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The theory of standardized time series, initially proposed to estimate a single steady-state mean from the output of a simulation, is extended 
to the case where more than one steady-state mean is to be estimated simultaneously. Under mild assumptions on the stochastic process 
representing the output of the simulation, namely a functional central limit theorem, we obtain asymptotically valid confidence regions for 
a (multivariate) steady-state mean based on multivariate standardized time series. We provide examples of multivariate standardized time 

series, including the multivariate versions of the batch means method and Schruben's standardized sum process. Large-sample properties of 
confidence regions obtained from multivariate standardized time series are discussed. We show that, as in the univariate case, the asymptotic 
expected volume of confidence regions produced by standardized time series procedures is larger than that obtained from a consistent 
estimation procedure. We present and discuss experimental results that illustrate our theory. 

M ost of the work in steady-state simulation output 
analysis has been devoted to the estimation of a sin- 

gle steady-state measure of performance. For many real- 
world simulations, however, it is of interest to estimate 
more than one steady-state parameter associated with the 

system performance (e.g., Chen and Seila 1987, Law 1983, 
or Schruben 1981). In this paper, we consider the steady- 
state estimation problem of simulation when more than one 

steady-state mean is to be estimated simultaneously. To be 
more precise, we consider the output of the simulation as 
an 91d-valued stochastic process Y = {Y(s) :s > 0}. We 
assume that the process Y possesses a steady-state mean, 
that is, 

def 1 f 0t l Tf0t 
r(t) f Y(s)ds = ( (s)ds, . fYd()ds) 

t JQ t \JQ JQ 

:(r, ....rd)T=r, (1) 

as t -> oo, where =X denotes weak convergence, and r E 
9d is a given (but unknown) parameter. In what follows, 
any vector x E Bid will be regarded as a column vector (as 
in (1)). 

Equation (1) states that r(t) is a consistent estimator for 
r, a property that is required in most point estimation proce- 
dures to ensure that the point estimator r(t) approaches the 
desired parameter r as the run length t increases. In addi- 
tion, a good estimation procedure should include an assess- 
ment of the precision of this estimation. We are interested 
in methods that produce an asymptotically valid confidence 

region R(t) C B9d (depending on the output of the simula- 
tion up to the run length t) for the multivariate steady-state 

mean r. That is, we want to generate a region R(t) C 9'd 
such that 

lim P[(rl, r2,..., rd)T E R(t)] = 1- a. 
t-- oo 

(2) 

We specialize in cancellation procedures (see Glynn and 

Iglehart 1990 and Mufioz 1991), that is, we do not attempt 
to estimate the covariance matrix of the point estimator 
consistently. Instead we try to scale up the process in such 
a way that the covariance matrix cancels out in the limiting 
distribution of the corresponding central limit theorem for 
the point estimator. In this direction, the theory of standard- 
ized time series (Schruben 1982, 1983; Glynn and Iglehart 
1990; Goldsman and Schruben 1984; Goldsman et al. 1986; 
Goldsman et al. 1990) provides an appropriate framework 
for deriving cancellation procedures that produces asymp- 
totically valid confidence intervals for a single steady-state 
mean. Based on the work of Glynn and Iglehart (1990) 
and Chen and Seila (1987), we extend the theory of stan- 
dardized time series to the multivariate steady-state mean 
estimation problem, with the objective obtaining asymptot- 
ically valid confidence regions R(t) satisfying (2). 

We start in ?1 by describing the mathematical frame- 
work that underlines our study of multivariate standardized 
time series. We state our functional central limit theorem 

assumption concerning the underlying stochastic process 
representing the output of the simulation. Based on well- 
known results for the case of independent and identically 
distributed (i.i.d.) observations, we describe how to gener- 
ate confidence regions for an 9id-valid steady-state mean r 
when the covariance matrix of the point estimator can be 
estimated consistently. 
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In ?2, we propose a natural extension of the method of 
standardized time series to estimate a multivariate steady- 
state mean, and provide examples of multivariate stan- 
dardized time series procedures. These examples include 
the multivariate versions of the batch means method and 
Schruben's standardized sum process as well as a subclass 
of standardized time series procedures, which we shall refer 
to as "linear procedures." Large-sample properties of confi- 
dence regions obtained from multivariate standardized time 
series, and its comparison relative to consistent estimation 
procedures, are given in ?3. We show that, as in the uni- 
variate case (see Glynn and Iglehart 1990), the asymptotic 
expected volume of confidence regions produced by stan- 
dardized time series procedures is larger than that obtained 
from a consistent estimation procedure. For members of 
the linear subclass we obtain an explicit expression for 
the asymptotic volume as a function of the number of 
batches. This result shows that the asymptotic volume of 
consistent estimation procedure is approached by a mem- 
ber of the linear subclass as the number of batches becomes 
large. Finally, in ?4 we report experimental results from 
the application of multivariate standardized time series pro- 
cedures to estimate more than one steady-state parameter 
simultaneously. 

1. MATHEMATICAL FRAMEWORK 

1.1. The Steady-State Mean Confidence 
Region Problem 

Observe that, under the assumption stated in (1), r(t) is a 
consistent estimator for the steady-state mean r, and it can 
be used as a point estimator for r. However, the estimation 
procedure should include an assessment of the precision of 
this estimator. In the case d > 1, the quality of the point 
estimator r(t) can be assessed if we produce a 100(1- 
a)% asymptotically valid confidence region R(t) (possibly 
centered at r(t)), such that (2) holds. By analogy with the 
case d = 1, consistent estimation procedures may be used 
to obtain asymptotically valid confidence regions under a 
central limit theorem (CLT) assumption. In this setting, the 
CLT takes the form: 

t'/2(r(t) -r) : GNd(O, I), (3) 

as t -> oo, where G is a nonsingular d x d matrix, and 
Nd(0, I) denotes a normal d-variate distribution with mean 
0 and covariance matrix I (where I denotes the identity 
matrix). Note that E = GGT is the covariance matrix of 
the normal random vector appearing in the right-hand side 
of (3). 

If we can estimate E consistently, say by Z(t), then E(t) 
is positive definite for t large enough (see Dykstra 1970). 
Hence, ((t)-'/2 is well defined for t large enough (see 
p. 285 of Searle 1982 for a definition of the square root 
of a positive definite symmetric matrix). Therefore, it fol- 
lows from (3) and the converging together principle (see 
Billingsley 1979) that 

tl/2(t)-l/2 (r(t) - r) =X Nd(O, I), 

as t -> oo. Then, from the continuous mapping theorem 

(see Corollary 1.9 of Ethier and Kurtz 1986), we have 

(4) 

as t - oo, where Xd) denotes a chi-square distribution 
with d degrees of freedom. 

From (4), a 100(1 - a)% asymptotic confidence region 
for r is given by 

R(t)= x E d: t(r(t) -x)T(t)1 (r(t) - x)< X2da) (5) 

where X2 ) is a constant chosen so that P[X2a) ] = a. 
... (d, a) ( d, d)]= c. 

If ((t) is positive definite (as we expect for large t, since 
we assume that E(t) is a consistent estimator), the region 
R(t) is an ellipsoid centered at r(t). Techniques that pro- 
duce confidence regions in the form of (5) are called consis- 
tent estimation procedures (see Glynn and Iglehart 1990). 
A consistent estimation procedure that can be generalized 
to the multivariate case is the regenerative method (e.g., 
Iglehart 1978 or Crane and Lemoine 1977). A brief descrip- 
tion of how the regenerative method generates a consis- 
tent estimator for E is provided in Appendix B of Muiioz 
(1991). 

We prefer to study cancellation methods in this paper, 
because consistent estimation of X often requires special 
conditions on the structure of the process Y (as in the 
regenerative method). Also, a consistent estimation proce- 
dure frequently required the setting of certain parameters 
that are problem dependent, e.g., the rate at which the num- 
ber of batches should go to infinity with the run length is 
a batch means procedure (see Damerdji 1995). Schruben 
(1983) introduced the method of standardized time series to 
obtain confidence intervals by using a different approach. 
This method suggests that we can eliminate E from the 
CLT (3) by scaling the variables appropriately. Standard- 
ized time series procedures can be extended to the multi- 
variate case, as we are going to see in ?2. 

1.2. A Functional Central Limit Theorem 
Assumption 

As discussed before, it is necessary that the output pro- 
cess Y satisfies the law of large numbers (1) in order that 
the steady-state estimation problem be well defined. How- 
ever, the development of an asymptotically valid confidence 
region methodology requires making additional assump- 
tions that permit one to describe the variability of the esti- 
mator r(t) about the steady-state mean r. In particular, a 
standard assumption that (implicitly) underlies much of the 
existing steady-state simulation methodolology is that r(t) 
satisfy the CLT (3). 

t(r(t) - r)Tr(t)-l (r(t) - r) X(d), 



It turns our that the methodology that we propose here 
requires a slightly stronger type of assumption. Set Y = 

{Y,(u) :0 < u < 1}, and Xt = {Xt(u), 0 < u < 1}, where 

1 fUt 
Y,(u) = t Y(s) ds, 

Xt(u) = t/2(t(u) - ru). 

Recall that a d-dimensional standard Brownian motion is 
a stochastic process B = {B(u) : 0 < u < 1} with station- 
ary independent increment such that B(u) has a Nd(O, ul) 
distribution. We shall demand that the following so-called 
functional central limit theorem (FCLT) for Y be valid: 

ASSUMPTION 1. There exists a nonsingular d x d matrix G 
such that 

Xt = GB, 

as t -- oo (in the topology of weak convergence in 

Cd[O, 1], the space of ad-valued continuous functions 
defined on [0, 1]; see Ethier and Kurtz 1986 for additional 

discussion). 

The reason that the ordinary CLT (3) typically holds for 
a steady-state simulation depends on the fact that observa- 
tions taken from Y that are widely separated in time are 

approximately i.i.d. As a consequence, r(t) behaves very 
much like an average of i.i.d. random vectors, and one can 
therefore expect a CLT to hold. The same independence 
argument leads naturally to the additional structure associ- 
ated with the FCLT required in Assumption 1 to hold in 

virtually any real-world discrete-event simulation in which 
the steady-state simulation problem is well defined. From a 
mathematical viewpoint, FCLT theorems have been estab- 
lished for Markov processes in discrete and continuous 
time, stationary processes satisfying so-called "mixing con- 
ditions" and associated processes; see Glyn and Iglehart 
(1990) and Mufioz (1991) for additional details. 

We note that Assumption 1 implies the law of large 
numbers (3). Thus, the steady-state estimation problem is 

always well defined under Assumption 1. In addition, we 
remark that while the mathematical discussion of this paper 
will focus exclusively on a continuous-time output process 
Y, a discrete-time output process Z = {Zk : k > 0} can be 

incorporated into our framework by setting Y(s) = ZLS1, 
where [sJ is the integer part of s. 

2. MULTIVARIATE STANDARDIZED TIME SERIES 

In this section, we will state the basic definitions that allow 
us to extend the theory of (univariate) standardized time 
series, as described in Glynn and Iglehart (1990), to the 
case where more than one steady-state mean is to be esti- 
mated simultaneously. We also show how the most popular 
univariate standardized time series procedures can be gen- 
eralized to the case d > 1. 
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2.1. Basic Definitions 

To apply the method of standardized time series we need 
to cancel out the matrix G in (3). The strategy is to con- 
sider a quadratic form of the random vector tl/2(r(t)- r), 
scaled so that the limiting distribution is independent of G. 
The corresponding matrix associated with this quadratic 
form will depend on the process {Y(s): 0 < s < t}. To 
be more precise, we introduce a function g: Cd[O, 1] - 

~dxd, and we then consider the random variable t(YF(1)- 
r)Tg(Xt)-(Y(1) - r). If g is suitably continuous, this 
random variable will converge to B(1)TGTg(GB)-lGB(1) 
(under Assumption 1). To cancel out G in the limiting dis- 
tribution, we need 

g(Gx) = Gg(x)GT (6) 

for any nonsingular d x d matrix G, and x E Cd[O, 1]. Since 
the process Xt depends explicitly on the unknown r, to 
make g(X,) independent of r we require 

g(x - J) = g(x) (7) 

for x E C[O, 1], and 8 E Rd, where J(t) = t, 0 < t < 1. 
Also, to obtain confidence regions that are ellipsoids, we 
need 

P[g(B) is positive definite and symmetric] = 1. (8) 

Finally, to apply the continuous mapping theorem, g must 

satisfy 

P[B E D(g)] =0, (9) 

where D(g) is the set of discontinuities of g. Let us denote 
by A the class of functions g: Cd[0, 1] -+ 9dxd that satisfy 
(6)-(9). Then we have the following: 

THEOREM 1. Suppose that g E X and Y satisfies 
Assumption 1. Then 

(r(t) - r)Tg(Y)-(r(t) - r) = B(1)T g(B)-lB(1), 

as t -- oo. 

PROOF. Let us define h: Cd[0, 1] --> i by 

h(x) = x(l)Tg(x)-'x(l). 

If follows from (6) and (8) that 

g(GB)-' = (Gg(B)GT)-' = (GT)-lg(B)-lG-a.s., 

where the notation a.s. ("almost surely") is equivalent to 

say that this equality holds with probability one. Then 

h(GB) = (GB(1))Tg(GB)-lGB(1) = B(1)Tg(B)-'B(1). 

Also, Assumption (9) guarantees that P[GB E D(h)] = 0, 
so that from the continuous mapping theorem we have 

h(Xt) = h(GB) = B(l)Tg(B)-1B(l), (10) 
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as t -- oo. However, 

h(X) - t/2(Y(l) - r)Tg(X)-l(Y(l) - r)tl/2 

= (Y(1)- r)Tg(Y - rJ)-'(Yt(l)- r) 

= (r(t)- r)Tg(Y)- (r(t) -r). (11) 

Hence, the conclusion follows from (10) and (11). 0 

Based on Theorem 1, we can obtain a 100(1 -a)% 
asymptotically valid confidence region for r. If z(g, a) is 
a continuity point of the distribution of B(1)Tg(B)-'B(1), 
and P[B(1)Tg(B)-1B(1) < z(g, a)] = 1 - a, the region 

R(t) = {t E d : (r(t) - x)g(Y,)- (r(t) - x) 

z(g, a)} (12) 

defines a 100(1 -a)% asymptotically valid confidence 
region for r. In all of our examples g(Yt) is positive 
semidefinite and symmetric, so that the region R(t) is an 
ellipsoid centered at Yt(1). 

To specify completely the confidence region defined 
in (12), we need to derive the distribution of 
B(1)Tg(B)-'B(1) for the particular function g E A. We 
end this subsection with a characterization of the class of 
functions A that is helpful in deriving the distribution of 
B(1)Tg(B)-'B(l). This characterization is the multivariate 
version of that obtained in Glynn and Iglehart (1990). 

Let y: Cd[O, 1] -- Cd[O, 1] be defined by 

(yx)(t) = x(t)- tx(l), 

and A be the class of functions b: Cd[0, 1] - RdXd 

satisfy 

b(GX) = Gb(x)GT 

for any nonsingular d x d matrix G and any x E Cd[0, 1], 

P[(b o y)(B) is positive definite and symmetric] = 1, (15) 

and 

P[B E D(bo y)] = 0, (16) 

where o denotes "composition" of function (i.e. (f, o 
f2)(x) = fi(f2(x)) for any x in the domain of f2). By 
denoting A* = {g : g = b o y, b E A}, we obtain the follow- 
ing proposition. 

PROPOSITION 1. A* = A. 

PROOF. Let us suppose g E A*. Then g = b o y for some 
b E A. Clearly, g satisfies (14), (15), and (16). Also, (13) 
is verified since y(x -,J) = y(x). Therefore, g E A and 
,* Cc A holds. Conversely, if g E A, by taking P = x(l) in 
(13), we see that g(x) = g(y(x)), that is g = go y. There- 
fore, g E M* and J c J* holds. O 

Now we can state the following result, which can be 
useful in deriving the distribution of B(1)Tg(B)-1B(1). 

PROPOSITION 2. If g E IJ, then B(1) is independent of g(B). 

PROOF. Since the process {B(u) - uB(1) : 0 < u < 1} is 

independent of B(1) (the proof given in p. 84 of Billingsley 
1968 extends to the 1d-valued case since the stochastic 
processes Bi, i = 1, 2, .., d, are independent), we have 
that y(B) is independent of B(1). Hence, it follows from 
the last proposition that g(B) = (b o y)(B) is independent 
of B(1). 0 

2.2. Examples of Multivariate Standardize 
Time Series 

In this subsection, we show how the most popular univari- 
ate standardized time series procedures can be generalized 
to the case d > 1. 

EXAMPLE 1 (BATCH MEANS METHOD). The batch means 
method is one of the most important techniques for pro- 
ducing asymptotic confidence intervals for a steady-state 
mean (e.g., Law 1983 or Fishman 1978). To describe the 
extension of the batch means method to the multivariate 
case, we proceed as in the univariate case (see Chen and 
Seila 1987), that is, we subdivide the run length t into m 
nonoverlapping pieces of equal length. Then, we compute 
the sample batch means: 

it 

X(t) =-j_ Y(s)ds, i 12, ..m, 

and the sample covariate matrix of the batch means: 
and the sample covariate matrix of the batch means: 

(13) 1 m 
(13) Sm(t) = 

1 
[Xi(t) - r(t)][Xi(t)- r(t)]T. 

th,t m I i=1 
(17) 

A confidence region for r based on the batch means method 
is given by 

R(t) = r e 9d: m(r(t) - r)TS (t)(r(t) - r) 

(m -d ) (d, m-d, a) 
' i=~~~~ (18) 

where F(d m-d, a) 
is the (1 -a)-quantile of an F distribution 

with (d, m - d) degrees of freedom. Note that m > (d + 1) 
is required since Sm(t) is nonsingualr only if m > (d + 1) 
(see p. 208 of Searle 1982). 

The multivariate version of the batch means method is 
a standardized time series procedure. To see this, let m > 
(d + 1), and gb: Cd[0, 1] -_ 9dxd be defined by 

gb (X)= L[yAx(i/m) - x(l)/m ][Ax(i/m) - x()/m] rn - 1 
i=1 

for x E Cd[0, 1], and Ax(i/m) = x(i/m) - x((i - l)/m), 
i= 1, 2,... , m. 

Then, we can easily verify that Sm(t) = mg(Y,). To 
see that gb E A, note that if y = Gx, then Ay(i/m) = 
GAx(i/m) and y(l) = Gx(1), from which we can see that 
(6) is satisfied. Similarly, we can verify (7). To verify (8), 
we consider the fact that the sample covariance matrix of 

(14) 



a random sample of size m from a Nd(I,, E) distribution 
is positive definite with probability one if X is positive 
definite and m > (d + 1) (see Dykstra 1970), from which 
(8) follows since AB(i/m) are independent random vectors 
distributed as (l//im)N(0, I). Finally, (9) is satisfied since 
our function gm is continuous on Cd[O, 1]. 

Since B(l)/m and g(B)/m are the sample mean and 
the sample covariance matrix of AB(i/m), i = 1, 2,..., m, 

respectively, it follows that (see ?5.2 of Siotani et al. 1985) 
B(1 )Tg (B)- B(1) is distributed as 

d(m- 1) 
(m-d ) (d, m-d). 

Therefore, from Theorem 1 we have 

d(m - 1) 
(r(t) - r)g(Y (r(t) - r) = (m d) F(dm-d) 

(m - d) - 

as t -- oo. Since Sm(t) = mg (Yt), an symptotically valid 

100(1 - a)% confidence region for r is given by (18). 

EXAMPLE 2 (A LINEAR SUBCLASS). A subclass of A can 
be obtained from an "extension" procedure presented in 

Glynn and Iglehart (1990) for the univariate case. The idea 
of an extension procedure is to extend the power of the 
method by applying the procedure separately to each inde- 

pendent increment of the output process, and then "patch- 
ing" the increments together (this idea was first proposed in 
Schruben 1983). To generalize the extension procedure pre- 
sented by Glynn and Iglehart, the process Xt, is subdivided 
into m pieces, and then we apply a standardized time series 

procedure to each increment as if it were the output of a 

single run by itself (recall that each increment of a Brown- 
ian motion is itself a Brownian motion). For 0 < i < m - 1, 
we give the (i + l)th increment as an element of Cd[0, 1] 
by defining the map Am: Cd[O, 1] -- Cd[0, 1] given by 

(Amx)(t) = x((i+ t)/m) -x(i/m), 0 t < 1. 

For a given g satisfying (6), (7), and (9), we define its 
extension gm by 

m-1 

gm= E goA". 
i=O 

(19) 

PROPOSITION 3. Assume that g: Cd[0, 1] --> dxd satisfies 
(6), (7), and (9). If gm as defined in (19) satisfies 

P[gm(B) is positive definite and symmetric] = 1, 

then gm E Ji. 

PROOF. Clearly (6) is verified for g,. Also, we can easily 
verify (7), since g satisfied (7), and if y = x - 3J, then 

A'y = Amx - (3/m)J. 

Finally, note that vJhAmB is distributed as B, and 

g(AmB) = (l/m)g(m>AmB). 
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Hence, (9) implies that P[AmB E D(g)] = 0. Therefore, (9) 
is also satisfied for g, in place of g. E 

Now, we can define a subclass of A as follows. Let us 
consider a real valued function v: C[0, 1] -> 9R. We say that 
v is a bounded linear functional if it is linear, that is, 

v(ax + 1y) = av(x) + v(y), a,P E 9, x,y E C[O, 1], 

and there exists a constant M E 91 such that 

Iv(x)l < M8(x,), x E C[0, 1], 

where 8 is the sup-distance (see p. 133 of Royden 1968). 
As is known, a given function v: C[0, 1] --- R is a bounded 
linear functional if and only if it is linear and continu- 
ous (see p. 184 of Royden 1968). Let C*[0, 1] denote the 

space of functions v: C[0, 1] --> 9 that are bounded lin- 
ear functionals, and let C*[0, 1] be the class of functions 
b: Cd[o, 1] -_, dxd of the form 

b(x) = h(x)h(x)T, x e Cd[0, 1], 

where h(x) = (v(x1), v(x2),..., v(xd))T for some v E 
C*[0, 1]. Note that, from the Riesz representation theorem 

(see p. 310 of Royden 1968), v(x) can be written as 

1 

v(x) = f x(t)l(dt) 

for some finite signed Baire measure /, (this representa- 
tion relates our subclass to the concept of standardized 
time series weighted area variance estimators proposed in 
Goldsman et al. 1986). 

The linear subclass Y is defined as the class of functions 

g: Cd[0, 1] -> ldXd such that 

(i) g satisfies 

P[g(B) is nonsingular] = 1, 

and 
(ii) For some m ) d, and b e Cd[0, 1], g can be written 

as 

m-1 

g= EboyoAt, 
i=o 

(20) 

where y is defined in (13). 
Note that a matrix b(x) = h(x)h(x)T has rank 1. Hence, 

in order that g(x) be nonsingular we require m > d (see 
p. 208 of Searle 1982). The linear subclass is of particu- 
lar importance because for members of this class we can 

explicitly obtain the limiting distribution of Theorem 1. 
It turns out that the limiting distribution is a multiple of 
an F distribution, as we see from the following proposi- 
tions (proofs for these two propositions can be found in 
Mufioz 1991). 0 

PROPOSITION 4. Y C X. 



418 / MUNOZ AND GLYNN 

PROPOSITION 5. Let g E 2 and m > d such that g satisfies 
(20). Then 

dm 
(r(t) - r)g() -(r(t) -r) (m-d + 1) F(m -d+l) 

(m - d + I)o ( + 

as t -> oo, where o2 > 0 is a constant determined by g. 

We mentioned that ao2 can be obtained from 

2 = E[v(W,)2], (21) 

where W1 is the Brownian bridge defined by Wl(u)= 
Bl(u) - uBl(1), 0 < u < 1. The multivariate version of 
Schruben's standardized sum process belongs to the linear 
subclass. In this case we have 

v(x)= fx(t)dt, and 2 = 12 

EXAMPLE 3 (COMBINED PROCEDURES). An interesting 
property of members of the linear subclass is that the 
asymptotic expected volume of their confidence regions 
is independent of a2 (as we will see in ?3), but it does 
depend on the degrees of freedom of the corresponding 
F distribution given in Proposition 5. Smaller asymptotic 
expected volumes correspond to larger degrees of freedom. 
This suggests that we can improve the power of standard- 
ized time series procedures if we can increase the degrees 
of freedom of the F distribution that appears in the cor- 
responding limit theorem. An idea in this direction was 
proposed in Schruben (1983) for the univariate case. The 
idea is to increase the degrees of freedom of the F distri- 
bution by combining a member of the linear subclass with 
the batch means method. Based on the additivity property 
of the chi-square distribution (the sum of two independent 
chi-squares is also chi-square with degrees of freedom 
obtained by adding the degrees of freedom of the initial 
ones), the corresponding limiting distribution for the "com- 
bined" procedure is an F with more degrees of freedom 
than the initial ones. By considering the fact that Wishart 
matrices are also additive (see p. 67 of Siotani et al. 1985), 
we can develop combined procedures in a similar way for 
the case d > 1 (see Mufioz 1991 for details). 

3. LARGE-SAMPLE PROPERTIES OF 
STANDARDIZED TIME SERIES 

In this section, we analyze the asymptotic properties of 
multivariate standardized time series. The asymptotic per- 
formance of an asymptotically valid confidence region can 
be evaluated by considering the asymptotic (as the run 
length goes to oo) expected volume of the confidence 
region. From a volume standpoint, we view a confidence 
region as more desirable if it has a smaller volume. 

3.1. Asymptotic Properties for the Class X 
Let us suppose g E S. Then its confidence region (defined 
in (12)) has volume 

V(g) = 
f ds, * *. ds = det(g(,)'/2)z(g, a)d/2q, (22) 

where 

rd /2 

qd 
=r(+ 

is the volume of the d-dimensional unit sphere {x E 9d: 
xTx < 1}. 

To compare standardized time series procedures to 
consistent estimation, we consider the volume of the 
confidence region obtained from a consistent estimation 
procedure (see (5)). This is given by 

(23) V (E(t)) = det( (t) 1/2) (X(d, a) qd, -- qd,~~~~~ 

where E(t) is a consistent estimator for the covariance 
matrix GGT that appears in Assumption 1. Note that 
the scaling factor t-d/2 of (23) comes from the property 
det(AA) = Addet(A), where A is a d x d matrix. 

Now, from (6) and (7) we see that, under Assumption 1, 

tg(Y,) = g(GB) = Gg(B)G, 

as t -> oo. Therefore, 

td/2det(g( )'/2) ~ [det(Gg(B)GT)]l/2 

= det(G)det(g(B) /2), (24) 

as t -> oo. Hence, we see that V(g) as defined in (22) is of 
order t-d/2. As we can see from (23), convergence rate of 

V(g) is the same order as that obtained from a consistent 
estimation procedure. 

A more precise comparison can be made if we con- 
sider the asymptotic expected volume. If the sequence 
{det(g(Yt)l/2) t > 0} is uniformly integrable, we can take 
expectations of both sides of (22), and from (24) we obtain 

lim td/2E[V(g)] = KE[det(g(B) /2)]z(g, a)d/2 (25) 
t--00 

where K = det(G)qd. 
Similarly, if the sequence {det((t)'/2): t > 0} is uni- 

formly integrable we have 

lim E[det(Y(t)l/2)] = det(G), t-- 0o 

so that from (23) we have 

lim td/2E[V(^(t))] = 
KXd) t--+-oo d (26) 

where X(d ,)= (X(d a))d/2. As we see from the follow- 
ing theorem, the right side of (25) cannot be smaller than 
that of (26) (a proof of this theorem is provided in the 
appendix). 

THEOREM 2. Let g E X and E(t) be a consistent estimator 
for GGT. Assume that {det(I(t)1/2) : t > t} is uniformly 
integrable for some to > 0. Then, under Assumption 1, 

liminf td/2E[V(g)] > lim td/2E[V(j(t))], 
t-0oo t->oo 

where V(g) and V(((t)) are defined in (22) and (23), 
respectively. 



Theorem 1 shows that the asymptotic expected volume 
of a standardized time series confidence region is at least 
as large as the asymptotic expected volume of a confidence 
region obtained from consistent estimation. 

3.2. Asymptotic Properties for 
the Linear Subclass 

For members of the linear subclass defined in ?2, we can 
use Proposition 5 to derive an explicit expression for the 
asymptotic expected volume of the confidence region. If 
gm= Em o1 b o y o Am E , a 100(1 - a)% asymptotically 
valid confidence region for r is given by 

R(t) = (r E d: [r(t) -r]Tgm(Y)-[r(t)- r] 

(m-d + 1)m F(d,m-d+l,a) (27) 

where o2 is defined in (21). The volume of the confidence 
region defined by (27) is 

V()d( 1/2)( dm 
V (g.) = det(g((Y,) 

1 
(m - d + 1)o-g2 F(dm-d+la) qd. 

As an appropriate measure of this volume we take its dth 
root (this is expressed in the same units as Y), that is, we 
consider 

Vd(gm) = [det(gm (Y)/2)]/d 

dm 
1F V ld 

(m-d + l)o-g2 F(d,m-d+l,a)) qd 

To compare the members of the linear subclass relative to 
consistent estimation, we consider the dth root of the vol- 
ume defined in (23): 

Vd(E(t)) = t-/ [det(d(t)l/2)]l/dx(d, a)ql/d 

As is shown in Muiioz (1991), under the appropriate uni- 

formly integrability assumption, an explicit expression for 
the asymptotic expected volume's dth of confidence regions 
obtained from members of the linear subclass is given by 

d 

lim tl/2E[Vd(gm)] = Klm-1/2 E[X(ldi+l)] 
~~~t--*+O~ ~i=l 

/ dm 1/2 

( - d + ) F(d.m-d+l a) (28) 

where K, = (det(G)qd)l/d, and 

E[l/dl = 
21/2dr(? + J) 

E[X(J) J - r() 
' 

j = 1,2,.... Similarly (see Muioz 1991 for details), under 
the appropriate uniformly integrability assumption, we have 

lim t/2E[Vd(E(t))] = KIX(d,a). (29) 
t--O0 
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Equations (28) and (29) allows us to compute the asymp- 
totic expected volume's dth root of confidence regions 
obtained from members of the linear subclass and from 
consistent estimation procedures (in units of tl/2det(G)l/d). 
As an example, we show in Table 1 these asymptotic 
expected volume's dth root for 95% confidence regions, 
different values of d and m, and consistent estimation pro- 
cedures (m = oo). As we can see from Table 1, the asymp- 
totic expected volume for members of the linear subclass 
is strictly bigger than that obtained from consistent esti- 
mation, but it can be approached arbitrarily closely by 
increasing m (an analytical proof of this result is given 
in Mufioz 1991). This suggests that, as in the case d = 1 

(see Schmeiser 1982), for a sufficiently large number of 
batches, additional batches have small effect on the asymp- 
totic expected volume of a member of the linear subclass. 

Finally, we mention that, as for members of the linear 
subclass, the asymptotic expected volume's dth root of con- 
fidence regions provided by the batch means method and 

by combined procedures depend basically on the degrees 
of freedom of the corresponding F distribution (see Mufioz 
1991 for details). To be more precise, if gb E X corresponds 
to the batch means method with m batches, and gc E X 

corresponds to a combined procedure with m batches, the 

asymptotic expected volume's dth root of their confidence 

regions are given by 

d 

lim t/2E[V (gb)] = (m 1)-/2K1 E[X- 

(d(m-1) 1/2 

E(m-d) - d) m 

and 

lim t1/2E[Vd(gC)] = (2m- 1)-1/2K1 I E X(2m-i) t-- oo00 
i=l 

(d(2m - 1) 1/2 

(2m - d) F(d, 2m-d, a) 

From which we can see that, the values in Table 1 apply 
to the batch means method (with m- d in place of m- 
d + 1) and to combined procedures (with 2m - d in place 
of m-d+l). 

4. EXPERIMENTAL RESULTS 

In this section, we present some experimental results 
obtained from applying multivariate standardized time 
series procedures to the simultaneous estimation of more 
than one steady-state parameter. The system selected to 

perform our experiments is an M/M/1 queue, and we 
consider the estimation of the steady-state mean r = 

(r, r2, ... , rd)T, where ri is the ith moment of the steady- 
state waiting time (excluding the service time). For a fixed 
number of replications, three procedures are compared: the 
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Table 1. Asymptotic expected volume's dth root for 95% confidence regions as a function of d and m. 

d 

m-d+1 1 2 3 4 5 6 7 8 9 

1 20.248 31.377 41.870 51.613 60.659 69.095 77.006 84.472 91.540 
2 7.626 10.270 12.502 14.467 16.241 17.869 19.380 20.796 22.132 
3 5.864 7.432 8.664 9.718 10.655 11.508 12.297 13.035 13.729 
4 5.220 6.403 7.281 8.013 8.658 9.241 9.778 10.279 10.751 
5 4.892 5.881 6.580 7.152 7.649 8.096 8.506 8.889 9.249 
6 4.695 5.568 6.160 6.634 7.043 7.408 7.742 8.053 8.346 
7 4.564 5.359 5.880 6.290 6.639 6.950 7.233 7.496 7.743 
8 4.470 5.211 5.681 6.045 6.351 6.623 6.869 7.098 7.312 
9 4.401 5.100 5.532 5.861 6.136 6.378 6.597 6.799 6.989 

10 4.344 5.013 5.418 5.720 5.972 6.190 6.389 6.565 6.737 
11 4.301 4.944 5.326 5.608 5.831 6.030 6.213 6.383 6.540 
12 4.269 4.893 5.249 5.513 5.729 5.914 6.073 6.230 6.374 
13 4.240 4.846 5.186 5.435 5.639 5.811 5.958 6.105 6.227 
14 4.214 4.805 5.131 5.367 5.559 5.721 5.858 5.995 6.121 
15 4.191 4.769 5.090 5.317 5.490 5.643 5.782 5.901 6.018 
16 4.172 4.739 5.050 5.267 5.432 5.577 5.709 5.820 5.931 
17 4.157 4.715 5.018 5.218 5.385 5.523 5.637 5.754 5.847 
18 4.142 4.690 4.985 5.187 5.338 5.470 5.589 5.689 5.790 
19 4.131 4.672 4.960 5.156 5.301 5.428 5.532 5.638 5.722 
20 4.120 4.654 4.935 5.125 5.266 5.387 5.487 5.589 5.669 
30 4.050 4.548 4.784 4.939 5.046 5.138 5.208 5.283 5.338 
40 4.015 4.491 4.715 4.853 4.944 5.022 5.078 5.129 5.170 

batch means method, Schruben's standardized sum pro- 
cess method, and a methodology derived from univariate 
confidence intervals (which we refer to as the Bonferroni 
method). 

The Bonferroni method corresponds to the hyperrect- 
angular confidence region obtained from individual con- 
fidence intervals based on the univariate batch means 
method, each with the same confidence level (1 - a/d). 
To be more explicit, if s2(t) denotes the ith diagonal ele- 
ment of the covariance matrix Sm(t) corresponding to the 
batch means with m batches (as defined in (17)), the con- 
fidence region corresponding to the Bonferroni method is 
the region I x 2 x ... x ID, where 

si(t) si(t)- 
Ii = ri(t) -t(m_l,a/2d) /2, ri(t) + t(m- a/2d) ml/2 

i=1,2,... ,d, 

where ri(t) is the ith component of r(t), t(m_ 3) denotes 
the (1 - /) quantile of a Student t distribution with (m - 1) 
degrees of freedom and (1- a) is the desired confidence 
level (a = 0.05 in our experiments). We point out that 
the Bonferroni method is a method derived from the well- 
known Bonferroni inequality, and as is well known, the 
confidence level of the Bonferroni method is always greater 
or equal than the desired confidence level (1- a). 

Our comparisons are based on both the empirical cov- 
erage and the average volume of the confidence regions 
produced by these methods. Our observations were gen- 
erated by FORTRAN programs running on a DEC Alpha 
386 under UNIX, and using the Learmonth-Lewis random 
number generator (see LLRANDOMII generator in Lewis 
and Orav 1989). 

Table 2. Performance of 95% confidence regions for 
the d = 3 first waiting time moments from an 
M/M/1 queue based on 1,000 independent 
replications (t = Run 

Observations). 
Length = 1,600,000 

Average Standard 
p m Method Coverage Volume* Deviation* 

0.5 5 Batch means 0.941 0.0515 0.0149 
5 Schruben 0.945 0.0356 0.0093 
5 Bonferroni 0.962 0.0763 0.0260 

10 Batch means 0.957 0.0244 0.0043 
10 Schruben 0.930 0.0233 0.0042 
10 Bonferroni 0.971 0.0591 0.0130 
20 Batch means 0.937 0.0207 0.0028 
20 Schruben 0.937 0.0204 0.0031 
20 Bonferroni 0.971 0.0535 0.0081 

0.8 5 Batch means 0.928 2.5447 0.8507 
5 Schruben 0.919 1.7386 0.5368 
5 Bonferroni 0.967 4.2523 1.7075 

10 Batch means 0.894 1.1987 0.2770 
10 Schruben 0.876 1.1377 0.2751 
10 Bonferroni 0.972 3.2939 0.8479 
20 Batch means 0.883 1.0222 0.2107 
20 Schruben 0.872 1.0016 0.2232 
20 Bonferroni 0.969 3.1057 0.5829 

*We report the average volume's dth root and the corresponding 
standard deviation. 

In all of our experiments the output of the simulation is 

regarded as a discrete-time stochastic process. To be more 

precise, we consider Y(s) = ZLsJ, where 

Z,= (Z, Z ...Z)T, k = 2,..., t, Zk k k, k 



Table 3. Performance of 95% confidence regions for 
the d = 3 first waiting time moments from an 
M/M/1 queue based 

replications (t = Run 

Observations). 

on 2,000 independent 
Length = 3,200,000 

Average Standard 
p m Method Coverage Volume* Deviation* 

0.5 5 Batch means 0.962 0.0374 0.0110 
5 Schruben 0.942 0.0254 0.0064 
5 Bonferroni 0.975 0.0543 0.0179 

10 Batch means 0.955 0.0175 0.0032 
10 Schruben 0.930 0.0167 0.0029 
10 Bonferroni 0.978 0.0417 0.0095 
20 Batch means 0.947 0.0149 0.0021 
20 Schruben 0.937 0.0147 0.0021 
20 Bonferroni 0.972 0.0379 0.0058 

0.8 5 Batch means 0.933 1.8637 0.6217 
5 Schruben 0.921 1.2688 0.3582 
5 Bonferroni 0.957 3.0723 1.1101 

10 Batch means 0.917 0.8817 0.1945 
10 Schruben 0.886 0.8312 0.1831 
10 Bonferroni 0.963 2.3432 0.5982 
20 Batch means 0.906 0.7484 0.1458 
20 Schruben 0.892 0.7286 0.1511 
20 Bonferroni 0.971 2.1381 0.4190 

*We report the average volume's dth root and the corresponding 
standard deviation. 
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the batch means method or Schruben's standardized sum 
process. When the run length is good enough to obtain 
good confidence intervals with the batch means method 
or Schruben's standardized sum process, the Bonferroni 
method gives overcoverage and large average volumes 
compared to the asymptotically valid methods. 

APPENDIX 

PROOF OF THEOREM 1. To prove Theorem 1 we need the 

following results. 

LEMMA 1. If X is a random vector distributed according to 
a Nd(O, I) distribution, and D is a positive definite d x d 
matrix, then 

P[XTX < (det(D))1/d] > P[XTD-X < 1]. 

The proof of Lemma 1 is given in Mufioz (1991). 

LEMMA 2. For g E J, let f(g) = KE[det(g(B)1/2)]x 
z(g, a)d/2, where K is defined in (25). Then f is scale- 
invariant, that is, for A > 0, 

f(Ag) = f(g). 

PROOF. Since 

Zk = W, and Wk is the waiting time of the kth customer. 
For a more detailed explanation on how to implement the 
standardized time series procedures used in this section, the 
reader is referred to ?1.6.1 of Mufioz (1991). 

In Table 2 we summarize the results of 1,000 inde- 

pendent replications, with a run length of t = 1,600,000 
observations. In Table 3 we give the results with a larger 
run length (t = 3,200,000). In all the experiments we fixed 
the input rate at 1, so that the multivariate steady-state mean 
is r = (0.5, 1, 3)T for p = 0.5, and r = (3.2, 25.6, 307.2)T 
for p = 0.8. 

The results of our experiments agree with the observa- 
tions of ?3. As we see from Tables 2 and 3, Schruben's 
standardized sum process with m batches gives smaller vol- 
umes than the batch means method with m batches, but for 
small sample sizes, the coverage of Schruben's standard- 
ized sum process with m batches is smaller than that of the 
batch means method with m batches. 

As we expected, a larger sample size produces a bet- 
ter empirical coverage and a smaller volume. When we 
increase the traffic intensity, a larger sample size is required 
to obtain reliable confidence regions. We observe that, 
when the sample size is not large enough to produce a 

good empirical coverage, a small number of batches pro- 
duces better results in terms of empirical coverage. This 
last observation is explained by the fact that a smaller num- 
ber of batches leads to a larger batch size. 

With respect to the confidence regions obtained from uni- 
variate confidence intervals, the Bonferroni method always 
gives the largest average volume and better coverages than 

P[B(1)T(Ag(B))-'B(1) < A-'z(g, a)] 

= P[B(1)Tg(B)-'B(1) < z(g, a)], 

we see that z(Ag, a) = -l'z(g, a), so that 

f(Ag) = KE[det(Ag(B))'/2]z(Ag, a)d/2 

= KAd/2E[det(g(B)l/2)]z/2(g, a)A-d/2 

= f(g). O 

LEMMA 3. For g E Jt, let f(g) be as in Lemma 9 and 
g E i. Then 

f (g) KX(d a). 

PROOF. By Lemma 2, it suffices to consider the case g' E A 
for which 

z(g', a)= 1. (30) 

Since B(1) and g'(B) are independent (Proposition 2), it 
follows from Lemma 7 that: 

P[B(1)TB(1) < det(g (B))1/ Ig'(B)] 

m> P[B(1)Tg'(B)-'B(1) < llg'(B)]. (31) 

By taking expectations of both sides of (31) and using (30), 
we obtain: 

P[B(1)TB(1) < det(g'(B))/ld] > P[B(l)Tg'(B)-'B(1) < 1] 

= 1-a. 
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Therefore, 

P[(B(l)TB(l))d/2 < det(g'(B))'/2] > 1 -a, 

that is, 

E[F(det(g'(B))/2)] > 1 -a, (32) 

where 

F(y) = P[(B(1)TB(1))d/2 < y] = f(x)dx, 

and f(x) is the density function of (B(1)TB(1))d/2, given 

by 

1 - x2/- 
f(x) = 

d2d/2-(d/2) exp- 2 

Now, since f(x) is strictly decreasing on [0, oo), F(y) is 
concave on [0, oo). Hence, from (32) and Jensen's inequal- 
ity (see p. 47 of Chung 1974) we obtain 

F(E[det(g'(B))/ 2]) > 1 -a, 

so that 

P[(B(1)TB(1))d/2 ?< E[det(g'(B))'/2]] > 1-a, 

from which we obtain E[det(g'(B))'/2] > Xda). This gives 
the desired result. O 

From Fatou's lemma (see p. 42 for Chung 1974), (22), 
and (24) we obtain 

COROLLARY 1. Let g E X. Then, under Assumption 1, 

lim inf t/2E[V(g)] > KX(d ,), t-- oo 

where V(g) is defined in (22) and K = det(G)qd. 

The conclusion follows from (26) and Corollary 1. 
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