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APPROXIMATING MARTINGALES FOR VARIANCE REDUCTION IN
MARKOV PROCESS SIMULATION

SHANE G. HENDERSON and PETER W. GLYNN

“Knowledge of either analytical or numerical approximations should enable more efficient simula-
tion estimators to be constructed.” This principle seems intuitively plausible and certainly attractive,
yet no completely satisfactory general methodology has been developed to exploit it. The authors
present a new approach for obtaining variance reduction in Markov process simulation that is appli-
cable to a vast array of different performance measures. The approach relies on the construction of
a martingale that is then used as an internal control variate.

Introduction. There are basically two different approaches that can be used to compute
performance measures for complex stochastic processes. The first approach, which was the
method of choice prior to the advent of computers, is to approximate the complex process
by a simpler and more tractable process. The quality of the approximation is generally
supported via a limit theorem of some kind. The second approach, more commonly used
today, is to numerically compute the performance measure, often via simulation.
A natural question to ask is whether these two approaches can be sensibly combined. One

way to attempt this is to use the tractable approximating process as an external control in
a simulation of the process of interest (see Bratley et al. 1987, Ch. 2). In this method, both
the original process X and its approximation Y are simulated simultaneously. It is hoped
that correlation can be induced between the two processes and that the correlation can be
used to reduce variance. The principal difficulty with this approach is synchronization, i.e.,
ensuring that the two processes are sufficiently “close” that significant correlation results.
Indeed, for some approximations, it is entirely unclear how to perform synchronization, e.g.,
how does one synchronize a queue with a diffusion approximation? A second difficulty is
that the approximating process must be simulated in concert with the process of primary
interest. This additional overhead may prove very costly and may reduce the effectiveness
of external control variates as an efficiency improvement technique.
In this paper, we propose a completely different means of exploiting the availability of a

tractable approximation. Our methodology applies to a vast array of different performance
measures related to Markov processes, including steady-state costs, finite-horizon cumula-
tive costs, transient distributions, infinite-horizon discounted costs, and accrued costs up to
a hitting time. The basic idea is to use the simpler approximating process to construct an
appropriate martingale for the more complex process. The approach used to construct the
martingale depends largely on the choice of performance measure. The martingale is then
used as an internal control in a simulation of the original (less tractable) process. In contrast
to the method of external controls, our approach does not involve a simultaneous simulation
of the more tractable process. We call the method the “approximating martingale-process
method” (AMPM).
It turns out that AMPM really demands only the availability of an approximation to the

solution of an appropriately chosen system of linear equations. The particular linear system
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to be approximated depends on the performance measure to be computed. The appropri-
ate martingale is then constructed from the approximating solution. One way to calculate
an approximating solution is to use the exact solution to an approximating (more tractable)
model. However, another approach to obtaining an approximate solution is to use a numer-
ical algorithm to develop a crude approximation to the solution of the appropriate linear
system. This algorithm may be simulation based, or it may involve some nonsampling-based
methodology.
Henderson and Meyn (1997, 2000) apply AMPM to simulations of multiclass queueing

networks. They use a combination of analytical and numerical techniques to obtain and
compute the approximate solution.
The methodology presented in Andradóttir et al. (1993) is closely related to the theory

presented in §6. The authors obtained variance reduction in steady-state simulations of
discrete-time Markov chains on a finite state space.
Other authors have developed methodology for incorporating prior information into simu-

lations. Schmeiser and Taaffe (1994) show how to use an approximating process as an exter-
nal control variate and as a direct approximation simultaneously. Nelson et al. (1997) discuss
three methods for combining deterministic approximations with simulation. Schmeiser et al.
(2001) examine the small-sample properties of biased control variates. Emsermann and
Simon (2000) develop “quasicontrol variates,” which are control variates with a mean that
is unknown and estimated in an auxiliary simulation.
This paper is organized as follows. In §1, we present a simple example to motivate the

overall methodology. Then, in the next five sections, we show how to define approximat-
ing martingales for a variety of performance measures for discrete-time Markov chains
(DTMCs) on a general state space and for continuous-time Markov chains (CTMCs) on a
finite state space.
In §7, we show how our theory generalizes to processes satisfying stochastic differential

equations. In that setting, Itô calculus provides the basic mechanism for defining an appro-
priate class of martingales. Indeed, the reader familiar with stochastic calculus may find
this section the ideal starting point for reading this paper.
In §8, we provide a concrete example of the application of the theory in this paper. We

define an estimator for the mean steady-state waiting time of customers in the single-server
queue that has provably better performance in heavy traffic than a more standard estimator.
For general processes, one must typically adjoin supplementary variables to the state

space to ensure that the resulting process is Markov. For such processes, the identification
and application of approximating martingales is not as easy as it is for the processes we
consider here, but it can still be done. This issue, and others, are addressed in Henderson
(1997) and Henderson and Glynn (2001). Further comments on this issue are also given
in §9. Section 9 also demonstrates that our approach may be applied in ways that at first
may not appear obvious. In particular, we discuss how the approximating martingale may
be “turned on and off,” depending on the behaviour of the simulated process.

1. A first example. We begin with a simple example that demonstrates the key steps
in applying our methodology.
Example 1. Stephen G. Henry (any resemblance to a real person is unintentional) is

hounded by the immigration departments of two countries and therefore divides his time
between country C0 and country C1. He spends an exponentially distributed period with
mean �−1

i in Ci before immigration catches up with him and sends him to country C1−i.
We wish to find �, the long-run fraction of time he spends in C0.
Clearly, the answer is �1/��0+�1	, but the following development should be instructive.

Define Y = �Y �t	� t ≥ 0	 to be a continuous-time Markov chain (CTMC) on state space
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S = 
C0�C1�. Define f � S → � by f �C0	= 1= 1−f �C1	. A natural estimator of � is

��t	
�= 1

t

∫ t

0
f �Y �s		ds�(1)

the fraction of time spent in C0 in �0� t�.
Definition 1. Define Px�·	 = P�·�Y �0	 = x	 and P��·	 =

∫
S
Px�·	��dx	. We say that

M is a P� martingale if it is a martingale under the probability law P� with respect to the
natural filtration ��t � t ≥ 0	, where �t = ��Y �s	� 0 ≤ s ≤ t	.
It can be shown (see §2) that for any u� S → �, M = �M�t	� t ≥ 0	 is a mean zero P�

martingale, for any �, where

M�t	= u�Y �t		−u�Y �0		−
∫ t

0
Au�Y �s		ds�

and A is the rate matrix of Y , given by

A=
[−�0 �0

�1 −�1

]
�

Since EM�t	= 0 for all t, we could estimate � by

�′�t	= ��t	−M�t	/t

without adding any bias to the estimator ��t	.
Let us define a particular u by u�0	 = 0 and u�1	 = −��0+�1	

−1. (This choice may
appear somewhat arbitrary, but we will see in §6 why it is appropriate.) Then,

Au�x	=−f �x	+�1/��0+�1	�(2)

and we see that

�′�t	 = 1
t

∫ t

0
f �Y �s		ds− u�Y �t		−u�Y �0		

t
+ 1

t

∫ t

0
Au�Y �s		ds

= �1
�0+�1

+ u�Y �0		−u�Y �t		

t
�

The variance of ��t	 is of the order t−1, whereas that of �′�t	 is of the order t−2. Moreover,
the estimators have the same expectation, so that �′�t	 is the preferred estimator.
There are three central themes that are exemplified above. The first is that we add a

martingale (or a suitable multiple of a martingale) to a more standard estimator. The second
is the identification of a suitable linear system of Equations (2), which dictates the optimal
choice of martingale. The final theme is that with the “right” choice of martingale, virtually
unlimited variance reduction is possible.
Let us now see how these same themes unfold in the context of a variety of performance

measures.

2. Accrued costs prior to absorption. In this and the next four sections, X = �Xn� n≥
0	 will denote a Markov chain evolving on a general (not necessarily finite or countably
infinite) state space �, and Y = �Y �t	� t ≥ 0	 will denote a CTMC evolving on a finite
state space S. The function f will represent a real-valued cost function on either � or S,
depending on the context.
Let C ⊂ � be a set of absorbing states, and let Cc denote the complement of C in �.

Define
T = inf
n≥ 1� Xn ∈ C�
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to be the time of absorption in C, and for x ∈ Cc, define

u∗�x	= Ex

T−1∑
k=0

f �Xk	�(3)

where Ex�·	 �= E�·�X0 = x	. To ensure that u∗�x	 is well-defined and finite for all x ∈ Cc,
we impose the following conditions:
Condition 1. �f� �= supx∈Cc �f �x	�<�.
Condition 2. There is a finite-valued nonnegative function g� � → � such that for

some % > 0 and for all x ∈ Cc, Pg�x	≤ g�x	− %, where

Pg�x	
�= Exg�X1	=

∫
�
g�y	P�x�dy	�

Condition 1 ensures that for x ∈ Cc, u∗�x	 ≤ �f�ExT , and Condition 2 ensures that
ExT <� for all x ∈ Cc (see, for example, Meyn and Tweedie 1993, Theorem 11.3.4).
Suppose that we wish to compute �

�= u∗�x	. Let Uk be the observed cumulative cost
for the kth realization of �Xi� 0 ≤ i ≤ T	, where X0 = x. Then � may be estimated by �n,
where �n is the sample average of the Uks.
Define B to be the restriction of P to Cc, so that B�x�dy	= P�x�dy	 for x� y ∈ Cc. It is

well known that u∗ then satisfies the linear system

u= f +Bu�

where Bu�x	
�= ∫

Cc u�y	B�x�dy	 for x ∈ Cc. It will prove convenient to have u∗ and f
defined for all x ∈ �. For x ∈ C, define u∗�x	= f �x	= 0, so that u∗ = f +Pu∗.
Now, suppose thatM = �Mn� n≥ 0	 is a Px martingale with respect to the natural filtration

��n� n ≥ 0	, where �n = ��X0� * * * �Xn	, such that ExMT = 0. Let MT�k	 be the value of
MT for the kth realization of �Xi� 0 ≤ i ≤ T	. Then the martingale estimator is given by

�′
n =

1
n

n∑
k=1

�Uk−MT�k		

and is unbiased. The following proposition identifies a class of approximating martingales
and identifies the “optimal” choice of martingale.

Proposition 1. Suppose that Conditions 1 and 2 hold. Let u� � → � be such that
u�x	= 0 for x ∈C, 0≤ u�x	<� for x ∈Cc, and for some constant b <�, ��P−I	u�x	� ≤ b
for x ∈ Cc. Then M = �Mn� n≥ 0	 is a Px martingale for all x ∈ �, where

Mn = u�Xn	−u�X0	−
n−1∑
k=0

�P− I	u�Xk	�

If, in addition, Ex

∑T−1
k=0 u�Xk	 <�, then ExMT = 0 for all x ∈ Cc.

If u= u∗, then under Px, MT =−u∗�x	+U , so that �′
n has zero variance.

Proposition 1 shows that u = u∗ should be used to define the martingale M . Of course,
we are trying to compute u∗, so it is unknown, but an approximate solution of u∗ should
be a good choice for u. In §8, we will see how to use approximations to the process X to
obtain u. Other methods are of course possible. For instance, u could be an approximate
numerical solution to u= f +Bu.
It is very reasonable to use an estimator of the form n−1∑n

k=1�Uk+-nMT �k	�, where -n

is selected to attempt to minimize the variance. We chose -n = −1 in the above analysis
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to simplify the exposition but one could also select -n using more typical control variate
techniques, e.g., as an estimate of −Cov�U �MT 	/VarMT .
The analysis for the CTMC is similar. In this case, T = inf
t ≥ 0� Y �t	∈C�, and u∗�x	=

Ex

∫ T

0 f �Y �s		ds. Note that with this definition, u∗�x	= 0 for x ∈ C. Suppose that for each
x ∈ Cc, there is some t = t�x	 such that P�Y �t	 ∈ C�Y �0	 = x	 > 0. Because of the finite
state space of Y , a simple geometric trials argument shows that E�T <� for all �. Hence,
u∗ is well defined and finite, and it is easy to show that u∗ solves the linear system Au=−f .
Again, we define Uk as the cumulative cost accrued until absorption in C for the kth

realization of �Y �t	� 0≤ t ≤ T	 and let �n be the sample average of the Uks. The estimator
�′

n is given by �n−M�T�k	, where M�T�k	 is the kth realization of a certain martingale
observed at the stopping time T . The following proposition identifies an appropriate class
of martingales.

Proposition 2. Let u� S → �, and define M = �M�t	� t ≥ 0	 by

M�t	= u�Y �t		−u�Y �0		−
∫ t

0
Au�Y �s		ds�

Then, for any �, M is a P� martingale, and if E�T <�, then E�M�T	= 0.
If we choose u= u∗, then �′

n has zero variance.

3. Infinite horizon discounted costs. Let f be bounded, and suppose that 0 ≤ h�x	≤
/ < 1 for all x ∈ �. Then the infinite-horizon discounted cost u∗�x	= ExU is well defined
and bounded (by �f�/�1−/	), where

U =
�∑

n=0
f �Xk	

n−1∏
k=0

h�Xk	�(4)

Because of the infinite horizon involved, it is not possible to simulate replicates of U in
finite time. Nevertheless, Fox and Glynn (1989) show how to construct unbiased estimators
of u∗�x	 that may be simulated in finite time. They suggest randomizing over the infinite
horizon in (4), thereby replacing (4) by a finite sum up to a random limit. A similar approach
may be applied to the estimators constructed in this section, and so henceforth we consider
this issue settled.
It is straightforward to show that u∗ satisfies the linear system,

u�x	= f �x	+h�x	Pu�x	 ∀x ∈ ��

Suppose we were to simulate replicates of �Xn� n ≥ 0	 under Px, obtaining independent
replicates U1� * * * �Un of U . We could then estimate � = u∗�x	 by �n = n−1∑n

k=1Uk. We
will instead estimate � by

�′
n =

1
n

n∑
k=1

Uk−M��k	�

where M��k	 is the kth replicate of the limiting value of an approximating martingale. The
following proposition provides a wide class of approximating martingales and identifies
the optimal choice.

Proposition 3. Let h be defined as above, and suppose that u� � → � is bounded.
Then M = �Mn� n≥ 0	 is a Px martingale for all x ∈ �, where

Mn =
n∑

k=1
�u�Xk	−Pu�Xk−1	�

k−1∏
j=0

h�Xj	�

Furthermore, Mn →M� a.s., where ExM� = 0.
If u= u∗, then M� = U −u∗�X0	, so that under Px, �

′
n is a zero variance estimator for

u∗�x	.
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Note that again, u∗ is the “optimal” choice, suggesting that an approximation to u∗ might
be an effective choice.
In the CTMC case, assume that h�x	≥ / > 0 for all x ∈ S, so that the expected infinite-

horizon cost u∗�x	= ExU is well defined and bounded (by �f�//), where

U =
∫ �

0
f �Y �t		e−V �t	 dt�

and V �t	= ∫ t

0 h�Y �s		ds.
Again, we define �n to be the sample average of independent replicates U1� * * * �Un of

U , and �′
n = �n − n−1∑n

k=1M��� k	, where M��� k	 is the limiting value of a certain
martingale from the kth replication.
It is straightforward to show that u∗ satisfies the linear system,

Au�x	−h�x	u�x	=−f �x	 ∀x ∈ S�

and the appropriate class of martingales is now given by the following result.

Proposition 4. Let u� S → � and let M = �M�t	� t ≥ 0	 be given by

M�t	= e−V �t	u�Y �t		−u�Y �0		−
∫ t

0
e−V �s	�Au�Y �s		−h�Y �s		u�Y �s		�ds�

If h�x	 > 0 for all x, then M is a P� martingale for all �. Furthermore, M�t	 → M��	
a.s. as t →�, and E�M��	= 0 for all �.

If u= u∗, then under Px, M��	=−u∗�x	+U , and then �′
n is a zero-variance estimator.

We will establish an analogue of this result for processes satisfying stochastic differential
equations in §7, and so the proof is omitted.

4. Transient distributions. We now extend the approach outlined in earlier sections
to the problem of computing u∗

n�x	= Exf �Xn	. To ensure that this quantity exists, we will
assume that f is bounded. A reasonable estimator of u∗

n�x	 is given by

�m

�= 1
m

m∑
k=1

f �Xn�k		�

where Xn�k	 is the observed value of Xn on the kth replication of �X0� * * * �Xn	 under Px.
We define the alternative estimator �′

m by

�′
m

�= 1
m

m∑
k=1

f �Xn�k		−Mn�k	�

where Mn�k	 is the kth realization of an appropriate martingale at time n.
Before defining a class of approximating martingales, observe that �u∗

i �x	� i = 0� * * * � n	
is the exact solution to the linear system,

u0=f and
uj =Puj−1 for j = 1� * * * � n�(5)

Proposition 5. Let �uj� 0 ≤ j ≤ n	 be a sequence of n+1 bounded real-valued func-
tions on �. For fixed n, define M = �Mj� 0 ≤ j ≤ n	 by M0 = 0 and

Mj =
j∑

k=1
un−k�Xk	−Pun−k�Xk−1	�

Then M is a P� martingale for all �. Furthermore, if ui = u∗
i for 0≤ i ≤ n, then under Px,

Mn = f �Xn	−u∗
n�x	, and then �′

n is a zero variance estimator of u∗
n�x	.
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In continuous time, our goal is to estimate u∗�t� x	= Exf �Y �t		, where t > 0. The esti-
mator �n is again a sample average of replicates of f �Y �t		, and the alternative estimator
is a sample average of replicates of f �Y �t		−M�t	, where M�t	 is the value at time t of
a certain martingale.
For a differentiable (in t) function u�t� x	, define

u1�s� x	=
4u�t� x	

4t

∣∣∣∣
t=s

�

Before defining a class of approximating martingales, observe that u∗�t� x	 is the exact
solution to the linear system,

u1�s� ·	 = Au�s� ·	� where

u�0� ·	 = f �·	�
Note that this is just the Kolmogorov backwards equation for Y (see, e.g., Karlin and Taylor
1981, Chapter 14).

Proposition 6. Suppose that �u�s� ·	� 0≤ s≤ t	 is a set of real-valued functions defined
on S with the property that u�s� x	 is continuously differentiable in s for all x ∈ S, i.e.,
u1�s� x	 is continuous in s for all x. Then M = �M�s	� 0 ≤ s ≤ t	 is a P� martingale for
all �, where

M�s	= u�t− s� Y �s		−u�t� Y �0		−
∫ s

0
�Au�t− r� Y �r		−u1�t− r� Y �r		�dr�

If u�s� ·	= u∗�s� ·	 for 0≤ s ≤ t, then under Px, M�t	= f �Y �t		−u∗�t� x	, so that �′
t is

a zero variance estimator of Exf �Y �t		.

5. Finite horizon cumulative costs. Suppose we are interested in computing u∗
n�x	,

where

u∗
n�x	

�= Ex

n∑
k=0

f �Xk	�

To ensure that u∗
n exists, we require that �f�<�. We define the estimator �m as the sample

mean of m realizations of
∑n

k=0 f �Xk	. The alternative estimator �
′
m will again be defined

as the sample mean of m realizations of
∑n

k=0 f �Xk	−Mn, where Mn is a martingale of the
form defined in Proposition 5. To get some idea of a good choice of functions u used to
define the martingale, note that u∗

n�x	 satisfies the following linear system:

u0 = f �

uj = Puj−1+f for j = 1� * * * � n�
It is easy to show that, if Mn is defined as in Proposition 5 and uj = u∗

j for j = 0� * * * � n,
then

Mn =
n∑

j=0
f �Xj	−un�X0	�

so that under Px, �
′
n is a zero-variance estimator for u

∗
n�x	.

In continuous time, our goal is to estimate u∗�t� x	= Ex

∫ t

0 f �Y �s		ds, where t > 0. The
estimator �n is again a sample average of replicates of

∫ t

0 f �Y �s		ds, and the alternative
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estimator is a sample average of replicates of
∫ t

0 f �Y �s		ds−M�t	, where M�t	 is the value
at time t of a martingale of the form given in Proposition 6.
To get some idea of a good choice of functions u�t� ·	 to define the martingale M , observe

that u∗�t� x	 satisfies the linear system,

u1�t� ·	 = Au�t� ·	+f �·	� where

u�0� ·	 = 0�

Again, we expect that if u approximately satisfies this linear system, then the estimator �′
t

will have lower variance than �t .

6. Average steady-state cost. In the previous sections, we considered performance
measures that may be computed using terminating simulations. In this section, we show
how to define approximating martingales for steady-state simulation. Suppose that X is a
positive Harris recurrent discrete-time Markov chain with stationary probability measure 6.
Suppose that 6�f � �= ∫

�
�f �x	�6�dx	 <� and that we wish to compute �= 6f .

By the strong law (Asmussen 1987, Proposition 3.7),

�n

�= 1
n

n−1∑
k=0

f �Xk	→ � a.s.

as n→�, so that �n is a consistent estimator of �.
It is not immediately clear what the appropriate linear system for this performance mea-

sure is. However, consider Poisson’s equation,

�P− I	u�x	
�= Pu�x	−u�x	=−�f �x	−�	 ∀x ∈ ��(6)

Suppose u∗ is a solution to (6). Then �P− I	u∗�x	+ f �x	 is a zero variance estimator of
�. Accordingly, we define the estimator,

�′
n = 1

n

n−1∑
k=0

�f �Xk	+ �P− I	u�Xk	�(7)

≈ �n−n−1Mn�

where M = �Mn� n≥ 0	 is an appropriate martingale (see Proposition 7). Observe that if u is
6 integrable, then �P−I	u is 6 integrable, and 6��P−I	u�= �6�P−I	�u= �6−6�u= 0.
So by the strong law, �′

n → � a.s. as n→�.
Proposition 7. Suppose that 6�f �<� and u is 6 integrable. Then M = �Mn� n≥ 0	

is a P6 martingale with E6Mn = 0 for all n, where

Mn = u�Xn	−u�X0	−
n−1∑
k=0

�P− I	u�Xk	�

Remark 1. One might prefer to use an estimator of the form �n−Mn/n over �
′
n, as it

introduces no further bias. We prefer the use of �′
n over such an estimator for three reasons.

First, if u= u∗, then �′
n has zero variance. This is not the case for �n−Mn/n. Second, the

bias of �′
n is the sum of the bias of �n and the expected value of the second term in (7). It is

not clear then that the bias present in �′
n is greater than that of �n. Third, the bias of these

estimators is typically of the order n−1, as is the variance. Since the mean-squared error is
the sum of squared bias and variance, bias is asymptotically negligible, and so computation
of the “peripheral term,” n−1�u�X0	−u�Xn		, does not appear especially beneficial.



MARTINGALES IN MARKOV PROCESS SIMULATION 261

In §8, we will apply this theory to estimating the mean steady-state waiting time in the
single-server queue.
Now suppose that the CTMC Y is irreducible and positive recurrent with stationary

distribution 6. Again, our goal is to estimate �= 6f . It is known that the estimator

��t	
�= 1

t

∫ t

0
f �Y �s		ds → � a.s.

as t →�, as follows from regenerative process theory.
The continuous-time version of Poisson’s equation (see, e.g., Glynn and Meyn 1996) is

given by
Au�x	=−�f �x	−�	 ∀x ∈ S�

If u∗ solves this equation, and we take u= u∗, then �′�t	 will have zero variance, where

�′�t	
�= 1

t

∫ t

0
f �Y �s		+Au�Y �s		ds

≈ ��t	− t−1M�t	�

and the P� martingale (for all �) M = �M�t	� t ≥ 0	 is defined by

M�t	= u�Y �t		−u�Y �0		−
∫ t

0
Au�Y �s		ds�

Hence, the theory carries over to CTMCs on finite state space without difficulty. Henderson
(1997) also discusses CTMCs on a countably infinite state space.

7. Stochastic differential equations. In the previous sections, we have shown that,
for a wide variety of performance measures, one can define approximating martingales for
both discrete-time Markov processes on a general state space and CTMCs on a finite state
space. The application of the approximating martingale method is not, however, limited to
such processes. In this section, we demonstrate how to obtain approximating martingales
for processes satisfying stochastic differential equations.
Let X = �Xt� t ≥ 0	 be a real-valued continuous-time process satisfying

dXt = ��Xt	dt+��Xt	dBt�(8)

where ���� �→ � are continuous, B = �Bt� t ≥ 0	 is standard Brownian motion, and (8)
is interpreted in the Itô sense. We will assume that � and � are bounded to simplify the
exposition. (Note that under this assumption, the process X is nonexplosive.)
The first performance measure we will consider is infinite-horizon discounted costs. Sup-

pose that f �h� �→ � are bounded, and h�x	≥ / > 0 for all x ∈ �. Set

U =
∫ �

0
f �Xt	e

−Vt dt�

where Vt =
∫ t

0 h�Xs	ds. Define u∗�x	= ExU ≤ /−1�f�.
As pointed out in §3, it is impossible to obtain replicates of U from a simulation, as

this would require an infinite amount of computation. However, Fox and Glynn (1989)
demonstrate that it is possible to obtain unbiased estimators of u∗

x that may be computed in
finite time by “randomizing” over the infinite horizon. This point is somewhat peripheral to
our discussion, and we henceforth assume it settled.
The estimator �n of u

∗�x	 is defined to be the sample mean of n realizations of U under
Px. The estimator �

′
n is defined to be the sample mean of n realizations of U −M�, where
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M� is the almost sure limit of an appropriate martingale. Before defining a useful class of
martingales, observe that u∗ satisfies the linear system

Au�x	−h�x	u�x	=−f �x	 ∀x ∈ ��

where

Au�x	
�= ��x	u′�x	+ 1

2
�2�x	u′′�x	�

On page 191 of Karlin and Taylor (1981), similar systems are derived for related perfor-
mance measures.

Proposition 8. If h is bounded away from 0 and �, and if u� �→ � is twice contin-
uously differentiable with u′ bounded, then M = �Mt� t ≥ 0	 is a P� martingale for all �,
where

Mt = e−Vtu�Xt	−u�X0	−
∫ t

0
e−Vs �Au�Xs	−h�Xs	u�Xs	�ds�

Furthermore, Mt →M� a.s. as t →�, where E�M� = 0.
If u= u∗, then �′

n is a zero variance estimator of u∗�x	.

We believe that the proof of this result is instructive, and so it will be included in this
section. Before presenting this proof, it is worth reiterating the point from earlier sections
that this proposition shows that infinite variance reduction results if u is chosen as u∗.
This result is somewhat akin to importance sampling where infinite variance reduction is
possible in some contexts if the right change of measure is employed. Unfortunately, the
right change of measure depends on knowledge of the quantity that is to be estimated, and
so it is unobtainable in practice. However, as in importance sampling, Proposition 8 suggests
that if u is a good approximation to u∗, then considerable variance reduction may result.
The approximation u to u∗ may be obtained in any fashion. In the next section, we will see
how to use an approximation to the process X that yields an analytical approximation to
u∗. Another possible approach is to use an approximation to u∗ that is obtained from some
numerical scheme.
Proof of Proposition 8. Consider the two-dimensional process W = �Wt� t ≥ 0	,

where Wt = �Xt�Vt	. Observe that

dWt =
(
��Xt	dt+��Xt	dBt

h�Xt	dt

)
�

Define g�x� v	 = e−vu�x	. By Itô’s formula (Chung and Williams 1990, Theorem 5.10,
p. 109),

g�Wt	−g�W0	=
∫ t

0

4g

4x
�Ws	dWs +

∫ t

0

4g

4v
�Ws	dVs +

1
2

∫ t

0

42g

4x2
�Ws	�

2�Xs	ds�

We therefore obtain

e−Vtu�Xt	−u�X0	−
∫ t

0
e−Vs �Au�Xs	−h�Xs	u�Xs		ds =

∫ t

0
e−Vtu′�Xs	��Xs	dBs�(9)

Observe that the right-hand side of (9) is a stochastic integral with bounded integrand and,
hence, a martingale. Therefore, M is a martingale.
Observe that Mt is bounded by �u′����// for all t, and so Mt →M� a.s. by the mar-

tingale convergence theorem. Dominated convergence then implies that EM� = 0.
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Finally, if u= u∗, then note that

M� = −u∗�X0	+
∫ �

0
e−Vt f �Xt	dt =−u∗�X0	+U�

and therefore, under Px, �
′
n = u∗�x	. �

As a second example, we show how to obtain approximating martingales for estimat-
ing transient distributions. Let u∗�t� x	

�= Exf �Xt	, where f is assumed to be bounded. A
reasonable estimator of u∗�t� x	 is the sample mean �n of n replicates of f �Xt	 under Px.
Define the estimator �′

n as the sample mean of n replicates of f �Xt	−Mt under Px, where
Mt is the value of a certain martingale at time t.
For a given function u�t� x	, define

u1�s� x	=
4u�t� x	

4t

∣∣∣∣
t=s

and u2�t� y	=
4u�t� x	

4x

∣∣∣∣
x=y

�

Before defining a suitable class of martingales, observe that u∗�t� x	 satisfies the linear
system

u1�s� ·	 = Au�s� ·	� where

u�0� ·	 = f �·	�

For a proof, See Karlin and Taylor (1981).

Proposition 9. Suppose that f is bounded and let u�t� x	 be twice continuously dif-
ferentiable in x and continuously differentiable in t. Suppose that for some constant K,
�u2�s� x	� ≤K for all s ∈ �0� t� and all x ∈�. Then M = �Ms� 0≤ s ≤ t	 is a P� martingale
for all �, where

Ms = u�t− s�Xs	−u�t�X0	−
∫ t

0
�Au�t− s�Xs	−u1�t− s�Xs	�ds�

If u= u∗, then Mt = f �Xt	−u∗�t�X0	, so that under Px, �
′
n is a zero variance estimator

of u∗�t� x	.

8. Waiting times in the GI/G/1 queue. In this section, we will apply our methodol-
ogy to estimating the mean steady-state waiting time in the single-server (GI/G/1) queue.
We will show that in heavy traffic, the martingale estimator outperforms the standard esti-
mator. To do so, we need to deal with sequences of GI/G/1 queues. We begin by defining
these systems.
Let ��Vn� n ≥ 0	 and ��Un� n ≥ 1	 be independent sequences of i.i.d. r.v.s, with E�V0 =

E�U1 = �−1. Consider now a family of queues, defined in terms of these building blocks
and parameterized by ; < 1.
The ;th system consists of the sequences �Vn�;	� n ≥ 0	 and �Un�;	� n ≥ 1	, where

Vn�;	= �Vn and Un�;	= �Un/;. The ;th system then has an arrival rate of �
�=�; and traffic

intensity ;. Let Xn�;	
�= Vn−1�;	−Un�;	 and let W�;	= �Wn�;	 � n≥ 0	 be the customer

waiting time sequence (in the queue) for the ;th system. (When there is no danger of
confusion, we will drop the index ;, as we have already done with the arrival rate �.) Then
W0 = 0 (assuming the first customer arrives at time 0), and for n ≥ 1, Wn = �Wn−1+Xn�+,
where �x�+ denotes the positive part of x; see, e.g., Asmussen (1987). Observe that W is a
Markov chain on �0��	.
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If ; < 1, then Wn ⇒ W� (Asmussen 1987) and Kiefer and Wolfowitz (1956) showed
that if ; < 1 and EV k+1

0 < �, then EWk
� < � for k ≥ 1. We wish to estimate EW�. The

estimator �n, as defined in §6, is given by

�n =
1
n

n−1∑
k=0

f �Wk	�

where f �w	=w. Other estimators have been suggested by Asmussen (1990) and Minh and
Sorli (1983). The martingale estimator proposed here is compared with �n and the Minh-
Sorli estimator in Henderson (1997); see the remarks following Theorem 10.
According to §6, to define the martingale estimator, we need to obtain an approximation

to the solution to Poisson’s equation. It is known (see, e.g., Asmussen 1992), that the process
W�;	 may be approximated by a reflected Brownian motion (RBM) W̃ = �W̃ �t	� t ≥ 0	,
with drift −�1−;	/� and diffusion coefficient �2=Var �U1+Var�V0. We will solve Poisson’s
equation for W̃ to obtain the necessary approximation u to the solution to Poisson’s equation
for W�;	.
If ; < 1, then the stationary distribution of W̃ is exponential with mean = = ��2/

�2�1−;		 (see, e.g., Harrison 1990). Thus, Poisson’s equation for W̃ is

�2

2
u′′�x	− 1−;

�
u′�x	=−�x−=	�(10)

subject to the initial conditions u�0	 = u′�0	 = 0. Note that if u solves (10), then so does
u+ c for any constant c, so that the first initial condition picks out one solution. The
second condition is required to ensure that u lies in the domain of the generator of the
RBM; see Henderson (1997) for details. The solution to this ordinary differential equation
is u�x	= �x2/�2�1−;		.
Now,

�P− I	u�x	 = Exu�W1	−u�x	

= Exu��x+X1�+	−u�x	

= Exu�x+X1	−u�x	+u�0	P�x+X1 < 0	−E�u�x+X1	> x+X1 < 0	

= �

2�1−;	

(
EX2

1 +2xEX1−E��x+X1	
2> x+X1 < 0	

)
�

Thus, we find that the estimator �′
n is given by

�′
n = 1

n

n−1∑
k=0

Wk+ �P− I	u�W1	

= �EX2
1

2�1−;	
− �

2n�1−;	

n−1∑
k=0

h2�Wk	

= EX2
1

−2EX1
+ 1
2nEX1

n−1∑
k=0

h2�Wk	�

where h2�x	= h2�x>;	= E��x+X1�;		
2> x+X1�;	 < 0	.

Observe that �′
n consists of two components, the first of which is the standard heavy traffic

approximation for EW�. The second component represents a correction to this quantity.
According to the discussion before Proposition 7, �′

n will be a consistent estimator of EW�
if u is 6 integrable. This follows if W� has a finite second moment, so that �′

n is consistent if
; < 1 and EV 3

0 < �. Our next result compares the behaviour of the martingale estimator
with the standard estimator in heavy traffic.
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Theorem 10. Suppose that ;< 1 and that both �U1 and �V0 possess a moment generating
function that is finite in a neighbourhood of the origin. Then, �n → EW� a.s.,

n1/2��n−EW�	⇒ �1N�0�1	�

as n→�, and the variance constant �2
1 = �2

1 �;	= O��1−;	−4	.
Under the same conditions, �′

n → EW� a.s.,

n1/2��′
n−EW�	⇒ �2N�0�1	

as n→�, and the variance constant �2
2 = �2

2 �;	= O��1−;	−2	 as ;→ 1.

The constant �2 appearing in these CLTs is known as the time average variance constant
(TAVC) and allows one to compare the performance of the estimators, since, for example,
confidence intervals based on these CLTs will have widths that are proportional to the square
root of the TAVC.
Remark 2. Theorem 10 establishes that as ;→ 1, the TAVC for the standard estimator

grows at rate �1−;	−4, whereas that of the martingale estimator grows at rate �1−;	−2.
Thus, we see that the martingale estimator outperforms the standard estimator in heavy
traffic. This observation is also exhibited through numerical examples in Henderson (1997).
Remark 3. Theorem 10 is generalized to higher order moments of the steady-state

waiting time in Henderson (1997). In particular, it is shown there that when estimating
EWk

�, the TAVC of the standard estimator is typically O��1−;	−2k−2	, while that of the
martingale estimator is O��1−;	−2k	.
Remark 4. It is also shown in Henderson (1997) that the Minh-Sorli estimator of EWk

�
typically has a TAVC that is O��1− ;	−2k+1	. Thus, in heavy traffic, we can expect the
Minh-Sorli estimator to outperform both the standard and martingale estimators.
Remark 5. The moment generating function assumption in Theorem 10 can be weak-

ened to an assumption of finite moments of high-enough order. See Henderson (1997) for
details.

9. Extensions/issues. In this paper, we have shown how to obtain variance reduction
in simulations of a large class of performance measures for Markov processes. The basic
approach was to add an appropriately defined zero mean martingale to a given estimator.
Since the martingale has zero expectation, it does not introduce bias, and if the martingale
is chosen carefully, one can expect large variance reductions.
The method can be applied in ways other than those we have presented here. For example,

one may “switch on and off” the martingale. (Consider a single-server queue in which the
server works at a load-dependent rate.) When the amount of work in the system is large
(there are more than N customers in the system), the server works at maximum efficiency,
say �, but when the amount of work is below N , the server is less efficient. Suppose we
wish to estimate the mean steady-state number of customers in the system �. (Of course,
this can be computed using the theory of birth-death processes, but the problem serves as
an illustrative example.) A reasonable estimator of � is given by

1

t

∫ t

0
X�s	ds�

where X�s	 is the number of customers in the system at time s.
One might approximate this system by an M/M/1 queue with constant service rate �. We

would solve Poisson’s equation for the M/M/1 system to obtain u. We might then use the
estimator �′

t as discussed in §6. Notice, however, that our approximation is only considered
to be reasonable when X�t	 > N . We could instead use an approximating martingale esti-
mator that is only “on” when X�t	 > N . Let Ti denote the ith time t at which X�t	 > N ,
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with X�t−	 = N , and let Ui > Ti be the first time after time Ti at which X�t	 = N , with
X�t−	 > N . In this case, the estimator might be of the form,

1
t

∫ t

0
X�s	ds+ 1

t

N�t	∑
k=1

{
u�X�Uk		−u�X�Tk		−

∫ Uk

Tk

Au�X�s		ds

}
�

where A is the generator of the process X = �X�s	� s ≥ 0	 and N�t	 is the number of time
intervals �Ti�Ui� that are contained in the time interval �0� t�. Under moderate conditions,
this estimator is consistent and can be expected to yield variance reduction.
One might also consider using different approximations at different times. In the above

example, one might take the solution v to Poisson’s equation for an M/M/1 system with
a “slow” service rate and apply it when X�t	 ≤ N . The estimator will then have a similar
form to that given above.
Our discussion throughout has focused on Markov processes. Of course, one must almost

invariably attach “supplementary variables” to the state space of simulated processes to
make them Markov. In Henderson and Glynn (2001), we consider this issue in more depth.
We show that a direct application of the ideas in this paper is certainly possible, but that one
must explicitly take into account the supplementary variables to obtain the greatest benefit.
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Appendix: Proofs.
Proof of Proposition 1. It is well known that M is a local martingale, so that the only

condition that needs to be verified is that Ex�Mn�<� for all n. If x ∈C, then Mn = 0 for all
n, so suppose that x ∈Cc. If y ∈C, then �P−I	u�y	= 0, and so, defining a∧b=min
a� b�,
we have that

Ex�Mn� ≤ Exu�Xn	I�n < T	+u�x	+Ex

n∧T−1∑
k=0

��P− I	u�Xk	�

≤ Bnu�x	+u�x	+nb

≤ b+Bn−1u�x	+u�x	+nb

≤ 2nb+2u�x	 <��

where the third and fourth inequalities follow from the fact that for x ∈ Cc, �Bu�x	� =
�Pu�x	� ≤ u�x	+b. To show that ExMT = 0 under the condition given, observe that

Ex��Mk+1−Mk� � �k	 = Ex��u�Xk+1	−Pu�Xk	� � Xk	

≤ Ex�u�Xk+1	�Xk	+Pu�Xk	

= 2Pu�Xk	

≤ 2�u�Xk	+b	�

Hence, ExB <�, where
B =

T∑
k=1

�Mk+1−Mk��
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But MT∧m →MT a.s. as m→�, supm �MT∧m� ≤ B, and ExMT∧m = 0 for all m, and so by
dominated convergence, ExMT = 0.
To prove that u∗ is the optimal choice of u, note that �P− I	u∗ = −f , and so under Px,

MT =−u∗�x	+
T−1∑
k=0

f �Xk	�

Hence, ExMT = 0, and �′
n = u∗�x	. �

Proof of Proposition 2. Proposition 1.2 in Henderson (1997, p. 15) shows that Au�x	
is the bounded pointwise limit

lim
t→0+

Exu�Y �t		−u�x	

t
�

Lemma 3.4 of Kurtz (1969), then establishes that M is a P� martingale for all �.
To complete the proof, note that

�M�t∧T	� ≤ 2�u�+�Au�T �

However, M�t∧T	→M�T	 P� a.s. and so, by dominated convergence, E�M�T	= 0. �

Proof of Proposition 3. Let b be a bound on �u�x	�. Then, Mn ≤ 2b/�1−/	 for all n,
and is thus integrable. Now, u�Xk	−Pu�Xk−1	 are martingale differences, and �

∏n−1
k=0 h�Xk	 �

n ≥ 1	 is previsible with respect to ��n � n ≥ 1	, so that Mn is a discrete analogue of a
stochastic integral, and therefore a martingale.
The martingale convergence theorem gives Mn → M� a.s. and EM� = 0 follows by

bounded convergence.
Finally, observe that if u�x	= u∗�x	, then

M� =
�∑

k=1
�u�Xk	−Pu�Xk−1	�

k−1∏
j=0

h�Xj	

= −h�X0	Pu�X0	+
�∑
k=1

�u�Xk	−h�Xk	Pu�Xk	�
k−1∏
j=0

h�Xj	

= f �X0	−u�X0	+
�∑

k=1
f �Xk	

k−1∏
j=0

h�Xj	

= U −u∗�X0	� �

Proof of Proposition 5. It is clear that Mj as defined is a sum of martingale differ-
ences. The boundedness of the functions uj ensures that Mj is integrable. Finally, use the
fact that the u∗

j s satisfy the linear system (5) to show that Mn = f �Xn	−u∗
n�X0	. �

Proof of Proposition 6. For 0 ≤ s ≤ t, define v�s� x	= u�t− s� x	. Theorem 12.6 of
Karlin and Taylor (1981, p. 325) gives that M̃ = �M̃�s	� 0 ≤ s ≤ t	 is a P� martingale for
all �, where

M̃�s	= v�s� Y �s		−v�0� Y �0		−
∫ s

0
�Av�r� Y �r		+v1�r� Y �r		�dr�

However, note that v1�r� Y �r		=−u1�t− r� Y �r		, so that

M̃�s	= u�t− s� Y �s		−u�t� Y �0		−
∫ s

0
�Au�t− r� Y �r		−u1�t− r� Y �r		�dr =M�s	�

Thus, we conclude that M is a P� martingale.
If u = u∗, then M�t	 = u∗�0� Y �t		−u∗�t� Y �0		 = f �Y �t		−u∗�t� Y �0		, and the final

statement in the proposition follows. �
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Proof of Proposition 7. It is well known that M is a local martingale. It is easy to
show that Mn is P6 integrable, so that the result follows. �

Proof of Proposition 9. Consider the process W = �Ws� 0≤ s ≤ t	, where Ws = �t−
s�Xs	. Applying Itô’s formula to W and the function u, we obtain (after some algebra)

u�t− s�Xs	−u�t�X0	−
∫ t

0
�Au�t− s�Xs	−u1�t− s�Xs	�ds

=
∫ t

0
u2�t− s�Xs	��Xs	dBs�

However, under our assumptions, the right-hand side of this expression is a martingale, and
thus M is a martingale. �

Proof of Theorem 10. The consistency of both estimators follows from the strong law
for Harris chains and the result of Kiefer and Wolfowitz (1956).
The result for �n follows from Theorem 5.1 of Asmussen (1992). We will prove the cor-

responding results for �′
n using regenerative process theory. Define C = C�;	 = inf
n ≥

1� Wn = 0�. If ; < 1, then C <� a.s. Furthermore, Lemma 4.1 of Asmussen (1992) estab-
lishes that �1− ;	EC�;	 is bounded away from 0 and � under our conditions. He also
shows (Corollary 5.1) that EC�;	2 = O��1−;	−3	 as ;→ 1. Hence, since the function h2
is bounded by h2�0	, it follows from regenerative arguments that the CLT for �

′
n holds with

�2
2 = E

(∑C−1
k=0 �a1+a2h2�Wk	−E6W0�

)2
EC

= a22
EC

E

(
C−1∑
k=0

�h2�Wk	−-�

)2
�

where a1 = EX2
1/�−2EX1	, a2 = �2EX1	

−1, - = 6h2, and 6 is the stationary probability
distribution. However, a22/EC = O��1−;	−1	, so the proof will be complete if we show
that E�

∑C−1
k=0 h2�Wk	−-	2 = O��1−;	−1	. Observe that

E

(
C−1∑
k=0

�h2�Wk	−-�

)2
≤ 2E

(
C−1∑
k=0

h2�Wk	

)2
+2-2EC2�

From Lemma 12, -= -�;	=O�1−;	, so that the second term is O��1−;	−1	. Lemma 12
also provides the corresponding result for the first term, so that the proof is complete. �

Lemma 11. If �U1 has a finite moment generating function in a neighbourhood of the
origin, then there exists a C > 0 such that the following results hold:

1. As ;→ 1, Ee−CW��;	 = O�1−;	.
2. For any 0< ;0 < 1, there exists d = d�;0	 <�, such that

sup
;0≤;≤1

h2�x>;	≤ de−Cx�

Proof. The first statement in the lemma asserts that the Laplace Stieltjes transform
(LST) Ee−CW��;	 of the stationary waiting time W��;	 evaluated at C is O�1−;	. Marshall
(1968) showed that

�1− k̃;�s		w̃;�s	=
1− h̃;�−s	

EC
�

where k̃;, w̃; and h̃; are the LSTs of the increment r.v. X1�;	, the stationary waiting
time, and the idle time in the ;th system, respectively. The assumption that the interarrival
times �Un/; satisfy P��Un/; > x	 ≤ ce−C ′;x for some c�C ′ > 0 ensures that X1�;	 has an
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exponentially bounded left tail also, and thus k̃;�s	 is finite for 0 ≤ s < C ′. Furthermore, a
similar argument to that used in the proof of Lemma 4.1 in Asmussen (1992) shows that
h̃;�−s	 is bounded for 0 ≤ s < C ′. Now, for small enough C1 ∈ �0� C ′	, k̃;�C1	 is bounded
away from 1 as ;→ 1. (This follows since k̃;�0	= 1, k̃′

;�0	=−EX1�;	≥ 0 for all ;, and
k̃′′
;�0	= EX1�;	

2, which is bounded away from 0 as ;→ 1.) We then find that

Ee−C1W��;	 = w̃;�C1	

= 1− h̃;�−C1	

EC�1− k̃;�C1		
�

and since �1− ;	EC is bounded away from 0 and �, Ee−C1W��;	 = O�1− ;	 for all C1
sufficiently small.
The second result of the lemma follows by a direct calculation as follows. Let x ≥ 0 and

suppose that ;≥ ;0 > 0. Using integration by parts,

�h2�x	� =
∫ −x

−�
�x+y	2P�X1�;	 ∈ dy	

= [
�x+y	2P�X1�;	 < y	

]−x

−�−
∫ −x

−�
2�x+y	P�X1�;	 < y	dy

≤ −2
∫ −x

−�
�x+y	ceC

′;y dy

= 2ce−C ′;x

�C ′;	2

≤ de−C2x�

where d = 2c/�C ′;0	2 and C2 = C ′;0. Taking C =min
C1� C2� yields the result. �

Lemma 12. If �U1 has a finite moment generating function in a neighbourhood of the
origin, then as ;→ 1, Eh2�W�� ;	= O�1−;	, and

E

(
C−1∑
i=0

h2�Wi	

)2
= O��1−;	−1	�

Proof. From Lemma 11,

�Eh2�W��;		� ≤ dEe−CW��;	�

so that the first result follows. For the second result, note that

E

(
C−1∑
i=0

h2�Wi	

)2
= 2E

(
C−1∑
n=0

h2�Wn	
C−1∑
m=n

h2�Wm	

)
−E

(
C−1∑
i=0

h22�Wi	

)
�(A1)

(The representation (A1) has been fruitfully exploited previously; see Asmussen 1992.) The
second term on the right-hand side of (A1) is bounded by

E
C−1∑
i=0

d2e−2CWn ≤ d2EC�

which is O��1−;	−1	 as ;→ 1.
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The first term in (A1) is bounded by

2d2E

(
C−1∑
n=0

e−CWnE

[C−1∑
m=n

e−CWm

∣∣∣∣Wn�C > n

])
�(A2)

Turning to the conditional expectation in (A2), note that

E

[
C−1∑
m=n

e−CWm

∣∣∣∣Wn�C > n

]
≤ EWn

C�

Suppose that W0 = x and let us determine ExC. Note that x+ I =−∑C
i=1Xi, where I is the

length of the first idle period. Wald’s identity then gives x+ExI =−EXExC. Lemma 4.1
of Asmussen (1992) shows that there is a constant c such that ExI ≤ c for all x ≥ 0 and for
all ;. Thus EWn

C ≤ �Wn+ c	/�−EX	, and so (A2) is bounded by

2d2

−EX
E

C−1∑
n=0

e−CWn�Wn+ c	�

However, �x+ c	e−Cx ≤ e−Cx/2 for x larger than some constant, say, b1. Thus, (A2) is
bounded by

b2
−EX

E

(
C−1∑
n=0

[
e−CWn/2+b3I�Wn ≤ b1	

])
(A3)

= 1
1−;

(
b4ECEe−CW�/2+b5ECP�W� ≤ b1	

)
�

for bounded deterministic constants bi �1≤ i ≤ 5	.
The second result now follows by noting that Ee−CW�/2 =O�1−;	, EC =O��1−;	−1	,

and

P�W� ≤ b1	 = P�e−CW� ≥ e−Cb1	

≤ eCb1Ee−CW�

= O�1−;	� �
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