Contents

Preface	V
Chapter 1. A survey of sphere theorems in geometry	1
§1.1. Riemannian geometry background	1
§1.2. The Topological Sphere Theorem	6
§1.3. The Diameter Sphere Theorem	7
§1.4. The Sphere Theorem of Micallef and Moore	9
$\S1.5.$ Exotic Spheres and the Differentiable Sphere Theorem	13
Chapter 2. Hamilton's Ricci flow	15
§2.1. Definition and special solutions	15
§2.2. Short-time existence and uniqueness	17
§2.3. Evolution of the Riemann curvature tensor	21
$\S2.4.$ Evolution of the Ricci and scalar curvature	28
Chapter 3. Interior estimates	31
§3.1. Estimates for the derivatives of the curvature tensor	31
§3.2. Derivative estimates for tensors	33
$\S3.3.$ Curvature blow-up at finite-time singularities	36
Chapter 4. Ricci flow on S^2	37
§4.1. Gradient Ricci solitons on S^2	37
§4.2. Monotonicity of Hamilton's entropy functional	39
$\S4.3.$ Convergence to a constant curvature metric	45
Chapter 5. Pointwise curvature estimates	49
$\S5.1.$ Introduction	49

$\S5.2$. The tangent and normal cone to a convex set	49
§5.3. Hamilton's maximum principle for the Ricci flow	53
$\S5.4.$ Hamilton's convergence criterion for the Ricci flow	58
Chapter 6. Curvature pinching in dimension 3	67
§6.1. Three-manifolds with positive Ricci curvature	67
$\S 6.2.$ The curvature estimate of Hamilton and Ivey	70
Chapter 7. Preserved curvature conditions in higher dimensions	73
§7.1. Introduction	73
§7.2. Nonnegative isotropic curvature	74
§7.3. Proof of Proposition 7.4	77
§7.4. The cone \tilde{C}	87
§7.5. The cone \hat{C}	90
§7.6. An invariant set which lies between \tilde{C} and \hat{C}	93
$\S7.7.$ An overview of various curvature conditions	100
Chapter 8. Convergence results in higher dimensions	101
§8.1. An algebraic identity for curvature tensors	101
§8.2. Constructing a family of invariant cones	106
§8.3. Proof of the Differentiable Sphere Theorem	112
§8.4. An improved convergence theorem	117
Chapter 9. Rigidity results	121
§9.1. Introduction	121
§9.2. Berger's classification of holonomy groups	121
$\S9.3.$ A version of the strict maximum principle	123
§9.4. Three-manifolds with nonnegative Ricci curvature	126
§9.5. Manifolds with nonnegative isotropic curvature	129
§9.6. Kähler-Einstein and quaternionic-Kähler manifolds	135
§9.7. A generalization of a theorem of Tachibana	146
$\S9.8.$ Classification results	149
Appendix A. Convergence of evolving metrics	155
Appendix B. Results from complex linear algebra	159
Problems	163
Bibliography	169
Index	175