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Abstract. This paper proves limit theorems for the number of monochromatic edges in uniform
random colorings of general random graphs. The limit theorems are universal depending solely on
the limiting behavior of the ratio of the number of edges in the graph and the number of colors, and
works for any graph sequence deterministic or random. The proofs are based on moment calculations
which relates to results of Erdős and Alon on extremal subgraph counts. As a byproduct of our
calculations a simple new proof of a result of Alon, estimating the number of isomorphic copies of
a cycle of given length in graphs with fixed number of edges, is presented.

1. Introduction

Suppose the vertices of a finite graph G = (V,E), with |V | = n, are colored independently and
uniformly at random with c colors. The probability that the resulting coloring has no monochro-
matic edge, that is, it is a proper coloring is χG(c)/cn, where χG(c) denotes the number of proper
colorings of G using c-colors. The function χG is the chromatic polynomial of G, and is a central
object in graph theory [15] with several interesting unsolved problems [23, 24]. A natural gen-
eralization of this is to consider a general coloring distribution p = (p1, p2, . . . , pc), that is, the
probability a vertex is colored with color a ∈ [c] is pa independent from the colors of the other
vertices, where pa ≥ 0, and

∑c
a=1 pa = 1. Define PG(p) to be the probability that G is properly

colored. PG(p) is related to Stanley’s generalized chromatic polynomial [32], and under the uniform
coloring distribution it is precisely the proportion of proper c-colorings of G. Recently, Fadnavis
[18] proved that PG(p) is Schur-convex for every fixed c, whenever the graph G is claw-free, that is,
G has no induced K1,3. This implies that for claw-free graphs, the probability it is properly colored
is maximized under the uniform distribution, that is, pa = 1/c for all a ∈ [c].

The Poisson limit theorems for the number of monochromatic subgraphs in a random coloring
of a graph sequence Gn are applicable when the number of colors grow in an appropriate way
compared to the number of certain specific subgraphs in Gn. Barbour et al. [5] used Stein’s
method to show that the number of monochromatic edges for the complete graph converges to
a Poisson random variable. Arratia et al. [4] used Stein’s method based on dependency graphs
to prove Poisson approximation theorems for the number of monochromatic cliques in a uniform
coloring of the complete graph (see also Chatterjee et al. [10]). Poisson limit theorems for the
number of general monochromatic subgraphs in a random coloring of a graph sequence was studied
by Cerquetti and Fortini [9], again using Stein’s method. They assumed that the distribution of
colors was exchangeable and proved that the number of copies of any particular monochromatic
subgraph converges in distribution to a mixture of Poissons. However, all these results require some
technical conditions on the subgraph counts and the coloring probabilities for the error terms in
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Stein’s method to vanish. In particular, while counting the number of monochromatic edges, the
conditions depend on the number of edges and 2-stars, and the coloring probabilities. In this paper
we show that these extra conditions are redundant under the uniform coloring scheme; the limiting
behavior of the number of monochromatic edges is solely governed by the limit of the ratio of the
number of edges in the graph and the number of colors.

1.1. Universal Limit Theorems For Monochromatic Edges. Let Gn denote the space of all
simple undirected graphs on n vertices labeled by [n] := {1, 2, · · · , n}. Given a graph Gn ∈ Gn with
adjacency matrix A(Gn) = ((Aij(Gn)))1≤i,j≤n, denote by V (Gn) the set of vertices, and by E(Gn)
the set of edges of Gn, respectively. Let p = (p1, p2, . . . , pc) be a probability vector, that is, pa ≥ 0,

and
∑c

a=1 pa = 1. The vertices of Gn are colored with c colors as follows:

P(v ∈ V (Gn) is colored with color a ∈ {1, 2, . . . , c}|Gn) = pa,

independent from the other vertices. The coloring distribution is said to be uniform whenever
pa = 1/c, for all a ∈ [c]. If Yi is the color of vertex i, then

N(Gn) :=
∑

1≤i<j≤n
Aij(Gn)111{Yi = Yj} =

∑
(i,j)∈E(Gn)

111{Yi = Yj}, (1.1)

denotes the number of monochromatic edges in the graph Gn. Note that P(N(Gn) = 0) is the
probability that Gn is properly colored. We study the limiting behavior of N(Gn) as the size of
the graph becomes large, allowing the graph itself to be random, under the assumption that the
joint distribution of (A(Gn), Yn) is mutually independent, where Yn = (Y1, Y2, . . . , Yn) are i.i.d.
random variables with P(Y1 = a) = pa, for all a ∈ [c]. Note that this setup includes the case where
{G1, G2, . . .} is a deterministic (non-random) graph sequence, as well.

An application of the easily available version of Stein’s method, similar to that in Cerquetti and
Fortini [9], gives a general limit theorem for N(Gn) that works for all color distributions (Theorem
2.1). However, this result, like all other similar results in the literature, requires several conditions
involving the number of edges and 2-stars in the graph Gn, even when the coloring scheme is
uniform. One of the main contribution of this paper is in showing that these extra conditions are,
in fact, redundant under the uniform coloring scheme, and the limiting behavior is solely governed
by the limit of |E(Gn)|/c.

Theorem 1.1. Let Gn ∈ Gn be a random graph sampled according to some probability distribution
over Gn. Then under the uniform coloring distribution, that is, pa = 1/c, for all a ∈ [c], the
following is true:

N(Gn)
D→


0 if 1

c · |E(Gn)| P→ 0,

∞ if 1
c · |E(Gn)| P→∞,

W if 1
c · |E(Gn)| D→ Z;

where P(W = k) = 1
k!E(e−ZZk). In other words, W is distributed as a mixture of Poisson random

variables mixed over the random variable Z.

Theorem 1.1 is universal because it only depends on the limiting behavior of |E(Gn)|/c and it
works for any graph sequence {Gn}n≥1, deterministic or random. The theorem is proved using the
method of moments, that is, the conditional moments of N(Gn) are compared with conditional
moments of the random variable M(Gn) :=

∑
1≤i<j≤nAij(Gn)Zij , where {Zij}(i,j)∈E(Gn) are in-

dependent Ber(1/c). The combinatorial quantity to bound during the moment calculations is the
number of isomorphic copies of a graph H in another graph G, to be denoted by N(G,H). Using
properties of the adjacency matrix of G we estimate N(G,H), when H = Cg is a g-cycle, This
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result is then used to show the asymptotic closeness of the conditional moments of N(Gn) and
M(Gn).

Theorem 1.1 asserts that if 1
c |E(Gn)| P→ ∞, then N(Gn) goes to infinity in probability. Since a

Poisson random variable with mean growing to infinity converges to a standard normal distribution
after centering and scaling by the mean and the standard deviation, it is natural to wonder whether
the same is true for N(Gn). This is not true in general if |E(Gn)|/c goes to infinity, with c fixed.
Proposition 6.1 shows that the limiting distribution of the number of monochromatic edges in the
complete graph properly scaled is asymptotically a chi-square with (c−1) degrees of freedom, when
c is fixed. On the other hand, if c → ∞, Stein’s method for normal approximation can be used
to prove the asymptotic normality of N(Gn). However, as before, in the off-the-shelf version of
Stein’s method an extra condition is needed on the structure of the graph, even under the uniform
coloring scheme . Nevertheless, as in the Poisson limit theorem, the normality of the standardized
random variable N(Gn) is universal and can also be proved by a method of moments argument.

Theorem 1.2. Let Gn ∈ Gn be a random graph sampled according to some probability distribution
over Gn, and N(Gn) as defined before. Then for any uniform c-coloring of Gn, with c → ∞ and

|E(Gn)|/c P→∞,

Zn :=
1√

|E(Gn)|/c

(
N(Gn)− |E(Gn)|

c

)
D→ N(0, 1).

In the proof of Theorem 1.2 the conditional central moments of N(Gn) are compared with the
conditional central moments of M(Gn). In this case a combinatorial quantity involving the number
of multi-subgraphs of Gn show up. Bounding this quantity requires extensions of Alon’s [2, 3]
results to multi-graphs and leads to results in graph theory which may be of independent interest.

1.2. Connections to Extremal Combinatorics. The combinatorial quantity that shows up in
the moment computations for the Poisson limit theorem is N(G,H), the number of isomorphic
copies of a graph H in another graph G. The quantity N(`,H) := supG:|E(G)|=`N(G,H) is a

well-known object in extremal graph theory that was first studied by Erdős [17] and later by Alon
[2, 3]. Alon [2] showed that for any simple graph H there exists a graph parameter γ(H) such that

N(`,H) = Θ(`γ(H)). Friedgut and Kahn [19] extended this result to hypergraphs and identified the
exponent γ(H) as the fractional stable number of the hypergraph H. Alon’s result can be used to
obtain a slightly more direct proof of Theorem 1.1. However, our estimates of N(G,Cg) using the
spectral properties of G lead to a new and elementary proof of the following result of Alon [2]:

Theorem 1.3 (Theorem B, Alon [2]). If H has a spanning subgraph which is a disjoint union of
cycles and isolated edges, then

N(`,H) = (1 +O(`−1/2)) · 1

|Aut(H)|
· (2`)|V (H)|/2,

where |Aut(H)| denotes the number of automorphisms of H.

The above theorem calculates the exact asymptotic behavior of N(`,H) for graphs H which
have a spanning subgraph consisting of a disjoint union of cycles and isolated edges. There are
only a handful of graphs for which such exact asymptotics are known [2, 3]. Alon’s proof in [2]
uses a series of combinatorial lemmas. We hope the short new proof presented in this paper is of
independent interest.

The quantity γ(H) is a well studied object in graph theory and discrete optimization and is
related to the fractional stable set polytope [30]. While proving Theorems 1.1 and 1.2 we discover
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several new facts about the exponent γ(H), which might be of independent interest in graph theory.
Alon [3] showed that γ(H) ≤ |E(H)|, and the equality holds if and only if H is a disjoint union
of stars. This is improved to γ(H) ≤ |V (H)| − ν(H), where ν(H) is the number of connected
components of H and the condition for equality remains the same. This is proved in Corollary 5.2
and used later to give an alternative proof of Theorem 1.1. In fact, the universality of the Poisson
limit necessitates γ(H) < |V (H)| − ν(H) for all graphs with a cycle.

In a similar manner, the universal normal limit leads to the following interesting observation
about γ(H). Suppose H has no isolated vertices: if γ(H) > 1

2 |E(H)|, then H has a vertex of
degree 1 (Lemma 6.2). This result is true for simple graphs as well as multi graphs (with a similar
definition of γ for multi-graphs). This result is sharp, in the sense that there are simple graphs
with no leaves such that γ(H) = |E(H)|/2. Even though this result can be proved easily from the
definition of γ(H), it is a fortunate phenomenon, as it is exactly what is needed for the proof of
universal normality.

1.3. Other Monochromatic Subgraphs. Theorems 1.1 and 1.2 determine the universal asymp-
totic behavior of the number of monochromatic edges under independent and uniform coloring
of the vertices. However, the situation while counting copies of other monochromatic subgraphs
is quite different. Even under uniform coloring, the limit need not be Poisson mixture. This is
illustrated in the following proposition where we show that the number of monochromatic r-stars
in a uniform coloring of an n-star converges to a polynomial in Poissons, which is not a Poisson
mixture.

Proposition 1.4. Let Gn = K1,n−1, with vertices labeled by [n]. Under the uniform coloring
scheme, the random variable Tr,n which counts the number of monochromatic r-stars in Gn satisfies:

Tr,n
D→


0 if n

c → 0,
∞ if n

c →∞,
X(X−1)···(X−r+1)

r! if n
c → λ,

where X ∼ Poisson(λ).

Examples with other monochromatic subgraphs are also considered and several interesting obser-
vations are reported. We construct a graph Gn where the number of monochromatic g-cycles (g ≥ 3)
in a uniform c-coloring of Gn converges in distribution to a non-trivial mixture of Poisson even when
|N(Gn, Cg)|/cg−1 converges to a fixed number λ. This is in contrast to the situation for edges, where
the number of monochromatic edges converges to Poisson(λ) whenever |E(Gn)|/c→ λ. We believe
that a Poisson-mixture universality holds for cycles as well, that is, the number of monochromatic
g-cycles in a uniform random coloring of any graph sequence Gn converges in distribution to a
random variable which is mixture of Poisson, whenever |N(Gn, Cg)|/cg−1 → λ > 0.

1.4. Organization of the Paper. The paper is organized as follows: Section 2 discusses Stein’s
method approach for studying the limiting behavior of N(Gn). Section 3, proves Theorem 1.1 and
Section 4 illustrates it for various ensembles of fixed and random graphs. Section 5 discusses the
connections with the subgraph counting problem from extremal combinatorics and gives a new proof
of Theorem 1.3. The proof of Theorem 1.2, where the universal normality of N(Gn) is established,
is in Section 6. Finally, Section 7 proves Proposition 1.4, considers other examples about counting
monochromatic cycles, and discusses possible directions for future research. An appendix gives
details on conditional and unconditional convergence of random variables.
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2. General Poisson Approximation Using Stein’s Method

Cerquetti and Fortini [9] proved a Poisson limit theorem for the number of monochromatic
subgraphs in a random coloring of a graph sequence using Stein’s method, under the assumption
that the distribution of the colors is exchangeable. A similar application of Stein’s method gives a
general Poisson limit theorem for N(Gn) as well.

Theorem 2.1. Let Gn ∈ Gn be a random graph sampled according to some distribution, and Z be
a non-negative random variable. If T (Gn) denotes the set of 2-stars in Gn, then the following is
true

P(N(Gn) = 0)→


1 if ||p||2|E(Gn)| P→ 0,

0 if ||p||2|E(Gn)| P→∞, (||p||3 + ||p||22)|T (Gn)| = oP (||p||22|E(Gn)|),
E(e−Z) if ||p||2 → 0, ||p||2|E(Gn)| D→ Z, (||p||3 + ||p||22)|T (Gn)| P→ 0,

where ||p||r =
∑c

k=1 p
r
k, with r ∈ N. More generally, in the third case N(Gn)

D→ W , where W

is a non negative integer valued random variable with P(W = k) = 1
k!E(e−ZZk), that is, W is

distributed as a Poisson random variable with parameter Z.

Proof. Note that P(N(Gn) > 0|Gn) ≤ E(N(Gn)|Gn) = ||p||2|E(Gn)|, from which the first case
follows. For the second part, note that

E(N(Gn)2|Gn) =
∑

e1=(i,j),e2=(k,`)

111{Yi = Yj}111{Yk = Y`}

= ||p||2|E(Gn)|+ ||p||3|T (Gn)|+ ||p||22(|E(Gn)|2 − |T (Gn)| − |E(Gn)|)
= (||p||2 − ||p||22)|E(Gn)|+ (||p||3 − ||p||22)|T (Gn)|+ ||p||22|E(Gn)|2

≤ ||p||2|E(Gn)|+ (||p||3 + ||p||22)|T (Gn)|+ ||p||22|E(Gn)|2

The result then follows from the inequality

P(N(Gn) > 0|Gn) ≥ E(N(Gn)|Gn)2

E(N(Gn)2|Gn)
, (2.1)

and the given conditions.
For the third case, using [10, Theorem 15] with Zn := |E(Gn)|||p||2 we have for all k ∈ N,∣∣∣∣P(N(Gn) = k|Gn)− 1

k!
e−ZnZkn

∣∣∣∣ ≤ 2(||p||3 + ||p||22)|T (Gn)|+ 2||p||22|E(Gn)|.

The right hand side converges to 0 in probability from given conditions, and by the bounded
convergence theorem the conclusion follows. �

For the uniform coloring scheme, E(N(Gn)|Gn) = |E(Gn)|/c and P(N(Gn) > 0) converges to 0
or 1 depending on whether |E(Gn)|/c converges to 0 or infinity, respectively. The Stein method for
Poisson approximation in this case has the following neater form, but requires an extra condition
on the number of 2-stars in Gn.

Corollary 2.2. (Uniform Coloring) Let G ∈ Gn be a random graph sampled according to some dis-
tribution, and Z be a non-negative random variable. Then under the uniform coloring distribution,



6 BHASWAR B. BHATTACHARYA, PERSI DIACONIS, AND SUMIT MUKHERJEE

that is, pa = 1/c, for all a ∈ [c], the following holds

P(N(Gn) = 0)→


1 if 1

c · |E(Gn)| P→ 0,

0 if 1
c · |E(Gn)| P→∞

E(e−Z) if 1
c · |E(Gn)| D→ Z, 1

c2
· |T (Gn)| P→ 0.

2

Remark 2.1. The condition 1
c2
· |T (Gn)| converges in probability to 0, is a technical condition that

is required for proving the above corollary using Stein’s method. For an explicit example where
the conclusion holds even though assumptions do not, let Gn = K1,n−1 be the star graph with
vertices labelled by [n] and the central vertex labelled by 1. Let c = n, and pa = 1/n, for a ∈ [c].
Then 1

c · |E(Gn)| = 1 − 1/n → 1, and 1
c2
· |T (Gn)| = (n − 1)(n − 2)/n2 → 1. Thus, in this case

the last condition of Corollary 2.2 does not hold. If Yi denotes the color of vertex i ∈ [n], then
N(Gn) :=

∑n
i=2 1{Y1 = Yi}. Observe that all the summands are independent given Y1, and so for

any s ∈ (0, 1)

EsN(Gn) = E
n∏
j=2

E(s1{Y1=Yj}|Y1) =
(

1− 1

n
+
s

n

)n−1
→ es−1 =

∞∑
k=0

1

k!e
sk.

Therefore, N(Gn) converges to a Poisson distribution with parameter 1, which is not predicted by
Corollary 2.2. On the other hand, Theorem 1.1, which is proved in the next section, covers this
case and all other cases where a Poisson limit theorem for monochromatic edges holds.

3. Universal Poisson Approximation For Uniform Colorings: Proof of Theorem 1.1

This section determines the limiting behavior of P(N(Gn) = 0) under minimal conditions. Using
the method of moments, we show that N(Gn) has a universal threshold which depends only on the
limiting behavior of |E(Gn)|/c, and a Poisson limit theorem holds at the threshold.

Let Gn ∈ Gn be a random graph sampled according to some probability distribution. For every
n ∈ N fixed, for (i, j) ∈ E(Gn) define the collection of random variables

{Zij , (i, j) ∈ E(Gn)}, where Zij are i.i.d. Ber(1/c), and set M(Gn) :=
∑

1≤i<j≤n
Aij(Gn)Zij .

(3.1)
The proof of Theorem 1.1 is given in two parts: The first part compares the conditional moments
of N(Gn) and M(Gn), given the graphs Gn, showing that they are asymptotically close, when

|E(Gn)|/c D→ Z. The second part uses this result to complete the proof of Theorem 1.1 using some
technical properties of conditional convergence (see Lemma 8.1).

3.1. Computing and Comparing Moments. This section is devoted to the computation of
conditional moments of N(Gn) and M(Gn), and the comparison of these. To this end, define for
any fixed number k, A .k B as A ≤ C(k)B, where C(k) is a constant that depends only on k.
Let Gn ∈ Gn be a random graph sampled according to some probability distribution. For any fixed
subgraph H of Gn, let N(Gn, H) be the number of isomorphic copies of H in Gn, that is,

N(Gn, H) :=
∑

S⊂E(Gn):|S|=|E(H)|

111{Gn[S] = H},

where the sum is over subsets S of E(Gn) with |S| = |E(H)|, and Gn[S] is the subgraph of Gn
induced by the edges of S.
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Lemma 3.1. Let Gn ∈ Gn be a random graph sampled according to some probability distribution.
For any k ≥ 1, let Hk to be the collection of all graphs with at most k edges and no isolated vertices.
Then

|E(N(Gn)k|Gn)− E(M(Gn)k|Gn)| .k
∑

H∈Hk,
H has a cycle

N(Gn, H) · 1

c|V (H)|−ν(H)
, (3.2)

where ν(H) is the number of connected components of H.

Proof. Using the multinomial expansion and the definition of Hk,

E(N(Gn)k|Gn) =
∑

(i1,j1)∈E(Gn)

∑
(i2,j2)∈E(Gn)

· · ·
∑

(ik,jk)∈E(Gn)

E

(
k∏
r=1

111{Yir = Yjr}
∣∣∣Gn) (3.3)

Similarly,

E(M(Gn)k|Gn) =
∑

(i1,j1)∈E(Gn)

∑
(i2,j2)∈E(Gn)

· · ·
∑

(ik,jk)∈E(Gn)

E

(
k∏
r=1

Zirjr

)
, (3.4)

If H is the simple subgraph of Gn induced by the edges (i1, j1), (i2, j2), . . . (ik, jk). Then

E

(
k∏
r=1

111{Yir = Yjr}
∣∣∣Gn) =

1

c|V (H)|−ν(H)
and E

(
k∏
r=1

Zirjr

)
=

1

c|E(H)| .

The result now follows by taking the difference of (3.3) and (3.4), and noting that in any graph H,
|E(H)| ≥ |V (H)| − ν(H) and equality holds if and only if H is a forest. �

Remark 3.1. Observe that if Gn is a forest (disjoint union of trees), then by the above lemma,
E(M(Gn)k|Gn) = E(N(Gn)k|Gn), and consequently the laws of M(Gn) and N(Gn) are exactly the
same when Gn is a forest. In particular, this means that for a forest

P(N(Gn) = 0|Gn) =

(
1− 1

c

)|E(Gn)|
,

for every c, n. Note that under the uniform coloring scheme P(N(Gn) = 0|Gn) = c−nχ(Gn, c),
where χ(Gn, c) is the number of proper c-coloring of the graph Gn. Therefore, determining exact
or asymptotic expressions of P(N(Gn) = 0|Gn), when c is a fixed constant, for a graph G amounts
to counting the number of proper c-colorings of G. Though this is easy for trees, in general it is
a notoriously hard problem, and is known to be #P-complete (refer to the survey by Frieze and
Vigoda [20] and the references therein for the various hardness results and approximate counting
techniques related to proper graph colorings).

Lemma 3.1 shows that bounding the difference of the conditional moments of N(Gn) and M(Gn)
entails bounding N(Gn, H), the number of copies of a subgraph H in Gn. The next lemma estimates
the number of copies of a cycle Cg in Gn.

Lemma 3.2. For g ≥ 3 and Gn ∈ Gn let N(Gn, Cg) be the number of g-cycles in Gn. Then

N(Gn, Cg) ≤
1

2g
· (2|E(Gn)|)g/2.
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Proof. Let A := A(Gn) be the adjacency matrix of Gn. Note that
∑n

i=1 λ
2
i = tr(A2) = 2|E(Gn)|,

where |λ1| ≥ · · · ≥ |λn| are the ordered absolute eigenvalues of A. Note that tr(Ag) counts the
number of walks of length g in Gn, and so each cycle in Gn is counted 2g times. Thus, as an upper
bound,

N(Gn, Cg) ≤
1

2g
· tr(Ag) =

1

2g
·
n∑
i=1

λgi ≤
1

2g
· sup

i
|λi|g−2

n∑
i=1

λ2i ≤
1

2g
· (2|E(Gn)|)g/2,

where the last step uses supi |λi|g−2 = (supi |λi|2)g/2−1 ≤ (2|E(Gn)|)g/2−1. �

Remark 3.2. In extremal graph theory, the study of N(G,H), for arbitrary graphs G and H, was
initiated by Erdős [17], and later carried forward by Alon [2, 3]. In fact, Lemma 3.2 is a special
case of Theorem B of Alon [2]. In Section 5 the proof of Lemma 3.2 is used to give a new and short
proof of Theorem B.

For a given simple graph H, the notation A .H B will mean A ≤ C(H) · B, where C(H) is a
constant that depends only on H. Lemma 3.2 gives a bound on N(Gn, H) in terms of |E(Gn)| for
arbitrary subgraphs H of Gn.

Lemma 3.3. For any fixed connected subgraph H, let N(H,Gn) be the set of copies of H in Gn.
Then

N(Gn, H) .H |E(Gn)||V (H)|−1. (3.5)

Furthermore, if H has a cycle of length g ≥ 3, then

N(Gn, H) .H |E(Gn)||V (H)|−g/2. (3.6)

Proof. The first bound on N(H,Gn) can be obtained by a crude counting argument as follows:
First choose an edge of Gn in E(Gn) which fixes 2 vertices of H. Then the remaining |V (H)| − 2
vertices are chosen arbitrarily from the set of allowed V (Gn) vertices, giving the bound

N(Gn, H) ≤ 2(|V (H)|
2 )|E(Gn)|

(
|V (Gn)|
|V (H)| − 2

)
≤ 2(|V (H)|

2 )|E(Gn)|
(

2|E(Gn)|
|V (H)| − 2

)
.H |E(Gn)||V (H)|−1,

where we have used the fact that the number of graphs on |V (H)| vertices is at most 2(|V (H)|
2 ).

Next, suppose that H has a cycle of length g ≥ 3. Choosing a cycle of length g arbitrarily from
Gn, there are |V (Gn)| vertices from which the remaining |V (H)|− g vertices are chosen arbitrarily.
Since the edges among these vertices are also chosen arbitrarily, the following crude upper bound
holds

N(Gn, H) ≤ 2(|V (H)|
2 )−gN(Gn, Cg)

(
2|E(Gn)|
|V (H)| − g

)
.H N(Gn, Cg)|E(Gn)||V (H)|−g

.H |E(Gn)||V (H)|−g/2. (3.7)

where the last step uses Lemma 3.2. �

The above lemmas, imply the most central result of this section: the conditional moments of

M(Gn) and N(Gn) are asymptotically close, whenever |E(Gn)|/c D→ Z.

Lemma 3.4. Let M(Gn) and N(Gn) be as defined before, with |E(Gn)|/c D→ Z, then for every
fixed k ≥ 1,

|E(N(Gn)k|Gn)− E(M(Gn)k|Gn)| P→ 0.
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Proof. By Lemma 3.1

|E(N(Gn)k|Gn)− E(M(Gn)k|Gn)| ≤
∑

H∈Hk,
H has a cycle

N(Gn, H) · 1

c|V (H)|−ν(H)
,

where ν(H) is the number of connected components of H. As the sum over H ∈ Hk is a finite sum,

it suffices to show that for a given H ∈ Hk with a cycle N(Gn, H) = oP (c|V (H)|−ν(H)).
To this end, fix H ∈ Hk and let H1, H2, . . . ,Hν(H) be the connected components of H. Without

loss of generality, suppose the girth of G, g(G) = g(H1) = g ≥ 3. Lemma 3.3 then implies that

N(Gn, H) ≤
ν(H)∏
i=1

|N(Hi, Gn) .H E(Gn)V (H1)−g/2
ν(H)∏
i=2

E(Gn)V (Hi)−1

.H E(Gn)V (H)−ν(H)+1−g/2 (3.8)

which is op(c
V (H)−ν(H)) since g/2− 1 > 0. �

Remark 3.3. The above proof shows that the error rate between the difference of conditional
moments is better when g is larger, that is, the Poisson approximation is more accurate on
graphs with large girth. In his 1981 paper, Alon [2] proved that for every fixed H, N(Gn, H) ≤
c2(H)|E(Gn)|γ(H), where c2(H) and γ(H) are constants depending only on the graph H. Section
5 below shows that by plugging in this estimate and using the property of γ(H), it is possible to
obtain a direct proof 3.4 that obviates the calculations in Lemma 3.2 and Lemma 3.3. This gives
slightly better error rates between the difference of the conditional moments.

3.2. Completing the Proof of Theorem 1.1. The results from the previous section are used
here to complete the proof of Theorem 1.1. The three different regimes of |E(Gn)|/c are treated
separately as follows:

3.2.1. 1
c · |E(Gn)| P→ 0. The result follows directly from Corollary 2.2.

3.2.2. 1
c · |E(Gn)| P→ ∞. It follows from the proof of Theorem 2.1 that E(N2

n|Gn)/E(Nn|Gn)2 →
1. This implies that Nn/E(Nn|Gn) converges in probability to 1, and so Nn converges to ∞ in

probability, as E(Nn|Gn) = 1
c · |E(Gn)| P→∞.

3.2.3. 1
c ·|E(Gn)| D→ Z, where Z is some random variable. In this regime the limiting distribution of

N(Gn) is a mixture of Poisson. As the Poisson distribution can be uniquely identified by moments,
from Lemma 3.4 it follows that conditional on {|E(Gn)|/c → λ}, N(Gn) converges to Poisson(λ)
for every λ > 0. However, this does not immediately imply the unconditional convergence of
N(Gn) to a mixture of Poisson. In fact, a technical result, detailed in Lemma 8.1, and convergence
of M(Gn) to a Poisson mixture is necessary to complete the proof.

To begin with, recall that a random variable X is a mixture of Poisson with mean Z, to be
denoted as Poisson(Z), if there exists a non-negative random variable Z such that

P(X = k) = E
(

1

k!
e−ZZk

)
.

The following lemma shows that M(Gn) converges to Poisson(Z) and satisfies the technical con-
dition needed to apply Lemma 8.1.
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Lemma 3.5. Let M(Gn) be as defined in (3.1) and 1
c · |E(Gn)| D→ Z. Then M(Gn)

D→ Poisson(Z),
and further for any ε > 0, t ∈ R,

lim sup
k→∞

lim sup
n→∞

P
(∣∣∣∣ tkk!

E(M(Gn)k|Gn)

∣∣∣∣ > ε

)
= 0.

Proof. For any t ∈ R, EeitM(Gn) = EE(eitM(Gn)|Gn) = E
(

1− 1
c + eit

c

)|E(Gn)|
= EZn, where Zn :=(

1− 1
c + eit

c

)|E(Gn)|
satisfies |Zn| ≤ 1. Since

logZn = |E(Gn)| log

(
1− 1

c
+
eit

c

)
= |E(Gn)|

(
eit − 1

c
+O

(
1

c2

))
D→ (eit − 1)Z,

by the dominated convergence theorem EeitM(Gn) = EZn → Ee(eit−1)Z , which can be easily checked
to be the generating function of a random variable with distribution Poisson(Z). Thus, it follows

that M(Gn)
D→ Poisson(Z).

Proceeding to check the second conclusion, recall the standard identity zk =
∑k

j=0 S(k, j)(z)j ,

where S(·, ·) are Stirling numbers of the second kind and (z)j = z(z − 1) · · · (z − j + 1). In the
above identity, setting z = M(Gn), taking expectation on both sides conditional on Gn, and using
the formula for the Binomial factorial moments,

E(M(Gn)k|Gn) =
k∑
j=0

S(k, j)(|E(Gn)|)jc−j .

The right hand side converges weakly to
∑k

j=0 S(k, j)Zj . This is the k-th mean of a Poisson random
variable with parameter Z. Using the formula for the Poisson moment generating function, for any
Z ≥ 0 and any t ∈ R we have

∞∑
k=0

tk

k!

k∑
j=0

S(k, j)Zj = eZ(e
t−1) <∞ =⇒ tk

k!

k∑
j=0

S(k, j)Zj
a.s.→ 0,

as k →∞. Thus, applying Fatou’s Lemma twice gives

lim sup
k→∞

lim sup
n→∞

P
(∣∣∣ tk
k!
E(M(Gn)k|Gn)

∣∣∣ > ε

)
≤ lim sup

k→∞
P

(∣∣∣ tk
k!

k∑
r=0

S(k, r)Zr
∣∣∣ > ε

)
= 0,

and so the proof of the lemma is complete. �

Now, take Un,k = E(N(Gn)k|Gn) and Vn,k = E(M(Gn)k|Gn), and observe that (8.1) and (8.2)
hold by Lemma 3.4 and Lemma 3.5, respectively. As M(Gn) converges to Poisson(Z), this implies
that N(Gn) converges to Poisson(Z), and the proof of Theorem 1.1 is completed.

Remark 3.4. Theorem 1.1 shows that the limiting distribution of the number of monochromatic
edges converges to a Poisson mixture. In fact, Poisson mixtures arise quite naturally in several
contexts. It is known that the Negative Binomial distribution is distributed as Poisson(Z), where
Z is a Gamma random variable with integer values for the shape parameter. Greenwood and Yule
[22] showed that certain empirical distributions of accidents are well-approximated by a Poisson
mixture. Le-Cam and Traxler [27] proved asymptotic properties of random variables distributed as
mixture of Poisson. Poisson mixtures are widely used in modeling count panel data (refer to the
recent paper of Burda et al. [7] and the references therein), and have appeared in other applied
problems as well [11].
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4. Examples: Applications of Theorem 1.1

In this section we apply Theorem 1.1 to different deterministic and random graph models, and
determine the specific nature of the limiting Poisson distribution.

Example 1. (Birthday Problem) When the underlying graph G is the complete graph Kn on n
vertices, the above coloring problem reduces to the well-known birthday problem. By replacing
the c colors by birthdays, each occurring with probability 1/c, the birthday problem can be seen
as coloring the vertices of a complete graph independently with c colors. The event that two
people share the same birthday is the event of having a monochromatic edge in the colored graph.
In birthday terms, P(N(Kn) = 0) is precisely the probability that no two people have the same
birthday. Theorem 1.1 says that under the uniform coloring for the complete graph P(N(Kn) =

0) ≈ e−n
2/2c. Therefore, the maximum n for which P(N(Kn) = 0) ≤ 1/2 is approximately 23,

whenever c = 365. This reconstructs the classical birthday problem which can also be easily proved
by elementary calculations. For a detailed discussion on the birthday problem and its various
generalizations and applications refer to [1, 5, 12, 13, 14] and the references therein.

Example 2. (Birthday Coincidences in the US Population) Consider the following question: What
is the chance that there are two people in the United States who (a) know each other, (b) have the
same birthday, (c) their fathers have the same birthday, (d) their grandfathers have the same birth-
day, and (e) their great grandfathers have the same birthdays. We will argue that this seemingly
impossible coincidence actually happens with almost absolute certainty.

The population of the US is about n=400 million and it is claimed that a typical person knows
about 600 people [21, 25]. If the network Gn of ‘who knows who’ is modeled as an Erdős-Renyi
graph, this gives p = 150 × 10−8 and E(|E(Gn)|) = 300 × 4 × 108 = 1.2 × 1011. The 4-fold
birthday coincidence amounts to c = (365)4 ‘colors’ and λ = E(N(Gn)) = E(|E(Gn)|)/c ≈ 6.76,
and using (2.1) the probability of a match is at least 1− 1

λ = 85%. Moreover, assuming the Poisson

approximation, the chance of a match is approximately 1− e−λ ≈ 99.8%, which means that almost
surely there are two friends in the US who have a 4-fold birthday match among their ancestors.

Going back one more generation, we now calculate the probability that there are two friends who
have a 5-fold birthday coincidence between their respective ancestors. This amounts to c = (365)5

and Poisson approximation shows that the chance of a match is approximately 1 − e−λ ≈ 1.8%.
This implies that even a miraculous 5-fold coincidence of birthdays is actually likely to happen
among the people of the US.

Example 3. (Random Regular Graphs) When Gn consists of the set all d-regular graphs on n
vertices and sampling is uniformly on this space, then under the uniform coloring distribution with
c→∞, Theorem 1.1 gives

P(N(Gn) = 0)→


1 if nd

c → 0,

0 if nd
c →∞,

e−b/2 if nd
c → b.

Example 4. (Sparse Inhomogeneous Random Graphs) A general model for sparse random graphs

is the following: every edge (i, j) is present independently with probability 1
n · f( in ,

j
n), for some

symmetric continuous function f : [0, 1]2 → [0, 1] (see Bollobas et al. [6]). Under the uniform
coloring distribution,

1

n
|E(Gn)| → 1

2

ˆ 1

0

ˆ 1

0
f(x, y)dxdy.
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Consequently, theorem 1.1 gives

P(N(Gn) = 0)→


1 if n

c → 0,
0 if n

c →∞,
e−(b/2)

´ 1
0

´ 1
0 f(x,y)dxdy if n

c → b.

Note that this model includes as a special case the Erdős-Renyi random graphs G(n, λ/n), by taking
the function f(x, y) = λ.

Example 5. (Dense graph limits) Limits of dense graphs was developed recently by Lovász and
co-authors [28], where a random graph sequence Gn converges in cut-metric to a random symmetric
measurable function W : [0, 1]2 7→ [0, 1]. Then

1

n2
|E(Gn)| → 1

2

ˆ 1

0

ˆ 1

0
W (x, y)dxdy.

Thus whenever c→∞, by Theorem 1.1 we have:

P(N(Gn) = 0)→


1 if n2

c → 0,

0 if n2

c →∞,
E(e−(b/2)

´ 1
0

´ 1
0 W (x,y)dxdy) if n2

c → b.

Thus the result holds irrespective of the specific model on random graphs, as long as it converges
in the sense of the cut metric. In particular, the result implies directly in the following examples:

• Inhomogenous random graphs: Let f : [0, 1]2 → [0, 1] be a symmetric continuous function.

Consider the random graph model where and edge (i, j) is present with probability f( in ,
j
n)

and the uniform coloring distribution. Therefore, whenever c → ∞, by Theorem 1.1 we
have:

P(N(Gn) = 0)→


1 if n2

c → 0,

0 if n2

c →∞,
e−(b/2)

´ 1
0

´ 1
0 f(x,y)dxdy if n2

c → b.

Note that this model includes as a special case the Erdős-Renyi random graphs G(n, p), by
taking the function f(x, y) = p.

• Graph Limits: Let {Ui}ni=1
i.i.d.∼ U(0, 1), and let f be a symmetric continuous function, and

consider the random graph model where given U the edges are mutually independent, with
an edge (i, j) being present with probability f(Ui, Uj). These random graphs also converge
to f in probability with respect to the cut metric, and consequently the same conclusions
as in the inhomogeneous random graph model hold in this case. Refer to Lovász’s recent
book [28] for a complete description of the theory of graph limits.

Example 6. (Galton-Watson Trees) Let Gn be a Galton-Watson tree truncated at height n, and
let ξ denote a generic random variable from the off-spring distribution. Assume further that µ :=
Eξ > 1. This ensures that the total progeny up to time n (which is also the number of edges in
Gn) grows with n. Letting {Zi}∞i=0 denote the size of the i-th generation, the total progeny up to
time n is Yn :=

∑n
i=0 Zi. Assuming that the population starts with one off-spring at time 0, that

is, Z0 ≡ 1, Zn/µ
n is a non-negative martingale ([16, Lemma 4.3.6]). It converges almost surely to a

finite valued random variable Z∞, by [16, Theorem 4.2.9], which readily implies Yn/µ
n+1 converges
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almost surely to Z∞/(µ− 1). Thus, Theorem 1.1 gives

P(N(Gn) = 0)→


1 if µn

c → 0,

0 if µn

c →∞,
Ee−

bµ
µ−1
·Z∞ if µn

c → b.

Note in passing that Z∞ ≡ 0 if and only if E(ξ log ξ) = ∞ ([16, Theorem 4.3.10]). Thus, to get a
nontrivial limit the necessary and sufficient condition is E(ξ log ξ) <∞.

5. Connections to Extremal Graph Theory

In the method of moment calculations of Lemma 3.1, we encounter the quantity N(G,H), the
number of isomorphic copies of H in G. More formally, given two graphs G = (V (G), E(G)) and
H = (V (H), E(H)),

N(G,H) :=
∑

S⊂E(G):|S|=|E(H)|

111{G[S] = H},

where the sum is over subsets S of E(G) with |S| = |E(H)|, and G[S] is the subgraph of G induced
by the edges of S.

For a positive integer ` ≥ |E(H)|, define N(`,H) := supG:|E(G)|=`N(G,H). For the complete

graph Kh, Erdős [17] determined N(`,Kh), which is also a special case of the Kruskal-Katona
theorem, and posed the problem of estimating N(`,H) for other graphs H. This was addressed
by Alon [2] in 1981 in his first published paper. Alon studied the asymptotic behavior of N(`,H)
for fixed H, as ` tends to infinity. He identified the correct order of N(`,H), for every fixed H, by
proving that:

Theorem 5.1 (Alon [2]). For a fixed graph H, there exists two positive constants c1 = c1(H) and
c2 = c2(H) such that for all ` ≥ |E(H)|,

c1`
γ(H) ≤ N(`,H) ≤ c2`γ(H), (5.1)

where γ(H) = 1
2(|V (H)|+ δ(H)), and δ(H) = max{|S| − |NH(S)| : S ⊂ V (H)}.

Friedgut and Kahn [19] extended this result to hypergraphs, and identified the correct exponent
γ(H) as the fractional stable number of the hypergraph H. Using the above theorem or the
definition of γ(H) it is easy to show that γ(H) ≤ |E(H)|, and the equality holds if and only if H
is a disjoint union of stars (Theorem 1, Alon [3]). The following corollary gives a sharpening of
Theorem 1 of [3]:

Corollary 5.2. For every graph H,

γ(H) ≤ |V (H)| − ν(H),

where ν(H) is the number of connected components of H. Moreover, the equality holds if and only
if H is a disjoint union of stars.

Proof. Suppose H1, H2, . . . ,Hν(H) are the connected components of H. Fix i ∈ {1, 2, . . . , ν(H)}.
Since Hi is connected, for every S ⊂ V (Hi), |S| − |NHi(S)| ≤ |V (Hi)| − 2. This implies that

δ(H) =
∑ν(H)

i=1 δ(Hi) ≤ |V (H)| − 2ν(H), and γ(H) ≤ |V (H)| − ν(H).
Now, if H is a disjoint union of stars with ν(H) connected components, then by Theorem 1 of

Alon [3], γ(H) = |E(H)| = |V (H)| − ν(H).
Conversely, suppose that γ(H) = |V (H)| − ν(H). If H has a cycle of length g ≥ 3, then from

(3.8) and Theorem 5.1 γ(H) ≤ |V (H)| − ν(H) + 1 − g/2 < |V (H)| − ν(H). Therefore, H has no
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cycle, that is, it is a disjoint union of trees. This implies that γ(H) = |V (H)| − ν(H) = |E(H)|,
and from Theorem 1 of Alon [3], H is a disjoint union of stars. �

5.1. Another Proof of Theorem 1.1 Without Lemma 3.1. Theorem 5.1 and Corollary 5.2
give a direct proof of Lemma 3.4, which does not require the subgraph counting Lemma 3.1.

With M(Gn) and N(Gn) be as defined before, and |E(Gn)|/c D→ Z, for every fixed k ≥ 1,

|E(N(Gn)k|Gn)−E(M(Gn)k|Gn)| .k
∑

H∈Hk,
H has a cycle

N(Gn, H)· 1

c|V (H)|−ν(H)
.k

∑
H∈Hk,

H has a cycle

· E(Gn)γ(H)

c|V (H)|−ν(H)
,

where the last inequality follows from Theorem 5.1. As the sum is over all graphs H which are not
a forest, it follows from Corollary 5.2 that γ(H) < |V (H)| − ν(H). Therefore, every term in the
sum goes to zero as n→∞, and, since H ∈ Hk is a finite sum, Lemma 3.4 follows.

5.2. A New Proof of Theorem 1.3 Using Lemma 3.2. This section gives a short proof of
Theorem 1.3 using Lemma 3.2. The proof uses spectral techniques and is quite different from the
proof in Alon [2].

5.2.1. Proof of Theorem 1.3. Let F be the spanning subgraph H, and let F1, F2, . . . , Fq, be the
connected components of F , where each Fi is a cycle or an isolated edge, for i ∈ {1, 2, . . . , q}.
Consider the following two cases:

Case 1: Fi is an isolated edge. Then for any graph G with |E(G)| = `,

N(G,Fi) = ` =
1

|Aut(Fi)|
· (2`)|V (Fi)|/2. (5.2)

Case 2: Fi is a cycle of length g ≥ 3. Then by Lemma 3.2

N(G,Fi) ≤
1

2g
· (2`)g/2 =

1

|Aut(Fi)|
· (2`)|V (Fi)|/2, (5.3)

for any graph G with |E(G)| = `.

Now, (5.2) and (5.3) implies that

N(G,F ) ≤
q∏
i=1

N(G,Fi) ≤
1∏q

i=1 |Aut(Fi)|
· (2`)|V (H)|/2 =

1

|Aut(F )|
· (2`)|V (H)|/2, (5.4)

for all graphs G with |E(G)| = `.
Let v = |V (H)| = |V (F )| and define x(H,F ) to be the number of subgraphs of Kv, isomorphic

to H, that contain a fixed copy of F in Kv. Given a graph G with |E(G)| = `, every F in G can
be completed (by adding edges) to an H in G, in at most x(H,F ) ways, and in this fashion each
H in G is obtained exactly N(H,F ) times (see [2, Lemma 3]). This implies that

N(`,H) ≤ x(H,F )

N(H,F )
N(`, F ) (5.5)

Similarly, N(Kv, H) = x(H,F )
N(H,F )N(Kv, F ) (see [2, Lemma 6]) and it follows from (5.5) that,

N(`,H) ≤ N(Kv, H)

N(Kv, F )
N(`, F ) =

|Aut(F )|
|Aut(H)|

N(`, F ) ≤ 1

|Aut(H)|
(2`)|V (H)|/2, (5.6)

where the last inequality follows from (5.4).
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For the lower bound, let s = b
√

2`c and note that,

N(`,H) ≥ N(Ks, H) =

(
s

|V (H)|

)
N(K|V (H)|, H)

=
s|V (H)| +O(s|V (H)|−1)

|V (H)|!
N(K|V (H)|, H)

=
(2`)|V (H)|/2

|Aut(H)|
+O(`|V (H)|/2−1/2),

thus completing the proof. 2

Remark 5.1. Theorem 1.3 calculates N(`,H) asymptotically exactly, whenever H has a spanning
subgraph which is a disjoint union of cycles or isolated edges. The proof also shows that if H is
such a graph then the bound is asymptotically attained by a complete graph, that is, the complete
graph maximizes the number of H-subgraphs over the set of all graphs with fixed number of edges.
However, this is not true for general subgraphs. For example, if the number of edges is `, a complete
graph with

√
2` vertices has O(`3/2) 2-stars, whereas an (` − 1)-star has O(`2) 2-stars. Thus, a

complete graph does not maximize the number of 2-stars for a fixed number of edges. In fact, Alon
[3] showed that lim`→∞N(`,H)/`|V (H)| is finite, and it is non-zero if and only if H is a disjoint
union of stars. Moreover, he determined N(`,H) precisely when H is a disjoint union of 2-stars,
and also for some other special types of stars.

6. Universal Normal Approximation For Uniform Colorings

Theorem 1.1 says that if 1
c |E(Gn)| P→ ∞, then N(Gn) converges to infinity as well. Since a

Poisson random variable with mean growing to ∞ converges to a standard normal distribution
after standardizing (centering by mean and scaling by standard deviation), one possible question of
interest is whether N(Gn) properly standardized converges to a standard normal distribution. Such
a limit theorem can be proved using a direct application of Stein method based on exchangeable
pairs [33, Theorem 1]. However, as before, it turns out that even under the uniform coloring scheme
an extra condition is needed on the structure of the graph for applying it. Nevertheless, as in the
Poisson limit theorem of the previous section, the normality of the standardized random variable
N(Gn) is universal and can be proved by a method of moments argument.

This section proves that N(Gn) properly standardized converges to a standard normal whenever
both c and |E(Gn)|/c goes to infinity. The calculation of moments in this regime require extensions
of Alon’s results to multi-graphs and more insights about the exponent γ(H).

6.1. Proof of Theorem 1.2. Let Gn ∈ Gn be a random graph sampled according to some proba-
bility distribution. This section proves a universal normal limit theorem for

Zn :=

(
|E(Gn)|

c

)− 1
2 ∑
(i,j)∈E(Gn)

{
111{Yi = Yj} −

1

c

}
=

(
|E(Gn)|

c

)− 1
2
(
N(Gn)− E(Gn)

c

)
.

Associated with every edge of Gn define the collection of random variables {Xij , (i, j) ∈ E(Gn)},
where Xij are i.i.d. Ber(1/c), and set

Wn :=

(
|E(Gn)|

c

)− 1
2 ∑
(i,j)∈E(Gn)

{
Xij −

1

c

}
=

(
|E(Gn)|

c

)− 1
2
(
M(Gn)− E(Gn)

c

)
.
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6.1.1. Comparing Conditional Moments. Begin with two lemmas which will be used to compare
the conditional moment of Zn and Wn. However, unlike in previous sections, non-simple graphs
are needed. To this end, define a multi-graph G = (V,E) to be graph where multiple edges are
allowed but there are no self loops. For a multi-graph G denote by GS the simple graph obtained
from G by removing all multiple edges. A multi-graph H is said to be a multi-subgraph of G if the
simple graph HS is a subgraph of G.

Observation 6.1. Let H = (V (H), E(H)) be a multigraph with no isolated vertices. Let F be a
multigraph obtained by removing one edge from H and removing all isolated vertices formed. Then
|V (F )| − ν(F ) ≥ |V (H)| − ν(H)− 1.

Proof. Observe that ν(F ) ≤ ν(H) + 1 and |V (H)| − 2 ≤ |V (F )| ≤ |V (H)|. If |V (F )| = |V (H)| the
result is immediate. Now, if |V (F )| = |V (H)| − 1, then the vertex removed must have degree 1
and so ν(F ) = ν(H), and the inequality still holds. Finally, if ν(F ) = ν(H)− 2, the edge removed
must be an isolated edge, in which case the number of vertices decrease by 2 and the number of
connected components decrease by 1 and the result holds. �

The above observation helps determine the leading order of the expected central moments for
multi-subgraph of Gn.

Lemma 6.1. For any multi-subgraph H = (V (H), E(H)) of Gn define

Z(H) =
∏

(i,j)∈E(H)

{
111{Yi = Yj} −

1

c

}
, and X(H) =

∏
(i,j)∈E(H)

{
Xij −

1

c

}
.

Then E(Z(H)) .H 1
c|V (H)|−ν(H) and E(X(H)) .H 1

c|E(HS)| .

Proof. By expanding out the product,

Z(H) =

|E(H)|∑
b=0

(−1)b

cb

∑
(is,js)∈E(H),
s∈[|E(H)|−b]

|E(H)|−b∏
s=1

111{Yis = Yjs}, (6.1)

where the second sum is over all possible choices of |E(H)|−b distinct multi-edges (i1, j1), (i2, j2) . . .
(i|E(H)|−b, j|E(H)|−b) from the multiset E(H).

Let F be the subgraph of H formed by (i1, j1), (i2, j2) . . . (i|E(H)|−b, j|E(H)|−b). Then by Obser-
vation 6.1, |V (F )| − ν(F ) ≥ |V (H)| − ν(H)− b, and

1

cb
E

|E(H)|−b∏
s=1

111{Yis = Yjs}

 =
1

c|V (F )|−ν(F )+b
≤ 1

c|V (H)|−ν(H)
. (6.2)

As the number of terms in (6.1) depends only on H, and for every term (6.2) holds, the result
follows.

The result for X(H) follows similarly. The leading order of the expectation comes from the first
term

E

 ∏
(i,j)∈E(H)

Xij

 =
1

c|E(HS)|
,

and the number of terms depends only on H. �
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The quantity γ(H) was defined for a simple graph by Alon [2]. Friedgut and Kahn [19] showed
that γ(H) is the fractional stable number of H, which is the solution of a linear programming
problem. Using this alternative definition, we can define γ(H) for any multigraph as follows:

γ(H) = arg max
φ∈VH [0,1]

∑
v∈V (H)

φ(v) subject to φ(x) + φ(y) ≤ 1 for (x, y) ∈ E(H),

where VH [0, 1] is the collection of all functions φ : V (H) → [0, 1]. It is clear that γ(H) = γ(HS).
The polytope defined by the constraint set of this linear program is called the fractional stable set
polytope which is a well studied object in combinatorial optimization [30]. With this definition, we
now have the following lemma:

Lemma 6.2. If for any multi-graph H = (V (H), E(H)) with no isolated vertices γ(H) > 1
2 |E(H)|,

then H has a vertex of degree 1. Moreover, if H is a multi-subgraph of Gn which has a vertex of
degree 1, then E(Z(H)|Gn) = E(X(H)|Gn) = 0.

Proof. Suppose that γ(H) > 1
2 |E(H)|, and dmin(H) ≥ 2. Then for any φ : V (H)→ [0, 1] such that

φ(x) + φ(y) ≤ 1 for (x, y) ∈ E(H),∑
x∈V (H)

φ(x) ≤ 1

dmin(H)

∑
(x,y)∈E(H)

{φ(x) + φ(y)} ≤ 1

2
|E(H)|,

which is a contradiction.
Now, without loss of generality assume that vertex 1 has degree 1. Suppose vertex s ∈ [n]\{1}

is the only neighbor of 1. Therefore,

E(Z(H)|Y1, Gn) =

(
E(111{Y1 = Ys}|Y1, Gn)− 1

c

) ∏
(i,j)∈E(H),
(i,j) 6=(1,s)

{
111{Yi = Yj} −

1

c

}
= 0,

which implies E(Z(H)|Gn) = 0. The result for X(H) can be proved similarly. �

With the above lemmas, the conditional moments of Zn and Wn can be compared. For a simple
graph G and a multigraph H define

M(G,H) =
∑

e1∈E(G)

∑
e2∈E(G)

· · ·
∑

e|E(H)|∈E(G)

111{G[e1, e2, . . . e|E(H)|] = H},

where G[e1, e2, . . . e|E(H)|] is the multi-subgraph of G formed by the edges e1, e2, . . . , e|E(H)|. It is
easy to see that M(G,H) .H N(G,HS).

Lemma 6.3. Let Wn and Zn be as defined before, with c→∞ and |E(Gn)|/c P→∞, then for every
fixed k ≥ 1 we have

|E(Zkn|Gn)− E(W k
n |Gn)| P→ 0.

Proof. Let Mk be the set of all multi-graphs with exactly k multi edges and dmin(H) ≥ 2. Note
that by Lemma 6.2 any H ∈Mk must satisfy γ(H) ≤ E(H)/2. Expanding the product and using
Lemma 6.2,

E(Zkn|Gn) =

(
|E(Gn)|

c

)− k
2 ∑
H∈Mk

M(Gn, H) · E(Z(H)), (6.3)
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By similar argument with Zn replaced by Xn,

E(W k
n |Gn) =

(
|E(Gn)|

c

)− k
2 ∑
H∈Mk

M(Gn, H) · E(X(H)), (6.4)

Now, let Sk ⊂ Mk be the set of all multi-graphs H with dmin(H) ≥ 2, |E(H)| = k and γ(H) =
|E(H)|/2 = |V (H)| − ν(H)}. Let ω = |E(Gn)|/c. Now by Lemma 6.1 and Theorem 5.1, for any
H ∈Mk\Sk,(

|E(Gn)|
c

)− |E(H)|
2

M(Gn, H) · E(Z(H)) .H

(
|E(Gn)|

c

)− |E(H)|
2 N(Gn, HS)

c|V (H)|−ν(H)

.H
|E(Gn)|γ(H)− 1

2
|E(H)|

c|V (H)|−ν(H)− 1
2
|E(H)|

.H
ωγ(H)− 1

2
|E(H)|

c|V (H)|−ν(H)−γ(H)
→ 0, (6.5)

Similarly, for H ∈Mk\Sk,(
|E(Gn)|

c

)− |E(H)|
2

M(Gn, H) · E(X(H)) .H

(
|E(Gn)|

c

)− |E(H)|
2 N(Gn, HS)

c|E(HS)|

.H

(
|E(Gn)|

c

)− |E(H)|
2 N(Gn, HS)

c|V (H)|−ν(H)
→ 0. (6.6)

The limits in (6.5) and (6.6), together with Equations (6.3) and (6.4) give

lim
n→∞

|E(Zkn|Gn)− E(W k
n |Gn)| ≤ lim

n→∞

(
|E(Gn)|

c

)− k
2 ∑
H∈Sk

M(Gn, H) · |E(Z(H))− E(X(H))|.

(6.7)

Therefore, only multi-subgraphs of Gn which are in Sk need to considered. As

γ(HS) = γ(H) = |V (H)| − ν(H) = |V (HS)| − ν(HS),

HS is a disjoint union of stars by Corollary 5.2. Therefore

|E(HS)| = |V (HS)| − ν(HS) = |V (H)| − ν(H) = |E(H)|/2.

This, along with the fact that H cannot have any vertex of degree 1 gives that any H ∈ Sk is a
disjoint union of stars, where every edge is repeated twice. Now, it is easy to see that for any such
graph H, E(Z(H)) = E(X(H)), and the result follows from (6.7). �

6.1.2. Completing the Proof of Theorem 1.2. To complete the proof of the normal approximation
the following lemma, which shows that Wn satisfies the conditions required in Lemma 8.1, is needed.

Lemma 6.4. Let Wn be as defined before. Then Wn
D→ N(0, 1), and further for any ε > 0, t ∈ R,

lim sup
k→∞

lim sup
n→∞

P
(∣∣∣∣ tkk!

E(W k
n |Gn)

∣∣∣∣ > ε

)
= 0. (6.8)

2
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Proof. To prove the first conclusion, let

Tn :=
M(Gn)− |E(Gn)|

c√
|E(Gn)|

c − |E(Gn)|
c2

.

By the Berry-Esseen theorem and the dominated convergence theorem it follows that Tn converges

to N(0, 1). Moreover, Wn − Tn
P→ 0, which implies Wn converges to N(0, 1) by Slutsky’s theorem.

To prove the second conclusion, it suffices to show that for any ε > 0, k ≥ 1,

lim sup
n→∞

P(|E(W k
n |Gn)| > µk + ε) = 0, (6.9)

where µk = E(Zk) and Z is a standard normal random variable. This is because Ee|t|Z < ∞ for
any t, so (6.8) follows by applying Fatou’s lemma twice as in the proof of Lemma 3.5.

To prove (6.9), note from the proof of Lemma 6.3 that E(W k
n |Gn) = oP (1) for odd k. Therefore,

assume that k = 2m is even. Recall that S2m is the number of multi-subgraphs of Gn with m
double edges, where the underlying simple graph is a disjoint union of stars. Denote by A2m the
collection of all multi-subgraphs of Gn with m double edges. Note that∑

H∈S2m

M(Gn, H) ≤
∑

H∈A2m

M(Gn, H) ≤
(
|E(Gn)|
m

)
(2m)!

2m
,

where in the last step we use the fact that any such graph in A2m can be produced by choosing
m out of the |E(Gn)| edges and then permuting the 2m edges (each chosen edge doubled) within
themselves. Therefore, from the proof of Lemma 6.3

E(W 2m
n |Gn) =

(
|E(Gn)|

c

)−m ∑
H∈S2m

M(Gn, H) · E(X(H)) + oP (1)

=

∑
H∈S2m

M(Gn, H)

|E(Gn)|m

(
1− 1

c

)m
+ oP (1)

≤
(
|E(Gn)|
m

)
(2m)!

2m
1

|E(Gn)|m

(
1− 1

c

)m
+ oP (1)

≤ (2m)!

2mm!
+ oP (1),

which establishes (6.9), hence completing the proof of Lemma 6.4. �

Remark 6.1. Lemma 6.2 implies that a graph H has a vertex of degree 1, whenever γ(H) >
|E(H)|/2. In fact, this result is tight, that is, there are graphs, like the cycle Cg or the complete
bipartite graph K2,s, with γ(H) = |E(H)|/2 and no isolated vertices. Even though this result
can be proved easily from definitions, it plays a crucial part in our proof of Theorem 1.2. As the
number of copies of H in Gn is small whenever γ(H) < |E(H)|/2, these graphs asymptotically do
not contribute to the expectation. The fact that γ(H) > 1

2 |E(H)|, implies that H has a vertex
of degree 1 ensures that the expected central moments Z(H) vanish. Therefore, the only graphs
that contribute in the moments are those where γ(H) = |E(H)|/2. That the threshold |E(H)|/2,
which is obtained from probabilistic calculations, is also the threshold where graphs have degree 1
vertices is a fortunate coincidence which illustrates a nice interplay between probability and graph
theory in this problem.
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6.2. Non-Normal Limit for Fixed Colors. The assumption that the number of colors c goes
to infinity is essential for the normality in Theorem 1.2. If |E(Gn)|/c goes to infinity and c is
fixed, then the limiting distribution of the number of monochromatic edges might not be normal,
as demonstrated in the following proposition:

Proposition 6.1. For c fixed and the uniform coloring distribution, the number of monochromatic
edges N(Gn) of the complete graph Kn satisfies:

1

n

(
N(Kn)− c

(
n/c

2

))
D→ χ2

(c−1).

Proof. For a ∈ [q], define Xa be the number of vertices of Kn with color a. Then for X =
(X1, X2, . . . , Xq) and p = (1/c, 1/c, . . . , 1/c),

X ∼ Mutlinomial
(
n, p
)
, and n−

1
2
(
X − np

) D→ N(0,Σ),

as n→∞, where Σ = 1
c I−

1
c2

111111′. This implies that n−1(X−np)′(X−np) D→ χ2
(c−1), as rank(Σ) =

c− 1.
Now, by a second order Taylor series expansion, the number of monochromatic edges of Kn is

N(Kn) =
c∑

a=1

(
Xa

2

)
= c

(
n/c

2

)
+

c∑
a=1

(Xa − n/c)2 + oP (n),

and the result follows. �

7. Extremal Examples: Stars and Cycles

Example 1 of Cerquetti and Fortini [9] shows that the conditions in Theorem 2.1 cannot be
entirely relaxed for general non-uniform coloring distributions, that is, that there exists a graph
and a distribution p = (p1, · · · , pc), with c = |E(Gn)|, which do not satisfy the conditions of
Theorem 2.1 and N(Gn) does not converge to a mixture of Poisson. This example indicates that
universality cannot be extended very much beyond the uniform coloring distribution.

Another relevant question is whether it is possible to expect a similar Poisson universality result
for other subgraphs, under uniform coloring scheme? This section begins by proving Proposition
1.4 which shows that we may not get Poisson mixtures in the limit while counting monochromatic
r-stars, in a uniform c-coloring of an n-star.

7.1. Monochromatic Stars. Consider the (n− 1)-star, K1,n−1 with vertices labelled by [n], with
the central vertex labeled 1. Color the vertices of K1,n−1, uniformly from [c], independent from
other vertices. Consider the limiting distribution of the number of monochromatic r-stars K1,r−1
generated by this random coloring, where r is a fixed constant. If Yi denotes the color of the vertex
i, the random variable is

Tr,n =
∑

S⊆[n]\{1}
|S|=r−1

∏
j∈S
{{{Y1 = Yj}.

Proposition 1.4 shows that the limiting behavior of Tr,n cannot converge to a mixture of Poissons.
This illustrates that the phenomenon of universality of the Poisson approximation that holds for
the number of monochromatic edges, does not extend to arbitrary subgraphs. In particular, it is
not even true for the 2-star, which is the simplest extension of an edge.
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7.1.1. Proof of Proposition 1.4. Note that if the number of monochromatic edges in Gn = K1,n−1
is N(Gn), then

Tr,n
D
=

(
N(Gn)

r

)
.

If n/c→ 0, then from Theorem 1.1 N(Gn)
P→ 0 and so Tr,n

P→ 0. Similarly, if n/c→∞, Tr,n
P→∞.

Finally, if n
c → λ, the number of monochromatic edges N(Gn) in K1,n−1 converges to X ∼

Poisson(λ), by Theorem 1.1. This implies that

Tr,n
D
=

(
N(Gn)

r

)
D→
(
X

r

)
=
X(X − 1) · · · (X − r + 1)

r!
.

This random variable does not assign positive masses at all non-negative integers, and so it cannot
be a mixture of Poisson variates.
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Figure 1. (a) The graph G5,3,3, and (b) the graph G5,2,5

7.2. Monochromatic Cycles. Recall that the number of monochromatic edges N(Gn) converges
to Poisson(λ) whenever |E(Gn)|/c→ λ. The limiting distribution of the number of edges can only
be a non-trivial mixture of Poissons when E(Gn)|/c→ Z, and Z has a non-degenerate distribution.
We now construct a graph Gn where the number of monochromatic g-cycles in a uniform c-coloring
of Gn converges in distribution to non-trivial mixture of Poissons even when |N(Gn, Cg)|/cg−1
converges to a fixed number λ. This phenomenon, which cannot happen in the case of edges, makes
the problem of finding the limiting distribution of the number of monochromatic cycles, much more
challenging.

For a, b positive integers and g ≥ 3, define a graph Ga,b,g as follows: Let

V (Ga,b,g) = {v1, v2, . . . va+1}
a⋃
i=1

b⋃
j=1

{vijk : k ∈ {1, 2, . . . g − 2}}.

The edges are such that vertices v1, v2, . . . va+1 form a path of length a, and for every i ∈ [a] and
j ∈ [b], vi, vij1, vij2, . . . vijg−2, vi+1 form a cycle of length g (Figure 1 shows the structure of graphs
G5,3,3 and G5,2,5, and the corresponding vertex labelings.). Note that graph Ga,b,g has b(g−2)+a+1
vertices, b(g − 1) + a edges, and ab cycles of length g.

We consider a uniform c-coloring of the vertices of Ga,b,g and count the number of monochromatic
g-cycles. Let Yi be the color of the vertex vi and Yijk the color of the vertex vijk, for i ∈ [a] and
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j ∈ [b]. The random variable

Za,b,g := Z(Ga,b,g) :=
a∑
i=1

b∑
j=1

g−2∏
k=1

111{Yi = Yi+1 = Yijk},

which counts the number of monochromatic g-cycles in the graph Ga,b,g. The following proposition
shows that there exists a choice of parameters a, b, c such that |N(Gn, Cg)|/cg−1 → λ and Za,b,g
converges in distribution to a non-trivial mixture of Poissons.

Proposition 7.1. For a = λn and b = ng−2 and c = n, Za,b,g
D→ Poisson(W ), where W ∼

Poisson(λ).

Proof. Let Y = (Y1, Y2, · · ·Ya+1) and note that

g−2∏
k=1

111{Yi = Yi+1 = Yijk}
∣∣∣Y ∼ Ber(1/cg−2) and

b∑
j=1

g−2∏
kj=1

111{Yi = Yi+1 = Yijk}
∣∣∣Y ∼ Bin(b, 1/cg−2).

This implies that

E
(
eitZa,b,g

)
= E

(
a∏
i=1

E
(
eit
∑b
j=1

∏g−2
k=1 111{Yi=Yi+1=Yijk}

∣∣∣Y )) = E
(

1− 1

cg−2
+

eit

cg−2

)bNa
, (7.1)

where Na =
∑a

i=1 111{Yi = Yi+1}, is number of monochromatic edges in the path v1, v2, . . . , va+1.

Substituting a = λn := an and b = ng−2 := bn and c = n := cn, we have N(G,Cg)/c
g−1
n =

anbn/cn = λ. With this choice an, bn, cn, we have by Theorem 1.1, Nan converges in distribution
to W := Poisson(λ), as an/cn = λ. Therefore,(

1− 1

cg−2n

+
eit

cg−2n

)bnNan
= e

bnNan log

(
1− 1

c
g−2
n

+ eit

c
g−2
n

)
D→ e(e

it−1)W .

As |eitZan,bn,g | ≤ 1, from (7.1) and the dominated convergence theorem we have

E
(
eitZan,bn,g

) D→ E
(
e(e

it−1)W
)
,

which the characteristic function of Poisson(W ), where W ∼ Poisson(λ). �

Remark 7.1. We were unable to construct an example of a graph for which the number of
monochromatic triangles converges to some distribution which is not a mixture of Poissons, when
N(Gn, C3)/c

2 → λ. The above construction and the inability to construct any counterexamples,
even for triangles, lead us to believe that some kind of Poisson universality holds for cycles as well.
More formally, we conjecture that the number of monochromatic g-cycles in a uniform random
coloring of any graph sequence Gn converges in distribution to a random variable which is mixture
of Poissons, whenever |N(Gn, Cg)|/cg−1 → λ, for some fixed λ > 0.
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8. Appendix: Conditional Convergence to Unconditional Convergence

There are many conditions on modes on convergence which ensure the convergence of a sequence
of joint distributions when it is known that the associated sequence of marginal and conditional
distributions converge [31, 34]. This section gives a proof of a technical lemma which allows
conclusions about the limiting distribution of a random variable from its conditional moments.
The lemma is used twice in the paper in the final steps of our proofs of the universal Poisson and
the Normal limit theorems.

Lemma 8.1. Let (Ωn,Fn,Pn) be a sequence of probability spaces, and let Gn ⊂ Fn be a sequence
of sub sigma fields. Also let (Xn, Yn) be a sequence of random variables on (Ωn,Fn), and assume
that for any k ≥ 1 the conditional expectations Un,k := E(Xk

n|Gn), Vn,k := E(Y k
n |Gn) exist as finite

random variables. Suppose the following two conditions hold:

lim sup
n→∞

P(|Un,k − Vn,k| > ε) = 0, (8.1)

lim sup
k→∞

lim sup
n→∞

P
(∣∣∣∣ tkk!

Un,k

∣∣∣∣ > ε

)
= 0. (8.2)

Then for any t ∈ R we have EeitXn − EeitYn → 0.

Proof. Without loss of generality assume t 6= 0. Note that

P
(∣∣∣∣ tkk!

Vn,k

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣ tkk!
Un,k

∣∣∣∣ > ε

2

)
+ P

(
|Un,k − Vn,k| >

εk!

2|t|k

)
.

Taking limits as n→∞, and using (8.1) and (8.2), it follows that

lim sup
k→∞

lim sup
n→∞

P
(∣∣∣∣ tkk!

Vn,k

∣∣∣∣ > ε

)
= 0. (8.3)

By a Taylor’s series expansion, for any k ∈ N,
∣∣∣eit −∑k−1

r=0
(it)r

r!

∣∣∣ ≤ tk

k! , and so

|E(eitXn |Gn)− E(eitYn |Gn)| ≤
k−1∑
r=0

|t|r

r!
|Un,r − Vn,r|+

|t|k

k!
Un,k +

|t|k

k!
Vn,k. (8.4)

From (8.4) and taking limits as n → ∞ followed by k → ∞, using (8.1), (8.2) and (8.3) gives
lim supn→∞ P(|E(eitXn |Gn) − E(eitYn |Gn)| > ε) = 0. This implies that |E(eitXn |Gn) − E(eitYn |Gn)|
converges to 0 in probability. Since |E(eitXn |Gn) − E(eitYn |Gn)| is also bounded by 2 in absolute
value, dominated convergence gives

lim
n→∞

E(eitXn)− E(eitYn) = 0,

thus completing the proof of Lemma 8.1. �
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Remark 8.1. As mentioned earlier, the reason for Lemma 8.1 is that separate convergences of the
conditional distribution and the marginal distribution do not in general, imply the unconditional
convergence. Consider the following example: Let cn ↓ 0 be a sequence of constants with ncn → 0.
Define

Kn(x, ·) =

{
δδδcnx if x > 0,

1 if x = 0;
K(x, ·) =

{
δδδ0 if x > 0,
1 if x = 0.

It is easy to check that for all f ∈ C[0, 1], Kn(f) → K(f). However, if πn ∼ Uniform(0, 1/n),

then πn
P→ δδδ0 := π, but πnKn(f)→ f(0) and πK(f) = f(1). Some conditions like the weak-Feller

property of the kernel [26] or set-wise convergence of the marginals (via the Vitali-Hahn-Saks
theorem [29]) are required for joint convergence to be true. Nevertheless, in our case the proof
of the unconditional convergence follows without having to invoke any such general theorems as
sums of i.i.d. random variables can be dealt with directly, and exponential moments of Poisson and
Normal distributions are finite.
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