ q)2, 2(p+ q)(q+ r), (q+
r)2. Hardy points out that these proportions are stable if q2 = pr and further, for any starting
proportions, stability is achieved after one iteration. Hardy’s ‘back of the envelope calculation’ is
carefully worded with plenty of sensible caveats.

There is one other instance of insightful probabilistic thinking in Hardy’s work with Littlewood
on the Goldbach and prime k-tuples conjecture. This is a generalization of the well known (and
still open) twin prime conjecture which posits infinitely many primes p with p+ 2 also prime; it is
natural to ask also for the proportion of twin primes up to x. Hardy’s papers give a sophisticated
development of conjectured asymptotics which suggest that at least one of the authors was quite
familiar with probabilistic heuristics. Here, Hardy was certainly aided by earlier heuristic inves-
tigations of Sylvester and others. Hardy refers to what I would call ‘probabilistic reasoning’ as
“a priori judgment of common sense” in his expository account (Hardy (1922, page 2). Mosteller
(1972) gives a motivated development and compares the conjecture to actual counts.

Lest the reader be fooled by the last two examples, let me report a direct link with Hardy which
underscores my main point. Paul Erdös knew Hardy and was a great friend to me. My interests
in Hardy and probability started when Erdös said “You know, if Hardy had known anything of
probability. He certainly would have proved the law of the iterated logarithm. He was an amazing
analyst and only missed the result because he didn’t have any feeling for probability.” Let me
explain: Borel (1909) had proved the strong law of large numbers. This studies Sn(x) - the number
of ones in the first n places of the binary expansion of the real number x. Borel proved

lim
n→∞

Sn(x)− n/2
n

= 0 (2.1)

for Lebesgue almost all x in [0, 1]. That is, almost all numbers have half their binary digits one
and half their digits zero. While not posed as a probability problem, the binary digits of a point
chosen at random from the unit interval are a perfect mathematical model of independent tosses
of a fair coin.

It was also known that (Sn(x)− n/2)/
√
n did not have a limit for almost all x. The question

arose of the exact rate of growth. In 1914 Hardy and Littlewood showed n could be replaced by√
n log n in (2.1). They missed the right result which was found in 1924 by Khintchin; for almost

all x in [0, 1].

lim
Sn(x)− n/2√

2n log log n
= 1. (2.2)

Erdös had the deepest understanding of this result; he gave definitive, fascinating extensions (See
Erdös (1942) or Bingham (1986). The analytic component needed to prove (2.2) would have been
straightforward for Hardy, it was probabilistic thinking that was missing.
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One more tale to underscore my point. I said above that Hardy’s personal library now resides
in the LMS headquarters. Not all of his books made it there. Twenty years ago, Steve Stigler, the
great historian of probability and statistics, was able to purchase Hardy’s copies of Jeffreys’ Theory
of Probability and a probability book by Borel from a London bookseller. The first was unopened,
the second uncut.

In the next three sections I develop three detailed examples where Hardy’s work had intimate,
delicate connections with probability. The problems are the number of prime divisors of a typical
integer, Tauberian Theorems (along with Hardy’s lifelong love affair with divergent series) and
finally the Hardy spaces Hp. The last section tries to make sense of the evidence and reach some
conclusions.

3 Additive Number Theory

Hardy and Ramanujan sometimes regarded numbers playfully as when Hardy reported his taxi
number - 1729 - as dull and Ramanujan said ’no Hardy, no Hardy, 1729 is the smallest number
which is the sum of two cubes in two different ways’. Properties such as prime and ’almost prime’
are notable in their own right. Hardy and Ramanujan studied

ω(N) = #Distinct Prime Divisors of N,

(so ω(12) = 2) and called numbers round if ω(N) was large. It is easy to see that 1 ≤ ω(N) ≤
log N

log log N , the upper bound being achieved for N a product of the first primes. they asked how large
ω(N) is for typical N and showed the answer is log logN ; now log logN is practically constant for
any N humans encounter (e.g. log log 10100 =̇ 5) so most numbers encountered are fairly flat. To
make this precise, Hardy and Ramanujan (1920) proved

THEOREM
1
x

∣∣∣∣∣N ≤ x : −ψN <
ω(N)− log logN√

log logN
≤ ψN

∣∣∣∣∣→ 1 (3.1)

As x tends to infinity for any function ψN increasing to infinity.
Their reasoning is interesting. Numbers with ω(N) = 1 are primes and powers of primes. By

the prime number theorem, the proportion of the first x numbers of this form is asymptotically
1

log x . Assuming the prime number theorem, Landau (following Gauss and followed by Sathe and
Selberg) had shown that for fixed j the proportion of the first x numbers with j + 1 distinct prime
divisors is asymptotic to

e−λλj

j!
with λ = log log x

Plotting e−λλj/j! as a function of j gives a discrete version of the familiar bell shaped curve.
The plot peaks at log log x and most of the mass is concentrated around the peak within a few
multiples of

√
log log x. Hardy and Ramanujan made this argument rigorous by replacing Landau’s

asymptotics by useful upper and lower bounds.
Impressive as the argument is, to a probabilist, the project seems out of focus; they are proving

the weak law of large numbers by using the local central limit theorem. If all that is wanted is their
theorem, there are much easier arguments. With all their work, one could reach much stronger
conclusions.
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The easier argument was found by Turan (1934). Write

ω(N) =
∑
p|N

Xp(N) with Xp(N) =

{
1 if p divides N.
[2mm]0 otherwise.

Let the average value w̄x = 1
x

∑
w≤xw(N). Clearly, the average of w is the sum of the averages of

the Xp and these are 1
x

∑
w≤xXp(N) = 1

xb
x
pc.

Thus

w̄x =
1
x

∑
p≤x

⌊
x

p

⌋
=

1
x

∑
p≤x

(
x

p
+ 0(1)

)
=
∑
p≤x

1
p

+ 0

(
1

log x

)
.

Now an elementary estimate due to Mertens gives

∑
p≤x

1
p

= log log x+ β1 + 0(log x) where β1 = γ +
∑

p

(
log

(
1− 1

p

))
+

1
p

=̇ 0.2615

The mean value is not enough to prove the concentration result (3.1).
Turan also computed the variance

σ2
x =

1
x

∑
N≤x

(ω(N)− w̄x)2 = log log x+ β2 + 0

(
log log x

log x

)
,

β2 = β1 −

(
π2

6

)
−
∑

p

1
p2

=̇ − 1.8357. (3.2)

The argument is not much more complex than the argument above for w̄x. From here, Chebychev’s
elementary inequality gives

1
v

∣∣∣N ≤ x :
∣∣∣w(N)− w̄x

σx

∣∣∣ ≤ ψ
∣∣∣ ≤ 1

ψ2
.

Hardy used Turan’s proof in his number theory book (rewritten to remove all traces of prob-
ability). In his lectures on Ramanujan (Chapter 3) he gave Turan’s argument but augmented it
with the heuristics underlying the bell-shaped curve discussed above.

The Hardy Ramanujan paper had a large follow up. To begin with, Erdös and Kac (1940)
made the central limit theorem explicit, proving

1
x

∣∣∣N ≤ x :
w(N)− w̄x

σx
≤ t
∣∣∣→ 1√

2π

∫ t

−∞
e−z2/2dz.

The Erdös-Kac paper is the first appearance in modern probability of what is called the invari-
ance principle. A universality result that has grown into the modern weak convergence machine.
Billingsley (1974, 1999) gives beautiful descriptions of these developments both in what is now
called probabilistic number theory and probability more generally.

A number theoretic function f is called additive if f(NM) = f(M)+ f(N) for M,N relatively
prime. Thus w(N) is additive as is the total number of prime divisors or F (N) =

∑
p|N p. This last
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function arises in analyzing the average running time of the discrete Fourier transform on Z/NZ
using the Cooley-Tukey fast Fourier transform; Diaconis (1980).

Study of the typical behavior of additive number theoretic functions has developed into a large
area called probabilistic number theory. Basically, the Xp(N) behave like independent random
variables and very refined probabilistic limit theorems have been proved. (There is a wonderful
introduction to this subject in Kac (1954).) The survey by Billingsly (1974). Books by Elliott
(1979, 1980, 1985), and Tenenbaum (1995) are excellent sources.

Here is one exciting contribution of probabilistic number theory to main stream number theory;
a crucial tool, abstracting Turan’s basic argument above, is called the Turan-Kubilius inequality;
using this, and the large sieve, Hildebrand (1986) has given a new elementary proof of the prime
number theorem.

To close this section on a personal note; the expression for the variance of ω(N) at (3.2) was
derived in my first published paper (done jointly with Fred Mosteller and Hironari Onishi). When I
arrived at Harvard’s statistics department I met Fred Mosteller. He was a statistician who studied
the primes as data. He was fascinated by the Hardy-Ramanujan, Erdös-Kac results but wanted
a more accurate expression for the variance (Turan had not derived terms past the initial log log)
when x = 106, the exact value for σ2

x = .9810 while the fitted term log log x is 2.626 Here the
corrected approximation log log x+ β2 =̇ .7401 makes a big numerical difference.

In later work (Diaconis, 1982), I derived asymptotic expansions such as

w̄x = log log x+ β1 +
n∑

j=1

aj

(log x)j
+ 0

(
1

(log x)n+1

)
with e.g. a1 = γ − 1

σ2
x = β2 + log log x

n∑
k=0

bk
(log x)k

+
n∑

k=1

ck
(log x)`

+ 0

(
log log x

(log x)n+1

)

with bo = 1, b1 = 0, c1 = 3γ − 1 + 2
∑

p

log p
p(p− 1)

.

Just recently, the computer scientist Don Knuth (2000, pg. 303-339) found use for these in the
analysis of factoring algorithms.

To summarize, the Hardy-Ramanujan paper gave birth to probabilistic number theory, the
invariance principle, several applications in analysis of algorithms and gave me my first entry to
probability and number theory.

4 Tauberian Theorems and Divergent Series

Tauberian Theorems and various averaging or summability techniques were a favorite topic of
Hardy. He wrote about them early and often. His last book, the posthumously published Divergent
Series, was devoted to this subject: I find it curious that this large intellectual undertaking has more
or less disappeared from modern mathematics, or been so transformed so as to be unrecognizable.
In what follows, I will introduce the subject from the beginning, give some of Hardy’s theorems,
find some fascinating probability hidden in Hardy’s proofs, and pose some open problems.

4.1 First Example

Suppose you take today’s New York Times, look at the front page, and count what proportion
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of the numbers that appear begin with ‘one’. Many people are surprised to find that this is often
about 30%. Lead digits aren’t uniformly distributed. Empirically, in chemical handbooks and
other compilations of data, the proportion of numbers that begin with i is about log10

(
1+ 1

i

)
(and

log10

(
1 + 1

1

)
= log10 2 =̇ .301). This is quite different from the distribution of final digits where

about 1
10 of numbers end in i, 0 ≤ i ≤ 9.

A subset S of {1, 2, 3, . . .} has density ` if 1
I

∑
i≤I si → ` where si is one or zero as i is in S or

not. The set of even numbers has density 1
2 , the set of multiples of three has density 1

3 and so on.
What about S = {i with lead digit 1}. Here S = {1, 10, 11, 12, . . . , 19, 100, 101, . . . , 199, . . .}. The
proportion up to 9 is 1

9 but the proportion up to 19 is 11
19 , up to 99 we get 11

99 = 1
9 again, and so

on. The limiting proportions osscilate between a lower limit of 1
9 and in upper limit of 5

9 . Thus S
doesn’t have a limiting density.

With si as above, we have been looking at the average s(1)
I = 1

I

∑
i≤I si. The averaging didn’t

tame the original sequence si; it is natural to try averaging the s(1)i forming s
(2)
I = 1

I

∑
j≤I s

(1)
j .

And then perhaps s(3)
I and so on. Hardy proved that if a sequence {s0i }∞i=1 is bounded and any

average s(k)
I

I→
∞
` for k ≥ 2, then already s(1)I

I→
∞
`. Thus no sequence of such repeated averages can

assign the first digit set a limit. This is an example of a simple Tauberian theorem.
More generally, Tauberian theorems relate different methods of averaging: A typical Tauberian

theorem says if one method of averaging converges then a second method converges for all sequences
satisfying an additional Tauberian condition (here boundedness).

Returning to the first digit example, it is not hard to see that si is logarithmically summable
to the right answer:

1
log I

∑
i≤I

si

i
→ log10(2).

At first logarithmic averages seem unusual; they weigh earlier numbers more heavily. We will see
in a moment that if si → `, 1

log I

∑
i≤I

si
I → `. Indeed, for bounded sequences if 1

I

∑
si → ` then

logarithmic averages also converge to `.
There is much else to say about the first digit problem. See Diaconis (1977), Raimi (1976)

or Hill (1995). We will be content having found the empirical answer .301 in an average of the
sequence of first digits.

4.2 Basic Summability

A matrix summability method is defined by an infinite matrix A = {Aij}1≤i,j<∞. A sequence
si is A-summable to limit ` if ∑

j

Aijsj
i→
∞
`.

for example the basic Cesaro averages have Aij =

{
1
i 1 ≤ j ≤ i

0 else
. Similarly the logarithmic method

is a matrix method. I do not know if every reasonable method is equivalent to a matrix method.
For example, referring to the iterated averaging method of section 4.1, the lower limits of successive
averages are increasing. The upper limits decreasing. If these meet the sequence is H∞ summable(
thus limk

lim
I s

(k)
I = limk

lim
I s

(k)
I

)
Flehlinger (1966) showed that the first digit indicators si are H∞

summable to log10(2). Is H∞ equivalent to a matrix method?
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Summability theory begins with the Toeplitz Lemma. This says that the matrix method A
assigns limit ` to all sequences converging to ` if and only if A satisfies, for all i,

Aij
j→
∞

0,
∑

j

|Aij | <∞,
∑

j

Aij
i→
∞

1 (4.1)

this applies to Cesaro and logarithmic methods. Methods satisfying (4.1) are called regular. The
Toeplitz Lemma is a kind of Tauberian theorem comparing the matrix method A to the identity
matrix. When such a comparison is available with no restriction on the sequences the method is
called an Abelian Theorem. Perhaps this is because of a special case due to Abel: If si → ` then
limx→1(1− x)

∑
six

i → `.

4.3 Probability and Tauberian Theorems Hidden in Hardy

Given two matrix methods of summability A,B, call A weaker than B if any A summable
sequence is B summable to the same limit.
Example 1 Cesaro is weaker than Abel.
Proof In a moment we will verify the identity

(1− x)
∞∑
i=0

six
i = (1− x)2

∞∑
i=1

(
1

i+ 1

i∑
j=0

si

)
(j + 1)xi (4.2)

Assuming this, suppose si is Cesaro summable to `. Thus s̄I = 1
I+1

∑I
i=0 si → `. Since the method

(1− x)2
∑
s̄i(i+ 1)xi is regular, the limit of the right side is `, so the limit of the left side is `. For

complete rigor, note that Cesaro summability to ` implies si = 0(i) so the infinite sums converge
for 0 ≤ x < 1.

The identity (4.2) has a simple probabilistic proof and interpretation. For 0 ≤ x < 1, (1−x)xi

is the chance that an x-coin shows i heads before the first tail. And (1 + i)(1− x)2xi is the chance
that an x coin shows i heads before the second tail. Now it is an elementary calculation that the
conditional distribution of the first tail, given that the second tail occurs at i+ 2, is uniform over
{1, 2, . . . , i+1}. This is true for all values of x. Now (4.2) is seen as the basic probabilistic identity
E(f(X)) = E(E(f(X)|Y = y)), with X the number of heads before the first tail, Y the number of
heads before the second tail and f(i) = si. The expectations refer to average with respect to the
underlying measures.

One point of this section is there are dozens of such elementary probability identities hid-
den in Hardy’s comparison proofs. There are also many further probability identities which give
comparisons. Later in this section I will conjecture (and partially prove) an equivalence.

Example 2. A sequence is EULER(p) summable to ` if limn→∞
∑n

i=0

(n
i
)
pi(1−p)n−isi → `. The

Euler method was a basic tool used to derive analytic continuations in classical work (Hardy (1949),
Chapters 8,4). Of course, the Euler method is just an average with respect to p-coin tossing. Here
are some applications of elementary coin tossing facts to Euler summability.

Let X be the number of heads if a p-coin is tossed n times. Let Y be the number of heads
if a p′ coin is tossed X times. Here Y depends on X. The unconditional distribution of Y is the
distribution of the number of heads if a pp′ coin is tossed n times. This is easy to see analytically. It
also follows from the following probabilistic considerations: picture a flower with n seeds; the seeds
drop to the ground or not independently with probability p. Then, they germinate with probability

7



p′. Clearly, the number of seeds that germinate has the same distribution as the number of heads
when a pp′ coin flipped n times.

This probabilistic argument may be rewritten as

n∑
i=0

(n
i
)
(pp′)i(1− pp′)n−isi =

n∑
i=0

{
i∑

j=0

(i′

j
)
(p′)j(1− p′)i−jsj

}(n
i
)
pj(1− p)n−i.

From this it follows that the Euler(p) methods increase in strength as p decreases.
Similarly, the probabilistic relation: “Pick X from a Poisson-distribution; Let Y be the number

of heads if a p-coin is flipped X times, then Y has a Poisson(λp) distribution” shows that the
Euler(p) method is weaker than the Borel method:

lim
λ→∞

∞∑
j=0

e−λλj

j!
sj → `.

The identities above amount to a factorization of summability methods. Consider A,B,C
regular summability methods. If CA = B then clearly A is weaker than B. It is natural to ask
about a converse: If A is weaker than B must there be a factorization? The following proposition
shows that there is at least some sense to this question.

Proposition Let A and B be regular lower triangular matrix methods with A weaker than B. If
Aii 6= 0 1 ≤ i <∞ then there is a regular lower triangular method C such that CA = B.

Proof Define C = BA−1. Here A−1 exists and the product is well defined because of triangularity.
To see that C is regular, Let si → `. Let ti = (A−1s)i then ti = is A-summable to ` and thus B
summable ` so that BA−1 is regular �.

I have found it difficult to formulate a neat generalization of the proposition to the non-
triangular case. Changing the first few rows of a method doesn’t change the set of sequences
assigned a limit but does foul up algebraic identities. A plausible conjecture is this: A is weaker
than B if and only if there are equivalent A′, B′ and C such that CA′ = B′.

4.4 Remarks on Probability and Summability.

There are many points of contact between Hardy’s work on divergent series and classical
probability. To begin, recall the classical Hardy-Littlewood Tauberian Theorem: Given a sequence
si, let ∆i = si − si−1. If |∆i| ≤ K

i for some K, and 1
n

∑n
i=1 si → ` then si → `. This refined

the original condition of Tauber who reached the same conclusion assuming |∆i| = o
(

1
i

)
. The

Hardy-Littlewood Theorem was abstracted to a theorem relating the tails of a measure on [0,∞)
to the behavior of its Laplace transform at 0. Karamata gave a soft proof of the result using weak
compactness. Feller (1971, Chapter 8) gives a wonderful account of these developments and many
probabilistic applications. Bingham Goldie, and Teugels (1987) present a definitive account.

On a personal note, my interest in Hardy’s work started with the first digit problem and
extended to developing basic probability theorems such as the law of large numbers for a variety
of other averages. If Xi 1 ≤ i < ∞ are independent random variables the sum

∑∞
i=0Xix

i may
be interpreted as a discounted return. Its distribution for x close to 1 is of interest in financial
applications. See Lai (1973), Diaconis (1974), or Bingham et al. (1986, Sec. 15) for much further
development.
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It is natural for a probabilist to try to replace the signed measures in the rows of the Toeplitz
Lemma by honest probability measures. If A is a regular summability method let Ã have all
negative entries replaced by zero and the rows normalized sum to one. Does this give an equivalent
method? Alas, no; The regular method 2si− si+1 sums 2n to zero but its probabilistic counterpart
is the identity. For bounded sequences one can show if 2si − si+1 → ` then si → `. Are A and Ã
equivalent for bounded sequences? Again, no: The regular method si − si−1 + si−2 ’probabilizes’
to (sn + sn−1)/2. This sums the sequence 1, 1,−1,−1, 1, 1,−1,−1, . . . to zero but the original
method doesn’t assign a limit to this sequence. I do not believe we can avoid negative measures in
summability theory.

To summarize, Hardy’s work on summability, divergent series and Tauberian Theorems is
intimately connected to probability theory. It has had great applications therein and conversely,
probabilistic techniques have given extensions and unification to Hardy’s work. Our next section
shows similar contact in a completly different context.

5 Hardy Spaces and Probability

The theory of Hardy’s Hp spaces can be roughly described as what happens when analytic
function theory meets up with real variables Lp theory. It turns out that these theories are inti-
mately connected with probabilistic ideas such as Brownian motion and martingales. A competition
developed between probabilists and analysts over whose techniques prove better results. The two
sides have merged into a novel part of modern analysis.

This section begins with harmonic functions and the Hp spaces outlining some of what Hardy
and his coworkers did and pointing to highlights. Next, Brownian motion and martingales enter the
fray. Sharp connections through the work of Burkholder-Gurdy-Silverstein are followed by modern
triumphs: The dual of H1 as BMO and the corona problem. The section concludes with a sketch
of the legacy of Hardy’s work: Hp martingales and their applications to finance, Dirichlet spaces
and their applications to rates of convergence of Markov chains.

Technical treatment of these topics has wonderful literature. The classical book of Kellogg
(1953) is still a readable account of harmonic functions. Axler et al. (2001) gives a modern
treatment. Duren (2000), Koosis (1999) and Garnett (1981) give a clear treatment of the Hp

spaces. Petersen (1977) and Durrett (1984) describe the interaction between probability and Hardy
spaces. The two books by Bass (1995, 1998) give a thorough treatment of the interactions between
probability and analysis. The remarkable series by Dellacherie-Meyer (1975, 1980, 1983) show how
far probabilistic potential theory has developed. The encyclopedic account by Doob (1984) has
much detailed discussion.

5.1 Harmonic Functions and the Hp Spaces

A harmonic function in the plane is a solution of Laplace’s equation ∂2u
∂x2 + ∂2u

∂y2 = 0. For planar
regions, this equation characterizes the flow of heat in homogeneous media, the flow of ideal fluids
and electrical currents. Kellogg (1953) gives a readable development of the appearance of harmonic
functions in physical problems. If f(z) = u(x, y) + iũ(x, y) is analytic, its real and imaginary parts
are harmonic and there is a close connection between properties of analytic functions and harmonic
functions. In this section, analytic notation will be used.
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Hardy studied analytic function f on the open unit disc D = {|z| < 1}. Define mean values

mp{r, f} =

{
1
2π

∫ 2π

0
|f(reiθ)|pdθ

} 1
p

0 < r < 1

m∞(r, f} = sup
0≤θ<2π

|f(reiθ)|

Define Hp, 0 < p ≤ ∞ as the set of analytic functions f and with mp(r, f) bounded as r → 1. Thus
H∞ is the set of bounded analytic functions and H2 is the set of functions of form Σ∞j=0aj z

j with
Σ|aj |2 <∞. In a paper regarded as the start of the subject, Hardy (1915) showed that mp(r, f) is
monotone increasing in r. Two starting facts are crucial:

First, f ∈ Hp has boundary limits almost surely. The boundary function f̃ is in Lp of the
circle and determines f . For 0 < p < ∞, boundary functions f̃ are exactly all possible Lp limits
of trigonometric polynomials Σn

j=0 aje
ijθ. They may also be described as functions in Lp of form

Σ∞j=0 aje
ijθ.

A second basic ingredient is the Hardy-Littlewood maximal inequality. For 0 < p ≤ ∞ if
f ∈ Hp and f∗(θ) = sup0<r<1 |f(reiθ)| then f∗ ∈ Lp[0, 2π) and ‖f∗‖p ≤ Ap‖f̃‖p for some constant
Ap independent of f . This can be used to show boundary limits exist.

These two ingredients will reappear in martingale theory: a class of functions with limits at
the boundary and with sup-norm controlled by boundary behavior.

The seemingly mild requirements: analytic in the disc and bounded in Lp give rise to a sur-
prisingly rich structure theory. There is a canonical form which parameterizes f ∈ Hp in terms of
a countable set of zeros, an absolutely continuous and a singular measure on the unit circle. These
give f as a product of a Blaschke product and an inner and outer function. These were developed
by Beurling who applied them to give a complete description of the subspaces of `2 invariant under
the one sided shift. This use of Hp theory in a natural problem with no apparent connection to Hp

shows its strengths. A completely different example is a theorem of F. and M. Riesz: A probability
measure µ on [0, 1] with

∫ 1
0 e

2πijθµ(dθ) = 0 for j = −1,−2,−3, . . ., is absolutely continuous.
The Hp spaces come with a surprisingly useful extremal and interpolation theories. These

have been widely developed and applied by control theorists with numerous books and conferences
devoted to H∞ control. A typical extremal problem is to find, for Q in the dual of Hp,

‖Q‖ = sup{|Q(f)| : f ∈ Hp, ‖f‖p ≤ 1}

along with a description of the extremal f ’s. For appropriate Q this translates into maximizing
f(xo) or f (n)(xo). A typical interpolation problem is find conditions for the existence of f ∈ Hp

with f(zk) = wk. The Hp spaces have enough structure that these problems can often be usefully
or explicitly solved.

5.2 A Bit of Probability

Two of the great achievements of twentieth century probability are Brownian motion and mar-
tingales. Complex Brownian motion may be described as a probability measure µ on C([0,∞],C)
which is normalized to paths that start at zero, has independent increments and assigns Gauss
measure to the end point of the path from zero at time t ∈ [0,∞). If you don’t know what these
words mean, think of a particle starting at zero and wiggling around in the complex plane as time
evolves. We will write Bt for the position of the particle at time t.
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Two fundamental theorems connect Brownian motion to complex function theory: Paul Lévy
proved that if f is a nonconstant analytic function with f(0) = 0 then f(Bt) is again Brownian
motion with time rescaled to

∫ t
0 |f

′(Bs)|2ds. This is the basis of Brownian proofs of a host of basic
theorems in complex variables; from Liouville’s theorem to the Picard theorems. See e.g. Durrett
(1984), Bass (1995), or Petersen (1977).

The second fundamental theorem is Kakutani’s Brownian solution of the Dirichlet problem.
For simplicity, state this on the unit disc D. Let Bz,t be Brownian motion started at z ∈ D. Let T
be the random time this Brownian path first hits the boundary. Let g be a continuous real valued
function on the boundary. Define f(z) =

∫
g(Bz,T )P (dw). Kakutani showed that f is a harmonic

function with boundary values g. This is the start of a huge subject, probabilistic potential theory
to which we return in Section 5.4.

The second arm of modern probability we need is martingale theory. This is a product of the
twentieth century. Originating with the notion of fair game, it was developed by Lévy and (chiefly)
Doob in the period 1940-1960. It is a mainstay of any standard graduate probability course, see
Williams (1991) or Neveu (1972).

Mathematically, a martingale is a family of measurable functions Xt(ω) 0 ≤ t < ∞. On a
probability space (Ω,F , P ) which satisfies the projection identity, for u ≥ t

E(Xu|Xs, s ≤ t) = Xt.

I will not define the conditional expected value; think of it as the average value, given what happened
up to time t.

Brownian motion is a martingale. Thus analytic functions of Brownian motion are martin-
gales. More to the point, under mild restrictions, the martingale convergence theorem says that
martingales have limits X∞ = limt→∞Xt and Doob’s maximal inequality says that for 0 < p <∞
the values of Mt = sup0≤s≤t |Xs| are bounded by X∞ in e.g. Lp. This is more than a similarity.
Modern work has shown that essentially all of the results of Hp theory can be derived from mar-
tingale theory. Moreover, using techniques of real variables shows the way to extending to higher
dimensions and very general domains. We turn to these developments next.

5.3 Probability and Hp Spaces

A real breakthrough occurred when Burkholder-Gundy-Silverstein (1971) used Brownian mo-
tion techniques to solve problems that had frustrated complex analysts. Among many other things,
they showed that for 1 ≤ p <∞ f = u+ iũ is in Hp if and only if the maximal function of u is in
Lp. This real variables characterization of Hp pointed the way to new results in the classical theory.
It also allowed generalizations of much of the elegant Hp theory to higher dimensions. One of the
great results is the Fefferman-Stein (1971) result identifying the dual space of H1 with functions of
bounded mean oscillation (BMO) as introduced earlier by John and Nirenberg. The argument of
Fefferman and Stein is filled with a mix of probability and analysis. All of their results are proved
for domains in higher dimensions.

The success of probabilistic methods in classical contexts encouraged probabilists to extract
the essentials and create notions of Hp-martingales (limt→∞Xt ∈ Lp) and BMO martingales.
The Hp restriction serves as a useful compactness criteria allowing extensions of the Heine-Borel
characterization (in Rk compact = closed and bounded) to function spaces. A nice survey of this
appears in Delbaen and Schachermayer (1999). They give applications to finance, deriving the
existence of hedging strategies for European and American style contingent claims for incomplete
security markets. See Kramov (1996) for the financial background.
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Probabilists and analysts see each other’s results as challenges; almost always, each side has
succeeded in proving the other’s results. For a case in point, one of the most spectacular results of
the analytical theory is Carleson’s (1962) proof of the corona theorem. This involves the maximal
ideals in the algebra H∞. For z ∈ D the set Mz = {f : f(z) = 0} is a maximal ideal and Carleson
showed these were dense in all maximal ideals. The heart of the argument is a simple to state
result. If f1, f2, . . . fn are in H∞ and |f1(z)|+ . . .+ |fn(z)| > δ for some δ > 0 and all z ∈ D then
there exists g1, g2, . . . , gn in H∞ such that f1(z)g1(z) + . . .+ fn(z)gn(z) ≡ 1. Carleson’s proof is a
tour de force introducing new techniques that have been widely applied. In 1980, N. Varopoulos
gave a Brownian motion proof of the corona theorem, Bass (1995) gives a nice treatment of this.
In fairness, it must be added that Wolf gave an easier analytic proof, see e.g. Koosis (1999).

The rivalry between probabilists and analysts has continued in healthy course. The solutions
of general elliptic partial differential equations can be studied using a generalization of Brownian
motion called diffusions, see Bass (1998). Non-linear equations such as ∇2u = u2 can be studied
using ’super-Brownian motion’ a collection of Brownian particles interacting with each other in
time and space. Of course, super Brownian motion can be studied using the non-linear equation.
For a lovely entry to the work of Dynkin and le Gall in this area see le Gall (1999).

There are many further connections between probability and function theory. One remarkable
line of results constructs counter-examples; you can’t tell if a function is in H1 in terms of the
growth of Fourier coefficients: putting random ± signs on the Fourier coefficients of a function in
H1 almost surely gives a function not in Hp for any p in [0,∞]. See Kahane (1985) for a thorough
treatment. The Hardy-Littlewood maximal theorem is the first maximal inequality. Variations
due to Kolmogorov, Hopf, Garsia and many others are crucial in modern proofs of the martingale
convergence theorem and the ergodic theorem. See Garsia (1973). We will content ourselves
with one final development which again shows the rich interplay between analysis, probability and
applications.

5.4 Dirichlet Spaces and Rates of Convergence

The success of the blend of analysis and probability sparked remarkable abstractions called
abstract or probabilistic potential theory. One version of this revolves around an abstraction of
Brownian motion called a Markov process. This is a family of random variables Xt taking values
in a general space X satisfying the Markov property: for all t < u

P{Xu ∈ B|Xs, s < t} = Qt−u(Xt, B)

for a fixed Kernel Qs(x, dy). Under fairly minimal conditions one can attach a boundary ∂X to
X and emulate many of the classical results on the unit disc. This subject is described in Meyer
(1966) and the books by Dellacherie-Meyer (1975, 1980, 1983).

The spaces X that arise in applications vary from finite spaces (classical Markov chains) to
infinite products such as uL

3 with u3 the unitary group and L = Z3. (Lattice-Gauge theory). It
can be difficult to describe Q(x, dy) and several alternative descriptions of Markov processes have
arisen. Most widely used is the infinitesimal generator through the Hille-Yoshida theorem (see e.g.
Ethier-Kurtz, 1986).

In 1964 a celebrated analyst (A. Beurling) and a probabilist (J. Deny) combined forces to give
a useful, very general description of a Markov process through an associated quadratic form, now
called a Dirichlet form defined on a class of functions on X . The entire theory (path properties
through boundary theory), for quite general spaces, has been developed in this language. I think
it is fair to say that in its modern form, as exposited by Fukushima et al. (1994) the theory is
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essentially completely inaccessible to a working probabilist or analyst. This is a pity, because the
theory has amazing accomplishments.

In joint work with Dan Stroock and Laurent Saloff-Coste I have been translating and applying
some of the tools of Dirichlet forms to problems in applied probability such as how many times
should a deck of cards be shuffled to thoroughly mix it. Mathematicians interested in theoret-
ical computer science have applied Dirichlet form techniques to algorithmic questions which are
provably sharp P -complete but allow Monte-Carlo Markov Chain algorithms to give provably ac-
curate approximations with probability arbitrarily close to one. These stochastic algorithms work
in reasonable times and are beginning to be used by working scientists in applied problems. Nice
overviews of the theoretical developments are given by Saloff-Coste (1997). For practical applica-
tions, the wonderful book by Liu (2001) is recommended.

It is a stretch of the historical record to lay these developments on Hardy’s doorstep (he might
well turn up his nose at them). Nonetheless, as an active worker in the field I am sure that Hardy’s
work on Hp spaces sends dense threads to modern developments. To shine a clear light on this, I
conclude with a modern result where the debt to Hardy is clear.

The story begins with what is now called Hardy’s inequality. In one form (Hardy-Littlewood-
Polya ((1967), p. 239-243). This says if p > 1, an ≥ 0 and An = a1 + a2 + . . .+ an, then

∞∑
n=1

(
An

n

)p

≤

(
p

p− 1

)p ∞∑
n=1

ap
n. (5.1)

Hardy originally proved this to give an elementary proof of Hilbert’s double series theorem.
If you are like me, the inequality (5.1) seems mysterious. What is it good for? I was delighted

to find a probabilistic application in Miclo (1999). Following extensions by Hardy and others, Miclo
proved a weighted version of 5.1: Let µ and ν be positive functions on N+. Let A be the smallest
positive constant such that

∞∑
j=1

µ(n)

( ∑
0<h≤j

f(h)

)2

≤ A
∞∑

j=1

ν(j)f2(j)

for all f ∈ `2(ν). Let

B = sup
k≥1

(
k∑

j=1

1
ν(j)

)(∑
j≥k

µ(j)

)
. (5.2)

Miclo shows that B ≤ A ≤ 4B, so B is a good surrogate for A. To get Hardy’s inequality with
p = 2 from (5.2) take µ(j) = 1

j2 , ν(j) = 1. Then B = supk≥1 k
∑

j≥k
1
j2 is bounded. Elegant though

this may be, it is still not clear what it is good for!
Miclo applies his result to prove spectral gap bounds for birth and death chains. These are

Markov chains on N+ which move up or down by at most one each step. Moving up corresponds to
a birth, moving down to a death. The position of the chain represents the size of the population.
Let b(i), i ≥ 1 be the chance of a birth from i. Let d(i) i ≥ 1 be the chance of a death from i. Under
mild conditions on b(i), d(i) the chain has a stationary probability µ(i) satisfying the reversibility
condition µ(i)b(i) = µ(i+ 1)d(i+ 1) for all i. The spectral gap of the chain may be defined as

λ = inf
f∈`2(µ)

E(f |f)
µ(f − µ(f))2
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where the Dirichlet form is given by

E(f |f) =
∞∑
i=1

(f(i+ 1)− f(i))2µ(i)b(i),

and µ(g) =
∑∞

i=1 µ(i)g(i). The spectral gap controls the rate of convergence to stationarity. If
K`

x(y) is the chance of being at y after ` steps starting at x, then ‖K`
x−π‖ ≤ (1−λ)`/

√
π(x). One

tries to bound the spectral gap away from 0 if possible. Miclo derives good bounds on λ in terms
of a much more tractable quantity; let

B+(i) = sup
k≥i

(
k∑

j=i+1

1
µ(j)d(j)

)(∑
j≥k

µ(j)

)

B−(i) = sup
k<i

(
i−1∑
i=k

1
µ(j)b(j)

)(∑
j≤k

µ(j)

)

Let B∗ = infiB+(i) ∨B−(i). Miclo proves

1
4B∗

≤ λ ≤ 2
B∗

(5.3)

One practical point is that B∗ can often be approximated in natural problems. Miclo demonstrates
this through examples. The point for this article is that Miclo proves the crucial part of (5.3)
(the lower bound) by a straightforward application of his weighted Hardy inequality. I find all of
this tantalizing; there are variations of the spectral gap formula called Sobolev inequalities; these
require bounds on `p norms. I have high hope I can vary Miclo’s argument along the lines of Hardy’s
inequality (5.1) and get useful results. For completeness, I must add that Hardy’s inequality is used
for other things such as interpolating between various Lp spaces. See Stein and Weiss (1975, pg.
196). .

To summarize this long section, Hardy introduced Hp spaces to study harmonic and analytic
functions on the disc. This led to a rich, seemingly esoteric, development in pure mathematics.
Probabilistic interpretations were found and used as tools to sharpen Hardy’s analysis. This was
so successful that pure probabilistic analogs of Hp were developed, far from function theory. These
probabilistic analogs have become an important ingredient in stochastic calculus. The give and take
that has become probabilistic potential theory, a huge healthy area with applications in finance,
computer science, biology and elsewhere. Finally, people are still studying and using Hardy’s old,
magical inequalities.

6 Conclusions

When I prepared my Hardy lecture, I was a bit nervous. Even though Hardy is one of my true
heroes, there is a critical tone underlying some of my remarks and I was afraid of offending the LMS
audience. The talk uncovered some strong feelings about Hardy. A senior algebraist present made
the following comments “Hardy was great but he really fouled up my field. His Pure Mathematics
and other writings set the tone for generations of British mathematicians. There is no mention of
algebra or geometry. Those of us interested in such subjects have had to fight for our place among
the analysts. Pure mathematics indeed”. Some of the applied mathematicians present had stronger
opinions.
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Hardy’s insistence on pure mathematics, free of applications rankles me. Yet a look at the
picture I have painted above shows much merit in his approach. Proceeding in his own way he
created subjects with deep roots that have nurtured rich applied fields. When I began my review
of the Hp spaces they seemed (to me!) a funny fringe of mathematics that had more or less
shriveled. I hope I have shown that this work plays a crucial part in much current mathematics,
both theoretical and applied. In contrast, I see much current applied work, while of immediate
interest, as not having a very long shelf life.

Based on the developments I have sketched we can take issue with Hardy’s famous apology “I
have never done anything ‘useful’. No discovery of mine has made, or is likely to make, directly or
indirectly, for good or ill, the least difference to the activity of the world”.

In retrospect, I don’t think I would have been able to convince Hardy to learn any probability.
Rather, he has convinced me to learn more of his kind of mathematics.
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Varopoulos, N. (1980), “The Helson-Szegö Theorem and Ap Functions for Brownian Motion and
Several Variables”. J. Functional Anal. 39, 85-121.

Vaughn, R. (1997), The Hardy-Littlewood Method. 2nd Ed., Cambridge University Press, Cam-
bridge.

Williams, D. (1991), Probability with Martingales. Cambridge University Press, Cambridge.

Zabell, S. (1995), ”Alan Turing and the Central Limit Theorem”. Amer. Math. Monthly 102,
483-494.

19


