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1. Introduction The most common method of mixing cards is the ordinary riffle
shuffle, in which a deck of n cards (often n = 52) is cut into two parts and the
parts are riffled together. A sharp mathematical analysis for a natural model of
riffle shuffling was carried out by Bayer and Diaconis (1992). This gives closed form
expressions for the chance of any permutation and allows analytic approximation
and exact numerical evaluation to show things like “seven shuffles are necessary and
suffice to approximately randomize 52 cards”. These results are carefully stated in
Section 2A.

The shuffling work builds on earlier studies of Jordan (magic tricks), Borel
(bridge), Gilbert, Shannon, Reeds (basic model) and D. Aldous (coupling). This
background is described in Section 2B. The “seven shuffles” result is mildly depen-
dent on the choice of metric and a number of alternative measures of randomness
are discussed in Section 2C.

There is a mathematical reason that allows riffle shuffles to be analyzed so
completely. The basic shuffling model falls squarely into Solomon’s descent algebra
(and indeed gives an independent development). This allows shuffling theorems to
be translated into permutation enumeration results (e.g. how many permutations
have a given number of descents and a given cycle structure). The eigenvalues of the
Markov chain underlying shuffling were actually first determined in an investigation
of Hochschild homology(Hanlon). There is an intimate connection with free Lie
algebras and the Poincare-Birkoff-Witt Theorem (Bergeron-Bergeron-Garsia). The
chance of a given cycle structure after riffle shuffling equals the chance that a random
degree n polynomial has a given number of irreducible factors. This in turn is
explained by considering the connection between shuffling and the action of the
associated Lie type group SLn(Fq) on its Lie algebra (Fulman). Finally, shuffling
gives a fairly direct interpretation of Schur symmetric functions (Stanley-Fulman).
These results are described in section three.

The analyses above seem so rich and natural that they call out for generaliza-
tion. A sweeping generalization of the theory was discovered by Bidigare, Hanlon
and Rockmore. This involves random walk on the chambers of a hyperplane ar-
rangement. The classical braid arrangement gives riffle shuffles but there are many
other hyperplane arrangements where the chambers can be labeled by natural com-
binatorial objects and much (but not all) of the theory goes through. In an amazing
synthesis, Ken Brown has shown that almost everything can be pushed through to
random walks on idempotent semi-groups. This allows analysis of natural random
walk on the chambers of spherical buildings. These results are described in Section
4.

The final section describes ten open problems.
Throughout I have tried to show the links with algebra. To be fair, many of

the authors cited have no interest in the card shuffling implication of their work.
This paper has improved from detailed comments of Ken Brown, Nantel Bergeron,
Jason Fulman, Adriano Garsia and J.C. Uyemura-Reyes.



2A. Basic Shuffling.

The basic riffle shuffling model was introduced by Gilbert and Shannon (See
Gilbert (1955)) and independently by Reeds (1981). It can be described as a prob-
ability distribution Q(w) on the symmetric group Sn – the GSR Distribution. One
description of Q is as follows: cut the deck into two piles according to the binomial
distribution so the chance that pile one has j cards is (n

j )/2n. Then, sequentially
drop cards from the bottoms of the two piles according to the following rule: if at
some stage pile one has “A” cards and pile two has “B” cards, drop the next card
from pile one with probability A/(A + B). This is continued until the two piles
are exhausted and then the piles are pushed together. An equivalent description
in terms of inverse riffle shuffles is due to Gilbert, Shannon and Reeds. An inverse
shuffle begins by labeling each of n cards zero or one by a flip of a fair coin. Then,
all the cards labeled zero are removed and placed on top keeping the cards in the
same relative order. It is a simple exercise to show that the forward and backward
descriptions are the same. From either description, given the cut, all ways of in-
terleaving are equally likely, so the GSR shuffle is a maximum entropy model. The
identity has probability n+1

2n while all other possible permutations have probability
1/2n.

Repeated shuffles are modeled by convolution:

Q ∗Q(w) =
∑

u

Q(wu−1)Q(u)

Thus the chance of w after two shuffles is calculated as the chance of first choos-
ing u and then choosing the permutation resulting in w. Similarly, Q∗k(w) =
ΣuQ

∗(k−1)(wu−1)Q(u). These ingredients complete the description of the GSR
measure Q∗k(w). Of course, shuffling is an example of random walk on a group and
of a finite state-space Markov chain. See Saloff-Coste (2001, 2002), for an extensive
overview with relevance to shuffling.

Repeated shuffling converges to the uniform distribution U(w) = 1/n!. The
earliest works on Markov chains, due to Markov (1906) and Poincare (1912), used
shuffling cards as an example. They gave results which allow us to conclude that

Q∗k(w) → U(w) as k →∞.

It is natural to try to quantify this statement. The usual distance to stationarity is
the total variation distance

‖Q∗k − U‖ = max
A⊂sn

|Q∗k(A)− U(A)| = 1
2

∑
w

|Q∗k(w)− U(w)|.

Consider the middle term. Its interpretation is this: let A be any subset of Sn (e.g.
the set of all permutations where the ace of spades is in the top half). Calculate
the chance of A after k shuffles (that is Q∗k(A)). Calculate the uniform measure
of A (namely |A|/n!). Take the difference between these numbers and then take
the A which makes this difference as large as possible. This is a very non-forgiving
distance. If ‖Q∗k − U‖ ≤ ε then shuffling is close to uniform for any set A.



These definitions translate the basic question “how many times should a deck
of cards be shuffled to adequately mix it?” into a well posed math problem: given
ε > 0 how large should k be to have ‖Q∗k −U‖ < ε? A historical review of progress
on this problem is contained in the following section. Here we state the basic result.
Theorem 1. [Bayer-Diaconis]. When n = 52, the distance to uniformity is

k: 1 2 3 4 5 6 7 8 9 10

‖Q∗k − U‖ 1.000 1.000 1.000 1.000 .924 .614 .334 .167 .085 .043

For general n, and k = 3
2 log2 n+ c

‖Q∗k − U‖ = 1− 2Φ

(
−2−c

4
√

3

)
+ 0

(
1

n1/4

)
with Φ(x)

1√
2π

∫ x

∞
e−t2/2dt.

Remarks The total variation distance is a number between zero and one. A graph
of Q∗k vs k shows it stays close to its maximum until a bit before 3

2 log2 n and then
falls exponentially fast to zero. The analysis shows that for k = 3

2 log2 n + c the
distance goes to one doubly exponentially fast as c→ −∞ and to zero exponentially
fast as c→∞. These asymptotic results are borne out by the data for n = 52. The
cutoff occurs at about seven shuffles. From six shuffles on, the variation distance
falls by a factor of 2 for each extra shuffle. It is worth noting that the table is derived
from exact results from Theorem 2 below not from an asymptotic approximation.

It is natural to wonder if this mathematics has much to do with real shuffles.
People used to think that cards were suitably well mixed after three, four or five
shuffles. Like many things people believe, this is simply not true. In Section 2B a
classical card trick and some extensive analysis of bridge hands are used to prove
this point.

Theorem 1 is a consequence of a more central result. To explain it, it is useful to
have a geometric description of riffle shuffles. Picture n points dropped uniformly
and independently into the unit interval. Label the ordered points, left to right,
as x1, x2, . . . , xn. Now perform the baker’s transform of [0, 1] to itself. This takes
x→ 2x(mod 1). The points xi are permuted inducing a permutation w. Note that
there are a binomial number of the xi in [0, 1/2]. The baker’s map stretches these
out to [0, 1]. The same holds for the points in [ 12 , 1]. These two sets of points are
interrleaved. It is not hard to see that the induced permutation has exactly the
GSR distribution Q(w).

This geometric description suggests a variant which will prove useful. For posi-
tive integer a, consider the a-shuffle which results from n random points under the
map x→ ax (mod 1). In shuffling language one may cut the deck into a-packets ac-

cording to the multinomial distribution
( n
n1 . . . na

)
/an with 0 ≤ ni ≤ n, Σa

k=1ni =

n. The a packets are sequentially mixed, dropping a card from the ith packet
with probability proportional to packet size. These equivalent definitions result in
a probability Qa(w). In present notation Q2(w) = Q(w). From the geometric de-



scription, it is easy to see that an a-shuffle followed by a b-shuffle is the same as an
ab shuffle thus Qa ∗Qb = Qab and Q∗k2 = Q2k. It is enough to study only a-shuffles.
The main result of Bayer-Diaconis can now be stated.

Theorem 2 For all positive integers n and a, Qa(w) =

(
n+ a− r

n

)
an with r = r(w)

the number of rising sequences in w.
To explain, consider a permutation w as an arrangement of a deck of cards, with

wi the label of the card at position i. Decompose w into disjoint rising sequences by
finding card labeled 1, and then card labeled 2 if label 2 is below label 1. Continue
until label k stopping if label k + 1 is above one of {1, 2, . . . , k}. Remove cards
labeled {1, 2, . . . , k}. This is the first rising sequence. Continue with the reduced
deck, finding {k+1, . . . , k+ `} a second rising sequence and so on. Thus, for n = 9,
the permutation 716248359 has rising sequences 123, 45, 6, 789. Let r = r(w) be
the number of rising sequences obtained. Thus 1 ≤ r ≤ n. Another description:
r(w) = d(w−1)+1 with d(w−1) the number of descents in w−1. Descents will make
a major appearance in Section 2C.

We will not give a proof of Theorem 2 here (see Bayer-Diaconis (1992) or the clear
elementary treatment of Mann (1995)). It is straightforward from the geometric
description using the “stars and bars” argument of elementary combinatorics. The
hard part was discovering the result. We did this by looking at exact computer
calculations for small decks (size 3, 4, 5) and noticing a pattern.

Theorem 2 gives yet another description of the GSR measure

Q(w) =


(n+ 1)/2n If w = id

1/2n If w has 2 rising sequences
0 otherwise.

Theorem 2 reduces the calculation of total variation to evaluating

‖Q∗k − u‖ =
1
2

n∑
j=1

kn(j)
∣∣∣
(
n+ 2k − j

n

)
2kn

− 1
n!

∣∣∣
with kn(j) the number of permutations with j rising sequences. At this point
another surprise occurred. The kn(j) are very well studied as the coefficients of
Eulerian polynomials (Stanley, 1997). This allowed careful asymptotic analysis and
led to Theorem 1.

This concludes our overview of the basic shuffling story. We turn to a bit of
history and then some more mathematical consequences.

2B. History and Practical Consequences.

The earliest treatments of Markov chains treat card shuffling as a leading exam-
ple (Markov (1906), Poincare (1912), Doob (1954)). These treatments show that
shuffling cards eventually results in a well mixed deck. It is very hard to guess



how many shuffles are needed. When n = 52, n! =̇ 8× 1067. For the other popular
method of shuffling (overhand) Pemantle (1984) shows order n2 log n shuffles suffice.
This is more than 2500 when n = 52.

Emil Borel in Borel and Cheron (1940) began a quantitative investigation by
studying how long individual cards and pairs of cards take to randomize. This
allowed him to conclude that at least six or seven shuffles are needed. Similar
conclusions are drawn by Keller (1995).

Independently, magicians had discovered that rising sequences allowed good card
tricks to be performed if cards are not well shuffled. Details and references appear
in Bayer-Diaconis (1992). Bridge players went from hand shuffling to computer
generated shuffling in their tournaments. A comparison of before and after suit
distribution shows that the standard four or five riffle shuffles followed by a cut are
grossly inadequate Berger (1973). Thorpe (1972) is an early survey detailing ways
of taking advantage of poor shuffling in casino games.

Modern work on the mathematics of riffle shuffling begins with work of Gilbert
(1955). He reports joint work with Shannon on the GSR model. They proved some
combinatorial properties of GSR shuffles and suggested log2 n would be enough. The
model was independently discovered by Reeds (1981) who made extensive computer
studies. Aldous (1983) gave a coupling argument which proves that 3

2 log2 n shuffles
are sufficient for n large. Aldous and Diaconis (1986) carefully prove that

‖Q∗k − U‖ ≤ 1−
n−1∏
i=1

(
1− i

2k

)
.

This bound becomes less than 1
2 for k = 11 when n = 52.

An empirical study of the GSR model compared to actual shuffles appears in
Diaconis (1988). This concludes that the model is a good fit. Of course, much
depends on the shuffler – casino dealers (along with the present author) can shuffle
close to perfectly and eight perfect shuffles recycle the deck! See Diaconis-Graham-
Kantor (1983) or Morris (1990) for more of this. There is much further work to
do in developing tractable models with a few parameters which allow individual
tuning. Because of its maximum entropy property the GSR model offers a provable
lower bound to any less uniform distribution.

As a final practical note, Diaconis-Holmes (2000) analyze a class of mechanical
’shelf-shufflers’ used in casino games. In these, a deck of n cards is distributed
randomly onto a shelves. At each stage, cards are placed at random above or below
previously placed cards on a shelf. At the end, the packets are output in random
order (it turns out not to matter). The shuffle is not repeated. It turned out that
the theory developed for type B (hyperoctahedral group) gave a complete analysis.

2C. Other Measures of Randomness

The results of Theorem 2 allow computation in various alternatives to the total
variation metric. Aldous and Diaconis (1983) derive results for separation distance

s(k) = max
w

1− Q∗k(w)
U(w)

= 1−
n!
(

2k

n
)

2nk
= 1−

n−1∏
i=1

(
1− i

2k

)
.



As discussed above this needs k = 11 to make it small when n = 52. Su (1995),
Trefethan-Trefethan (2002) and Stark et al. (2000) derive results for entropy dis-
tance that suggest k = 5 or 6 shuffles suffice when n = 52. The theorem of Stark
et al. (2000) shows that the entropy distance decreases by a constant factor up to
log2 n shuffles when it goes to zero exponentially. A graph of the distance versus
entropy for small values of n seems to show a discontinuous derivative at log2(n).
If true, this would be a new kind of phase transition. Lovasz and Winkler (1995)
use Theorem 2 to show that a very different distance, the expectation of the fastest
strong stationary time will be small after k = 11.

All of the above are global measures of uniformity. In explaining the convergence
results to a popular audience, the following notion seemed useful. Consider playing
the following game. A deck of cards is on the table. Guess at the top card. This
card is then shown and discarded. Then guess at the next card (which is then shown
and discarded) and so on. If the deck is perfectly mixed, the chance that the first
guess is correct is 1/n, the chance the second guess is correct is 1/(n−1), etc. Thus
1/n+ 1/(n− 1) + . . .+ 1 correct guesses are expected. When n = 52 this is about
4.5. Suppose instead that k riffle shuffles have been carried out. A conjectured
optimal strategy for guessing was derived by McGrath (see Bayer-Diaconis (1992)).
Using the strategy yields about 5.01 correct guesses after seven shuffles with 4.97
correct following seven shuffles and a cut. In related work, Ciucu (1998) studies the
optimal guessing strategy following k-riffle shuffles when no feedback is given. He
proves that for 2n cards if k ≥ 2 log2(2n) + 1, the best strategy is to guess card 1
for the first half of the deck and card 2n for the second half. For k < 2 log(2n),
there are better strategies. In particular, after one shuffle he shows that guessing
1, 2, 2, 3, 3, 4, 4, . . . in order gives

√
8n/π correct guesses asymptotically. His analysis

rests on an explicit diagonalization of the Markov chain which tracks the position
of the card labeled 1. This is closely related to work in Section 4B below.

The above study suggested looking at classical permutation enumeration ques-
tions (e.g. number of fixed points or cycles) after an a-shuffle. This turned out to
be surprisingly neat. For example, the expected number of fixed points is

Ea(Fp) = 1 +
1
a

+
1
a2

+ . . .+
1

an−1
.

For cycles, the full story was derived by Diaconis-McGrath-Pitman (1995). Let
Qa(n1, n2, . . . nn) be the chance that an a-shuffle results in a permutation with ni

i-cycles. They proved

(2.1) Qa(n1 . . . nn) =
1
an

n∏
i=1

(ni + fi(a)
ni

)
with fi(a) =

1
i

∑
d|i

µ(d)ai/d

The proof uses a remarkable bijection of Gessel and indeed gives a self-contained
proof of Gessel’s results – see Gessel-Reutenauer (1993) for Gessel’s version with
extensive application to enumerating permutations by descents and cycle structure.
The formula 2.1 and some analysis show that features of a permutation that only
depend on cycle structure become random before 3

2 log2 n-shuffles; the length of the
longest cycle is close to its uniform distribution after one shuffle.

In a different direction, discussed further in Section 3B, Fulman (2002) has
shown that the length of the longest increasing subsequence has its correct limiting



distribution after 5
6 log2 n shuffles. These results also imply that the patience sorting

solitaire game described by Aldous-Diaconis (1995) will then behave as if the deck
was random.

Uyemura-Reyes (2002) has studied the number of riffle shuffles required to ran-
domize just a few cards e.g. the original top card. He derives bounds using coupling
and remarkable formulas for how the eigen-values of the GSR shuffles split by rep-
resentations. His results generalize earlier profound work of Bergeron, Bergeron,
Garsia (1989), and Hanlon (1990). They are discussed further in 4B below.

All of this shows that “seven shuffles suffice” is just a rough guide. From Theo-
rem 1, it is where the cutoff happens.

To finish off this part of the shuffling story we note that the analysis has been
broadened to show that the age old custom of following shuffling by a random
cut does not help appreciably in convergence. This is illustrated in Bayer-Diaconis
(1992) and much more sharply in Fulman (2000B). This last paper connects shuffling
with cuts to cyclic descent theory.

3. Some Mathematical Connections

A. Descent Theory

A permutation w has a descent at i if wi+1 < wi. The set of all such i makes
up the descent set D(w) ⊆ {1, 2, . . . , n− 1} = [n− 1]. Descents record the up down
pattern in permutations and are a natural object of combinatorial study. Stanley
[1972, 1986] lays out the classical theory and Buhler et al. (1994) make a fascinating
connection to the mathematics of juggling. Stadler (1997) develops links between
descents, shuffling and juggling for permutations of multisets.

Let S ⊆ [n − 1] and let aS =
∑

w:D(w)=S

w. Louis Solomon (1976) observed

that as elements of the group algebra Q[Sn], the aS are the basis for a subalgebra
now called Solomon’s descent algebra. In particular aSaT = Σuc

u
STau for cuST ∈

Z. Solomon’s motivation was to give a group theoretic interpretation of Mackey’s
induction theorem. He did this in a unified way for classical Weyl groups. The
development he started now has a life of its own.

The connection to shuffling cards comes through the following observations. The
set of permutations with a single descent at position i (along with the identity) are
exactly the permutations realized by removing an i element subset of 1, 2, . . . , n and
placing them to the left (keeping all else in its same relative order). This is exactly
the inverse riffle shuffles consonant with i cards cut. Summing in i, let A1 = Σn−1

i=1 ai

this is the sum of all permutations with a single descent. Excepting the identity, it
is also the result of an arbitrary inverse riffle. If Q is the Gilbert-Shannon-Reeds
measure then, as an element in Q[Sn],∑

w

Q(w−1)w =
n+ 1
2n

id+
1
2n
A1.

Thus the neat convolution properties of the GSR measure show that if Ai is the
sum of permutations with exactly i descents (so A0 = id), then A0, A1, . . . , An−1



are a basis for a commutative subalgebra of the descent algebra. In particular,
AiAj = AjAi = ΣckijAk. This commutative subalgebra of the descent algebra ap-
pears in Bayer-Diaconis (1992). As explained there, close relatives had been discov-
ered by Gerstenhaber-Schack [1987] in their development of Hochschild Homology
and by Loday [1988], Hanlon [1990] in their development of cyclic homology. The
idempotents of this algebra act naturally on a complex constructed from the usual
bar resolution and, for commutative algebras, commute with the boundary maps.
Hence their kernel and image offer a natural Hodge-type splitting of the associated
homology.

It would take us too far afield to explain the connections between the descent
algebra, the free-Lie algebra, and Philip Hall’s commutator calculus. Fortunately,
this has been splendidly carried out by Garsia (1990) and Garsia-Reutenauer (1989)
as summarized by Reutenauer [1993]. This book contains a central chapter on shuffle
algebras. It omits most of the topics discussed in the present review! A number
of other appearances of shuffling are in the series of papers by Nantel Bergeron
(with several sets of coauthors) listed in the bibliography. These extend previous
results to more general Coxeter groups, include applications to Vassiliev invariants
and much else.

B. Connections with Symmetric Function Theory

The theory of symmetric functions as developed by Stanley (1972, 1999) and
Macdonald (1985) has had a great unifying effect on combinatorics. Many seemingly
isolated facts about balls in boxes, permutations and partitions are nowadays seen
as formulae for change of basis. Schurs symmetric functions are at the heart of this
theory. A charming discovery of Stanley (2001) developed by Fulman (2002) shows
how Schur functions arise in a natural way from riffle shuffling. Let θ1, θ2, . . . be
non-negative numbers that sum to one. Drop n balls into a set of boxes with θi the
chance of a ball dropping into box i. Suppose the box counts are N1, N2, . . . with
N1 +N2 + . . . = n. Take a deck of n cards; cut off the top N1, cards, then the next
N2 cards (forming a separate pile), etc. of course, many of the piles may be empty.
Riffle shuffle these piles together as in Section 2a. This results in a final permutation
w. Apply the Schensted map to w to get a pair of standard Young-tableaux of the
same shape λ.

Proposition The probability that the above procedure results in the partition λ
is the Schur function sλ times the dimension fλ of the associated representation of
the symmetric group:

sλ(θ1, θ2, . . .)fλ.

Stanley’s proof of this proposition uses quasi-symmetric functions, an emerg-
ing tool in algebraic combinatorics. Fulman’s proof of the proposition uses only
classical facts from symmetric function theory. Both authors develop corollaries
and variations. One striking application to shuffling due to Fulman shows that the
distribution of features of a permutation dependent on the shape of the associated
Young-tableaux- e.g. the longest increasing subsequence – have the correct limiting
distribution after 5

6 log2 n shuffles. Stanley (1999) (2002) is a good place to start
reading about quasi-symmetric functions. Aguiar and Sottile (2002), Billera, Hsiao



and Van Willigenburg (2001) and Garsia, Wallach (2002) are relevant, significant
studies. All have shuffles as part of their combinatorial essence.

3C Work of Fulman Some profound connections between shuffling and the
enumerative theory of finite groups of Lie type have been developed by Jason Ful-
man. Some of this has already made an appearance above in Sections 2B and 3B.
This section describes some further developments. Yet others appear in the rich
collection of papers listed in the bibliography.

One striking result of Fulman explains a mystery. A main result in Diaconis-
McGrath-Pitman (1995) is a closed formula for the cycle structure of a permu-
tation after an a-shuffle (see (2.1) in Section 2C). It was also observed that this
formula answers a second question: pick a random monic degree n polynomial
xn + an−1x

n−1 + . . .+ a0 with coefficients in Fq by choosing a0, a1, . . . , an−1 from
the uniform distribution. Factor this polynomial into irreducible factors and sup-
pose there are ni irreducibles of degree i. The chance of a given n1, n2, . . . , nn

occurring is given by (2.1) with a = q. This was proved by observing that two for-
mulae agreed – that is, without understanding. Fulman [1998] found a conceptual
explanation and an extension to other groups and shuffling schemes.

Fulman’s explanation begins with a simply connected, semi-simple group G de-
fined over Fq. Let G be the Lie algebra. Consider the orbits of semi-simple el-
ements of G under the adjoint action of G. For example, for groups of type A,
G = SLn(Fq),G = s`(n, q) and semi-simple elements correspond to monic degree n
polynomials with coefficient of xn−1 vanishing. For types A and B, Fulman shows
that there is a natural map Φ from the semi-simple orbits to the conjugacy classes of
the Weyl group W such that a uniformly chosen orbit maps to the measure induced
by a-shuffling with a = q. Thus a randomly chosen polynomial maps to an a-shuffle
and the factors map to cycles. For shuffles of type B, the correspondence is with
symmetric polynomials f(z) = f(−z)

In algebraic group theory there is an analog of the map Φ which carries semi-
simple conjugacy classes of the group G to conjugacy classes of the Weyl group.
Picking a semi-simple class uniformly induces a probability distribution on conju-
gacy classes. Fulman [1997] managed to find a card shuffling interpretation of this
map as well and give an enumerative theory that works for all split semi-simple
groups. His work uses results of Cellini and Carter’s work on the Brauer complex.
Indeed, Carter (2002) has recently extended Fulman’s work to more general groups.

We give the card shuffling version of Fulman’s work for type A. Define an F -
shuffle of a deck of 2n cards as follows: choose an even number j, between 1 and
2n with probability

(
2n
2j

)
/22n−1. Remove the top j cards of the deck. Remove the

bottom j cards of the deck and place them on top of the original top j cards to form
a packet of size 2j. Shuffle this packet with the remaining 2n − 2j cards. Fulman
derives remarkable closed form generating functions for the cycles of a permutation
after an F -shuffle. He also shows that F -shuffles convolve nicely and, for special
deck sizes, gives an alternate description in terms of a riffle followed by a cut.

The analogous developments for type B yield closed formulae for the cycles of
randomly chosen unimodal permutations. These arise in dynamical systems and in
social choice theory.



One further aspect of Fulman’s work deserves special mention (and follow-up!).
The shuffling work in Diaconis-McGrath-Pitman (1995) leans on a remarkable bi-
jection of Gessel between multisets of primitive necklaces and permutations with
cycle structure equal to that of the necklace. Fulman shows that by refining the
correspondence Φ described above to a map to the Weyl group (instead of just to
conjugacy classes) one recovers Gessel’s bijection in a group theoretically natural
way.

3C. Work of Lalley

Steve Lalley has written a series of papers studying extensions of the basic
Gilbert-Shannon-Reeds model to less uniform methods of riffle shuffling. Even
changing the method of cutting the deck in two from a fair binomial distribution to
a skewed binomial distribution with parameter p < 1

2 destroys a basic symmetry.
For this case, Lalley [2000] conjectures that there is a sharp threshold for the mixing
time at Cp log n for Cp = (3 + θp)/ log(1/p2 + q2) with θp the unique solution of
pθ + qθ = (p2 + q2)2. Observe that C 1

2
= 3

2 log2 n in agreement with Theorem 1.
Lalley [2000] and Fulman (1998) give upper and lower bounds of this form for the
mixing time but sharp results are conjectural.

Lalley [1996], [1999] expands the basic interlacing mechanism underlying the
GSR shuffle. To explain, recall the dynamical systems description of GSR shuffles
as the permutation induced by n uniform points in [0, 1] under the baker’s trans-
formation x 7−→ 2x mod(1). This results in all interleaving being equally likely. It
is natural to consider more general maps f : [0, 1] → [0, 1] which preserve Lebesgue
measure. Lalley works with piecewise C2 maps which are piecewise monotone in-
creasing. He shows that several interpretable shuffles can be so described. For
example, the biased cut shuffles described above or shuffles where the left card is
dropped with probability uA/(uA + wB) when packets are of size A, B, here u,w
are fixed parameters. When u = w = 1

2 this becomes the original GSR shuffle.
The main result of Lalley [1996] shows that when n is large, for fixed i, the

number Ni of cycles of length i after an f -shuffle are approximately independent
geometric random variables with P (Ni = k) = (1 − w)wk the parameter w de-
pends on i and on the map f in a simple way. Further, the Ni are approximately
independent. The main result of Lalley [1999] gives a lower bound for the num-
ber of f -shuffles required to mix N cards; at least h−1 logN shuffles are needed
where h is the ’fiber entropy’ associated to f . The proofs are a marvelous mix of
ergodic-theoretic symbolic dynamics and combinatorics.

One interesting aspect of these f -shuffles is that, aside from a-shuffles, the suc-
cessive permutations chosen for repeated convolution are not independent. They
form a stationary sequence. This is not necessarily bad; perhaps real shufflers re-
member a few steps back – if a particularly lumpy shuffle was just made the next
shuffle might be neater. See also Dubrow-Fill (1995). There is much to follow up
from Lalley’s work. Perhaps the leading problem is to prove any kind of upper
bound for f -shuffles or better, to determine where cutoffs appear.

3D. Early Shuffling

The basic combinatorial shuffling of two sequences, one withm letters x1, . . . , xm



and one with n letters y1, . . . , yn, into the formal sum of sequences of n+m letters
in all orders that preserve the order of the x’s and the order of the y’s (thus

(
n+m

m

)
terms) appears in other areas of algebra.

Perhaps earliest is the classical wedge product of two alternating forms. If V is
a vector space and f : V m → R, g : V n → R are alternating multilinear functions,
then f ∧ g : V n+m → R may be constructed as the function

f ∧ g(x1, . . . , xn+m) =
∑

σ

sgn(σ)f(xσ1 , . . . , xσm
)g(xσm+1 , . . . , xσn+m

)

where the sum is over all shuffles. A splendid account of this classical subject
appears in Cartan (1967, pg. 179-188). The shuffling construction guarantees that
f ∧ g is alternating, that f ∧ g = (−1)mng ∧ f and that the wedge product is
associative. Cartan’s proof of this last statement results from the following fact:
with three packets of cards of sizes `,m, n, shuffling ` into m and then the n into this
joint packet results in the same distribution as shuffling in any of the other orders, or
indeed shuffling the 3 packets together simultaneously as in the 3-shuffles described
in Section 2d. More general shuffles appear when studying flag manifolds. A flag is
an increasing sequence of subspaces. If the successive dimensions are n1, n1 +n2, . . .
then shuffles based on cutting off packets of size n1, n2, . . . appear. In particular,
such shuffles index a basis for the homology of the associated flag variety. See Fulton
(1997) or Shahshahani (2002) for textbook descriptions.

Eilenberg-MacLane (see MacLane 1950) used the shuffle construction as a basic
building block for constructing a chain complex giving an appropriate cohomology
theory for Abelian groups. They get H2(π,G) as the group of Abelian extensions
of G by π.

Shuffles appear frequently in other basic constructions in algebraic topology. For
example, if X is a space with an associative, commutative product, Milgram (1967)
defined a product on the classifying space B(X) using shuffles. This work was
systematized by Steenrod (1967) and further by MacLane (1970). Shuffles appear
in the Eilenberg-Zilber Theorem and in explicit proofs of the Künneth formula
giving a chain equivalence between a chain complex for the product of two spaces
and the tensor product of the two chain complexes. See Hatcher (2002, pg. 278)
for details and Dupont (2001, pg. 29) for a charming appearance in the world of
scissors congruences! The essence of much of this is that the shuffling map gives a
natural triangulation of the product of two simplices.

¿From a modern view, many of these appearances of shuffling occur because of
the many natural Hopf algebras in mathematics. See Schneider-Sternberg (1993)
for references and pointers to Rees’ shuffle algebras and Chen’s iterated integrals.
Perhaps even more basic, the permutatedron is the convex hull of all permutations
of the vector (1, 2, 3, . . . , n) in Rn. It is a convex polytope with vertices indexed by
permutations. It may be seen that the edges and faces of various dimensions are
indexed by shuffles. See Billera and Sarangarajan (1996) for a clear statement and
proof. It would be marvelous if some of what we know about shuffling illuminates
these applications or vice versa.

4. Some Generalizations



There are a bewildering variety of extensions of riffle shuffling where much of
the successful analysis goes through. It is easiest to lead into this by considering
inverse riffle shuffles where a subset is selected at random and moved to the top. A
natural generalization is to partition [n] into ordered blocks (B1, B2, . . . , Bk). Then
remove all cards with labels in block one and move these to the top (keeping the
cards within a block in their original relative order). Next cards with labels in B2

are removed and put directly below those in B1, and so on with cards having labels
in block k finishing at the bottom. Let B be the space of all ordered blocks of
any shape if a weight w(B), B ∈ B is specified with w(B) ≥ 0 Σw(B) = 1, then a
random walk can proceed.

Inverse riffle shuffles and the GSR model proceed from the uniform distribution
on the set of 2n partitions into two blocks. A widely studied special case puts
weights w1, w2, . . . , wn on each card and then removes card i to top. This arises as
a method of rearranging files so that frequently called for items are near the top.
See Fill [1996] for an extensive survey. Curiously, the special case with wi = 1/n
for all i is central in Wallach (1986) and Garsia-Wallach (2002).

As will emerge, there is a relatively complete theory for this class of walks – a
description of stationary distribution, reasonable rates of convergence and a com-
plete description of the associated eigenvalues. This will follow from the following
sweeping generalization.

A. Hyperplane Walks

Bidigare-Hanlon-Rockmore (1999) introduced a class of walks on chambers of a
hyperplane arrangement which includes the walks above as a special case. Their
works was completed in various ways by Bidigare (1997), Brown [2000, 2001],
Brown-Diaconis [1998]. Billera-Brown-Diaconis (1999) offer an introduction.

The story begins with a set A of affine hyperplanes in Rd. This cuts Rd into
regions called chambers. These chambers are polyhedra with sides called the faces
of the arrangement. For example, three lines in the plane in general position yield 7
chambers (2-dimension), 9 one dimensional faces and three zero-dimensional faces
(the three points of intersection). Given a face F and a chamber C, the projection
of F on C, written FC, is the unique chamber with F as a face and closest to C.
Here closeness if measured by the number of hyperplanes in A one must cross in
moving from C to FC.

Let wF ≥ 0 ΣwF = 1 be weights on the faces of the arrangement A. Define a
random walk on the set of chambers by moving from C to FC when F is chosen with
probability wF . The theory depends on the lattice L of all possible intersections of
elements in A. Here are the main theorems of Bidigare-Hanlon-Rockmore [1999],
Brown-Diaconis [1998].

Theorem 1 Let A be a hyperplane arrangement in Rd. Let L be the intersection
lattice of A and wF a probability measure on the faces. Then, the transition matrix
of the Markov chain is diagonalizable. For each W ∈ L there is an eigenvalue

λW =
∑

F≤W

wF



with multiplicity

mW = |µ(W,V )| = (−1)dim(W,V )µ(W,V )

where µ is the Möbius function of L.

Theorem 2

(a) The Markov chain of Theorem 1 has a unique stationary distribution π if and
only if for each H ∈ A there is a face F not in H with wF > 0.

(b) The stationary distribution in (a) can be described by sampling faces without
replacement from wF to get an ordering F1, F2, . . .. Then, for any chamber
C0, the product F1F2F3 . . . C0 is a chamber distributed from π.

(c) For π as in (a), (b), and starting chamber C0

‖K`
C0
− π‖ ≤

∑
H∈A

λ`
H

To complete this section, let us show how these hyperplane walks extend riffle
shuffles. The braid arrangement Ad consists of hyperplanes Hij = {x ∈ Rd :
xi = xj}. All points within the same chamber have the same relative order so the
chambers may be labeled with permutations. The faces are points in Rd which lie
on some of the Hij and on various sides of the rest. These may be labeled by block
ordered partitions (B1, B2, . . . , Bk) of [n]. Finally, the action FC of a block ordered
partition on the permutation corresponding to C results from removing cards from
the first block and moving to the top, etc., as described in the introduction to this
section.

The present description does not do justice to the wealth of examples of hyper-
plane arrangements where the chambers have natural names and the walk has a
natural interpretation. We can only hope that the reader will consult the references
above.

B. Some Representation Theory

I want to describe work of Bergeron-Bergeron-Garsia (1989), Hanlon [1990] and
Uyemura-Reyes (2002) which shows a deep interplay between the shuffling schemes
of Section A and the representation theory of the symmetric group. To keep things
manageable, consider random walks on the braid arrangement driven by invariant
face weights: w(F ) = w(σF ). This includes (uniform) random to top and inverse
riffle shuffles as special cases. Let Q(σ) = ΣFid=σw(F ). These walks may be
described via repeated convolution by the probability measure Q.

It is natural to ask how the eigenvalues of the walk split up by representation.
Recall that the irreducible representations of Sn are indexed by partitions ν of n. If
ρν(σ) is the associated matrix representation, we are asking about the eigenvalues of
the matrix Q̂(ν) = ΣσQ(σ)ρν(σ). By general theory (Diaconis (1988, Chapter 3E))
these are a subset of the eigenvalues from Theorem 1 in Section 4A Above. For the



braid arrangement, the eigenvalues are indexed by block ordered partitions. How-
ever, because of the symmetry w(F ) = w(σF ), the eigenvalues only depend on the
underlying number partition. Thus for each pair of partitions (µ, ν) we may ask how
many times the eigenvalue λµ occurs in the matrix Q̂(ρν). To describe the answer
we need both the usual irreducible characters χν of Sn and the Lie characters ψµ

(Reutenauer (1993, Chapter 8)). These Lie characters may be described by taking
a permutation of cycle type µ in Sn. Its centralizer is a product of Wreath products
SkwrCj . Take a ξ primitive jth root of 1, consider the one dimensional character of
Ck

j which takes xj , . . . , xn to ξx1+...+xk . This induces a one dimensional character
of the Wreath Product. Taking a product of these 1-dimensional characters over
all factors in the centralizer and then inducing up from the centralizer to Sn gives
ψµ. The main theorem below was proved by Hanlon [1990] for the case of GSR
shuffles. Richard Stanley (personal communication) conjectured the general result
which was proved by Uyemura-Reyes (2002).

Theorem 3

For an Sn invariant hyperplane walk on the braid arrangement the multiplicity
of the eigenvalue λµ of Theorem 1 in the νth irreducible representation of Sn equals

〈χν , ψµ〉.

Remarks

(a) Lie characters have been extensively investigated when µ = (n), see Stem-
bridge (1989), where an explicit decomposition formula is given. For general
partitions µ, much less is known. Theorem three shows that the Sn invariant
shuffles are equivalent objects in the group algebra. Any such shuffle is a
linear combination of what may be called µ shuffles as described in the in-
troduction to this section. As shown in Diaconis-Fill-Pitman [1992, Sec. 5],
these µ shuffles form a basis for the descent algebra.

(b) Uyemura-Reyes (2002) shows how the numbers described above allow bounds
on how many shuffles of a given type are required to randomize a subset
of cards, e.g. the original top card or top 13 cards. Here is one example.
If k = log2(n/c), after k inverse GSR shuffles, let Qk be the probability
distribution of the position of the original top card. Then Qk is close to
uniform if c is small:

‖Qk − u‖ ≤ 1− (1− 2−k)n

(c) These connections to representation theory are crucially used in Fulman (2000B)
to get nice formulae for the cycle structure of shuffles followed by a cut.

C. Brown’s Semigroup Walks

Ken Brown [2000, 2001] has given a marvelous extension of the hyperplane walks
which leads to interesting special cases and a conceptual explanation of why the



eigenvalues of these non-symmetric Markov chains are non-negative real numbers.
The brief treatment given here is a shuffling together of two of Brown’s papers and
the reader is strongly encouraged to read the originals.

Let S be a finite semigroup satisfying x2 = x for all x ∈ S. A random walk is
driven by a probability distribution w(x), x ∈ S. At each stage, one picks x from
w(x) and multiplies on the left. Thus the transition matrix is

K(s, t) =
∑

x·s=t

w(x)

In all the examples, the state space of the walk is restricted to a left ideal I in S.
Example 1. Hyperplane Walks. Let S be the set of faces of a hyperplane arrange-
ment with I the set of chambers under the product of Section 4A. This product is
idempotent and the results of Section 4A will be seen as special cases of the main
theorem below.
Example 2. q analogs Let MAT (n, `, q) be the set of n× ` matrices of rank ` with
coefficients in Fq. Let S = ∪n

`=1MAT (n, `, q) and I = GLn(q) = MAT (n, n, q).
Define a product on S as follows: If s has columns (s1, . . . . , s`) and t has columns
(t1, . . . , tm) form s · t by appending the columns of t to the columns of s in order
t1, t2, . . . deleting a ti if it is linearly dependent on the columns already there. This
is an idempotent associative product and GLn(q) is an ideal.

The “q = 1 case” consists of ordered strings from 1, 2, . . . n, without repeated
values and the ideal becomes the symmetric group Sn. Thus if s = (3, 5) and
t = (23145) st = 35214 and we see the move to the front chain.
Example 3. The free idempotent semigroup Fn on 1, 2, . . . n, may be described as
the equivalence class of finite strings under the equivalence relations w2 = w for all
subwords. For example, when n = 2, we get the six strings

S = {1, 2, 12, 21, 121, 212}

Brown (following Green and Reees (1952)) shows that F3 has order 159 and Fn has

order
∑n

i=1

(n
i
)∏i

j=1(i− j + 1)2
j

.

Let I be the ideal of all words having each of {1, 2, . . . , n} appearing at least
once (for n = 2, I = {12, 21, 121, 212}). Any probability measure on S induces a
Markov chain on I by left multiplication.

Return now to the general case of an idempotent semigroup S. Brown introduces
a support map supp : S → L with L an explicitly constructed semilattice. The
support map is a subjection satisfying supp (xy) = supp x∨ supp y and supp x ≥
supp y if and only if x = xyx. The set L indexes the eigenvalues of the walk. For
hyperplane walks, L is the intersection lattice. For matrices, L is the subspace
spanned by the columns. For the free idempotent semigroup L is the collection
of subsets of {1, 2, . . . , n} under union. The natural ideal I is the two sided ideal.
{x : supp x = 1̂}. This specializes to the ideals given in the three examples above.

Brown gives a version of theorems one and two of Section 4A: For each X ∈
L there is an eigenvalue λX =

∑
supp x≤X w(x) with a neat way of computing

multiplicities. If the product of x with wx 6= 0 is in I then there is a unique



stationary distribution π which may be described as the distribution of the random
element x1x2 . . . c0 with x1, x2, . . . sampled without replacement from w(x). Finally,
for any starting state C0 ∈ I,

‖KC0 − π‖ ≤
∑
H

λ`
H

where H ranges over the maximal elements of L.
The key to the analysis is a surprising, complete character theory. (Most semi-

groups do not have a reasonable character theory.) Brown shows that all represen-
tations of S are one dimensional and that the representations are indexed by L; the
’Fourier transform’ of the random walk now yields the eigenvalues.

One aspect of Theorem 1 that needn’t go through: the Markov chain needn’t
be diagonalizable. To help the reader navigate, Brown first worked in idempotent
semigroups satisfying the additional identity xyx = xy. These are called left regular
bands in the semigroup literature; most of the examples considered above are left
regular bands. Under this condition the chain is diagonalizable. In later work,
Brown showed that nearly everything goes through in the general case. There is a
tantalizing extension to a walk on the chambers of a building. Here, while a product
is well defined, it is not associative. This creates a mess but there are some positive
results as well.

5. Some Open Problems

1. Almost none of the walks presented here have good lower bounds available.
Examples include riffle shuffles with the deck cut exactly in two (see Section
3A) or any of Fulman’s shuffles (Section 3C). It would be nice to have a lower
bound in some generality for the general hyperplane walks of Section 4A.
Usually, reasonable lower bounds are easier to prove than upper bounds. See
[Diaconis, 1988] or [Saloff-Coste 1997] for the usual techniques. One idea for
a systematic approach: Brown’s method (Section 4C) finds a representation
theoretic interpretation. With characters available, perhaps David Wilson’s
[2001] approach may be pushed through.

2. It should be the case that essentially all the walks discussed here show a
sharp cutoff in their approach to stationarity; proving this requires sharp
upper bounds as well as sharp lower bounds. The general upper bounds
(e.g., Theorem 2 of Section 4A) are often slightly off in the few cases where
sharp answers are known. For example, for ordinary riffle shuffles, the general
approach shows 2 log2 n + C shuffles suffice for randomness while Theorem
1 of Section 2A shows the right answer is 3

2 log2 n + C. The original paper
of Bidigare-Hanlon-Rockmore gives a potentially sharper upper bound. It
would be very instructive to compare the two variations. In preliminary work,
Brown-Diaconis [1998] found them similar but Uyemura-Reyes [2002] found
examples where the BHR bound is a genuine improvement. It may be that
the bounds of BHR or Theorem 2 of Section 4A are sharp for some other
metric; this happens for ordinary riffle shuffles with separation distance as
discussed in Section 2C. At a more abstract level, it may be possible to prove



the existence of a sharp threshold without being able to locate it along the
line of concentration inequalities see Ledoux [2000].

3. A very clear set of problems is to give any kind of upper bounds for Lalley’s
f -shuffles of Section 3C. Presumably, these all mix n cards in order log n steps
but at present we don’t know that order 2n steps suffice.

4. For practical reasons it is natural to seek models of riffle shuffling cards that
result in neater shuffles than the GSR shuffles. This arises in studying the
way Las Vegas dealers shuffle; they drop cards in close to perfect alternation
while the GSR method has packet sizes geometrically distributed. Here is a
suggestion whose analysis is completely open: the Markovian Model is driven
by a 2-state Markov chain with transition matrix.(

p00 p01

p10 p11

)

To shuffle a deck of n cards, run the chain starting in stationarity to produce
x1, x2, . . . , xn a binary sequence. If this sequence has k zeros and n− k ones,
cut off the top k cards as a left hand pile, the n−k remaining as a right hand
pile. Use the zeros and ones (from right to left say) to dictate if the next drop
is from left or right.

For example, with n = 10 cards the sequence 0101100110 results in 5 cards
being cut off and the final arrangement 1, 6, 2, 7, 8, 3, 4, 9, 10, 5. This includes
the GSR model by taking pij = 1/2 and perfect shuffles by taking p01 = p10 =
1. It is natural to begin with a symmetric cut, so p01 = p10 and p00 = p11.
There is every hope that this model will produce neat and useful analyses.
It must be the case that (for symmetric shuffles with 0 < p01 < 1) there
is a sharp threshold at θ log n + C with θ = θ(p). For practical purposes
one could estimate θ(p) from computer experiments and also estimate p by
watching dealers shuffle. This would allow one to derive reasonable ways of
exploiting the structure if the dealers do not shuffle enough. The following
seems clear: Since pij = 1/2 requires seven shuffles and this is the fastest
method, most neat shufflers will require a good many more shuffles and there
will be plenty of structure to take advantage of! Incidentally, the case of
’random perfect shuffles’, each time choosing randomly to do a perfect in or
out shuffle, has been analyzed by Uyemura-Reyes (2002). For perfect shuffles,
not all permutations are possible so the walk is random on a subgroup. For
decks of size 2k, he shows order k2 steps are necessary and suffice. The case
of general decks remains open.

5. I want to record empirical work which yields a quite different natural model for
riffle shuffling. In joint work with my student Arnab Chakraborty we studied
commonly available machines for shuffling cards. These machines have the
user cut the deck in two halves (placed into the left and right sides of the
machine). Then a button is pushed which activates rubber wheels touching
the bottoms of the two packets. These spin cards off the bottoms into a central
region where they drop onto a collecting place. At the end of one shuffle the
user retrieves the deck, cuts it into two and the process continues.



In our empirical work we found that an “opposite” GSR model seemed to fit
the data. In the GSR model, if at some stage there are A cards in the left
half and B cards in the right half, the chance of dropping the next card from
the left half is A/(A + B). In the mechanical shuffler, the chance seemed to
be B/(A + B); it was more likely for a card to be dropped from the smaller
half. Of course, once all the cards in a half are used up, the remaining cards
are dropped on top. This seems like a natural candidate for careful study.

One may interpolate between models with a one-parameter family of the
following form. If at some stage there are A cards in the left half and B
cards in the right half, the chance of dropping the next card from the left
is AθB1−θ/(AθB1−θ + BθA1−θ). Again, for practical purposes θ could be fit
from data and a cutoff parameter could be estimated by simulation.

6. The GSR is the most uniform single riffle shuffle in the sense that, given the cut,
it makes all shuffles equally likely. It is not clear (though it seems plausible)
that it is also the probability on shuffles so that Q ∗ Q is closest to uniform
(as well as Q∗k for all k). This may be a simple problem but it seems worth
clarifying. A similar case that would shed some light: on Z/mZ (the integers
mod m), consider all probability measures with support in [−a, a]. Find the
probability P in this set such that P ∗k is closest to uniform (say in entropy
or total variation distance). Is this uniform?

7. A beautiful set of conjectures has arisen from thesis work of J.C. Uyemura-
Reyes. To describe them, consider first the random to top shuffle. This has
eigenvalues 0, 1/n, 2/n, . . . (n − 2)/n, 1 with multiplicity of j/n the number
of permutations in Sn with j fixed points. This was proved by Phatarphod
and independently by Wallach (1986) and follows from Theorem 1 of Section
4A. Next consider the multiplicative reversibilization of random to top. This
is random to top followed by top to random: It may also be described as:
remove a random card and insert it in a random position.

Numerical work shows that the eigenvalues are all of the form quadratic func-
tion of (j)/n2. For some cases this can be proved. For example, zero occurs
with multiplicity the number of derrangements and the eigenvalues in repre-
sentations near the trivial representation (or alternating representation) can
be proved of this form. There must be a way to understand these! Work of
Phil Hanlon and Patricia Hersh indicates that this question fits very neatly
into algebra, along the lines of Section 3A.

Using the available results one may conjecture where the cutoff occurs for
mixing. For either random to top or top to random, n log n is the cutoff. It
seems that random to random must be faster but perhaps not by more than
a factor of two. We conjecture that 3/4n log n is the cutoff here. This is what
is required to kill the eigenvalues from the n− 1 dimensional representation.
Uyemura-Reyes [2002] proves a lower bound of form 1

2n log n and an upper
bound of 4n log n. At present writing we do not know that n2× eigenvalue is
an integer.

Again, in preliminary work, it seems as if the eigenvalues of the multiplicative
symmetrization of any hyperplane walk from a Coxeter group with symmetric
face weights generated by a finite reflection group will be “nice” in the same



sense. To be specific, consider the permutation group Sn. Fix a composition
µ = (µ1, µ2, . . . , µr) of n. A symmetric µ shuffle removes a uniformly chosen
subset of µ1 cards (keeping them in their same relative order, then, from the
remaining n − µ1 cards, a random subset of size µ2, and so on. With a final
packet of size µr. These r packets are shuffled together by a GSR shuffle.

8. A very simple to state conjecture: After k GSR shuffles of n cards consider
turning up cards from the top one at a time. What is the optimal guessing
strategy to maximize the expected number of correct guesses? A conjectured
optimal strategy due to McGrath is described in Bayer-Diaconis [1992]. There
is related work in Ciucu (1998). Prove that McGrath’s strategy is optimal. An
easier version (still open) asks the same question following k top to random
shuffles with k fixed and known.

9. Less of a conjecture than a suggestion; many of the semigroup walks in Brown
[2000] seem worthwhile studying in depth. To take one example; Brown [2000,
Section 6.3] introduced a fascinating family of walks on phylogenetic trees.
Walks on such trees are currently an active area of study. See Diaconis-
Holmes [2002] for pointers to work by Aldous and to the currently very active
work in biology. Brown’s walks are driven by weights wij . A first natural
problem is to study the stationary distribution of Brown’s walk as a natural
family of non-uniform distributions on trees. They carry over to trees the Luce
model which has been very actively studied for permutations. One might even
contemplate estimating Brown’s parameters wij from data. It is also natural
to carry out some careful analyses of rates of convergence for natural families
of weights: randomly chosen i.i.d. uniform weights, Zipf type weights, or wij

the distance from i to j in some natural geometric structure.

10. A most annoying problem: find some use for the eigenvalues of the many walks
in the section above. For reversible Markov chains there are good bounds on
the rate of convergence based on eigenvalues. Are there any explicit bounds on,
e.g., L2 distances for non-symmetric chains? Going further, are there bounds
on the multiplicative symmetrization of a chain based on knowledge of the
eigenvalues of the original chain? This would allow the wealth of eigenvalue
information reported above to be used for comparison purposes as explained
in Saloff-Coste [1997].
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