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This paper is concerned with the estimation of @ = E{r(Z)}, where Z is a random vector and the func-
tion values r(z) must be evaluated using simulation. Estimation problems of this form arise in the field
of Bayesian simulation, where Z represents the uncertain (input) parameters of a system and r(z) is the
expected performance of the system when Z = z. Our approach involves obtaining (possibly biased) simu-
lation estimates of the function values r(z) for a number of different values of z, and then using a (possibly
weighted) average of these estimates to estimate «. We start by considering the case where the chosen val-
ues of z are independent and identically distributed observations of the random vector Z (independent sam-
pling). We analyze the resulting estimator as the total computational effort ¢ grows and provide numerical
results. Then we show that improved convergence rates can be obtained through the use of techniques other
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1. INTRODUCTION

Consider the task of designing a manufacturing facility that can be modelled as a net-
work of queues. Suppose that each of the interarrival and processing time distributions
underlying the queueing network is assumed to be gamma. In this case, the network is
characterized (statistically) by a parameter vector 6 consisting of the scale and shape
parameters for each of the underlying distributions.
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39:2 S. Andradottir and P. W. Glynn

Let Cy(t) be the cost of running this facility over the time interval [0, {] under 6. If
the system is regenerative, then, in great generality, we have that

Colt)  EofY)
i Eolr}

where = denotes weak convergence and Ey{Y} and Ey{r} are, respectively, the ex-
pected total cost (associated with running the facility) and the expected total time du-
ration of a regenerative cycle under 6. The limit Fy{Y }/Ey¢{7} is, of course, the long-run
average cost per unit time associated with the facility having distributions determined
by 6.

It is frequently the case that the exact value of 6 is unknown prior to the operation of
the facility. However, historical and subjective information often exists, permitting one
to compute (using Bayesian methods) a (prior or posterior) distribution for 6. Given
such a Bayesian framework, it is natural to wish to compute the mean steady-state
cost, given by

ast — oo,

a = E{r(09)}, (1)

where r(0) = Eo{Y}/Ep{7} and the expectation appearing in equation (1) corresponds
to an integration with respect to the distribution for 6.

This paper is concerned with the efficient computation of expectations like that ap-
pearing in equation (1). More generally, we will be concerned with the efficient numer-
ical computation, via simulation, of expectations that can be expressed in the form:

a=E{r(2)}, (2)

where Z is a random vector taking values in a set Z and having distribution y, and
the function r(-) is evaluated using simulation. Note that our motivating example (1)
is precisely of this form, since the steady-state limit (6) is most naturally computed
via a steady-state simulation of the network associated with the parameter vector 6.
However, our problem formulation (2) is quite general, and is not restricted to regen-
erative systems. In fact, the use of Bayesian methods in a wide variety of stochastic
modeling environments leads naturally to problems of the form given in equation (2),
because it is typically the case that the performance measure r(-) of interest can not be
expressed in closed form, and can only be computed via a simulation of the underlying
system.

However, it should be pointed out that equation (2) also arises in other application
settings. For example, suppose that it is of interest to compute o« = E{g(P(t))}, where
P(t) is the price at time ¢ of a (derivative) option on some underlying security. The
theory of option pricing asserts that, under quite general conditions, the price P(t) can
be expressed as a conditional expectation under an “equivalent martingale measure”
in which the conditioning occurs with respect to the price X (¢) of the underlying asset
at time ¢, see for example Duffie (1996). Thus, g(P(t)) may be re-expressed in the form
r(X(t)). Of course, the function r(-) involves a conditional expectation that may be im-
possible to compute analytically. Repeated sampling under the equivalent martingale
measure offers the opportunity to compute r(-) via simulation. Thus, this problem is a
special case of our general framework (2).

Finally, note that the equality E{X} = E{E{X|Z}} implies that any estimation
problem of the form o« = E{X} can be converted into an estimation problem of the form
given in equation (2) by defining (Z) = E{X|Z}. In the simulation literature, condi-
tioning in this manner is generally used as a variance reduction technique, assuming
that the conditional expected values E{X|Z} can be computed exactly (or can be esti-
mated more efficiently than through straightforward simulation). For an overview of
the use of conditioning as a variance reduction technique, see for example Section 2.6
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of Bratley, Fox, and Schrage (1987), Section 11.6 of Law and Kelton (2000), and Section
V.4 of Asmussen and Glynn (2007).

For estimation problems of the form given in (2), it is natural to estimate « by gen-
erating observations 71, ..., Z,, of Z from p, using simulation to estimate r(Z;), where
i = 1,...,m, and finally averaging the m resulting estimates (possibly using differ-
ent weights on the various estimates). For more discussion of this (nested, two-level,
Bayesian) simulation approach, see for example Andradéttir and Bier (2000), Chick
(2006), Lee and Glynn (2003), Steckley and Henderson (2003), Sun, Apley, and Staum
(2011), Zouaoui and Wilson (2003), and the references therein. Recently, this simula-
tion approach has been used for various finance applications, see for example Broadie,
Du, and Moallemi (2011), Gordy and Juneja (2010), Lan, Nelson, and Staum (2010),
and references therein.

In this paper, we determine the asymptotic behavior of the resulting estimator of «
as the total available computational budget ¢ grows, with focus on situations where the
simulation estimates of the function values r(7,),...,7(Z,,) have some bias. Our mo-
tivation for allowing the estimates of the function values r(Z;),...,r(Z,,) to be biased
comes from quantile estimation problems and steady-state simulation problems (like
the one described at the beginning of this section) with uncertain input parameters.
We are particularly interested in determining the asymptotic convergence rate of the
resulting estimator, and in investigating when it is possible to achieve the fastest pos-
sible convergence rate ¢~!/? in the expended computational effort ¢ (this is the hoped
for convergence rate because we estimate r(Z7;),...,r(Z,,) via simulation). Our proof
approach will involve decomposing the error in our estimator into three components,
namely:

(i) the noise associated with estimating r(7),...,r(Z,,) via simulation;

(ii) the bias in the estimators of r(Z,),...,r(Z,,); and

(iii) the error associated with the uncertainty about the value of Z, which is addressed
by estimating « with a (possibly weighted) average of r(Z;),...,r(Z).

We will identify the rate of convergence of each error component. The overall conver-
gence rate will then be determined by the slowest of the convergence rates of the three
error components.

The remainder of this paper is organized as follows. In Section 2, we present heuris-
tic arguments that illustrate our main results. In Section 3, we consider independent
sampling where the quantities 7;,...,Z,, generated to estimate « are independent
and identically distributed (i.i.d.) observations of the random variable Z. Both theoret-
ical and numerical results about the asymptotic behavior of the resulting estimator are
provided. In Section 4, we show that improved convergence rates can be achieved (rel-
ative to independent sampling) by using other approaches (specifically quasi-random
numbers and Simpson’s rule) to generate 71, ..., Z,,. In Section 5, we present and an-
alyze a broad framework for estimating « via simulation that contains independent
sampling, quasi-random numbers, and Simpson’s rule as special cases. Finally, Sec-
tion 6 contains some concluding remarks. For related research on confidence interval
estimation, see for example Lan, Nelson, and Staum (2010) and references therein. An
earlier version of this paper can be found in Andradéttir and Glynn (2002).

Although the focus of this paper is on situations where the estimates of the values
of the function r are obtained using simulation, see Sections 3 and 4, it is also possible
to use other numerical integration techniques (besides simulation) to estimate the val-
ues of the function r. The techniques used in this paper can be used to consider such
approaches, but this is outside the scope of the present paper.
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394 S. Andradottir and P. W. Glynn

2. HEURISTIC ARGUMENTS

We want to estimate o = E{r(Z)}, where r(-) is smooth and must be estimated by sim-
ulation for any given realization of Z, and Z has distribution . In the great majority of
the applications we have in mind, the (outer) “integration” over Z is low-dimensional,
whereas the (inner) “integration” (i.e., number of random variables needed to estimate
r(+)) is high dimensional. Therefore, although we only consider doing the inner inte-
gration by (Monte Carlo) simulation, the outer integration can be done by Monte-Carlo
or non-Monte Carlo methods. A key methodological contribution of our paper is that
our theory shows that the low-dimensional integration over Z should be done by non-
Monte Carlo methods when the problem at hand is sufficiently smooth.

We start by considering the case where we use Monte Carlo to sample Z values
from p and 7(-) can be evaluated without error. Then we can compute « using the
unweighted estimator

m

1 oW
EZ;T(Zi) ~a+ pyEE

where o is the standard deviation of 7(Z) and W is a zero mean, unit variance normal
random variable.

Turning next to the case in which r(z) is to be estimated via a Monte Carlo estimator
7+(z), our estimator of « takes the form

A 1~

Q) = 1 ()
where ¢ denotes the available computer budget and ¢ denotes the computational effort
used to estimate r(Z;) for each i. We assume throughout that ¢ = m x ¢, so that the
computational effort involved in obtaining 71, ..., Z,, and other overhead is negligible
relative to the effort associated with generating the estimates #;(Z;) for i = 1,...,m.
The resulting dependence of the parameters m and ¢ on c is implicit in this “heuristic
arguments” section, but will be made explicit in the rigorous derivations in subsequent
sections. Suppose now that

o(2)G(2) , b(z)

£ e
for all z € Z, where G(-) is a mean zero, unit variance random field, independent of W,
with G(z) being independent of G(2’) for z # 2/, o(-) and b(-) are functions, and n < 1/2.
(Typically, n = 1/2. The possibility that n < 1/2 would arise, for example, when the

inner integration involves a stochastic differential equation, as in the finance setting;
see Duffie and Glynn (1995) for the appropriate convergence rates.) Then

1 m
e ;:b(Zi)

7(z) ~r(z) + 3)

m m

a(c)

oW oG b
ml/2  ml/2¢n * t’

¢

o+
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where b = E{b(Z)}, o%(:) = [¢(+)]?, and G is a zero mean, unit variance normal random
variable independent of W. If m is of the order c* and ¢ is of the order ¢!, then the
rate of convergence of &(c) is ¢=*, where

p=min(w/2,w/2 + (1 —w)n, (1 —w)y). 4

In the most common case, v = 1 and n = 1/2, so the minimum rate is p* = 1/3, which
is attained when w = 2/3.

We now consider the case where o = [r(2)f(z)dz, f is the density of Z and is as-
sumed to be known, the functions r, o, b, and f are smooth, and the outer integral is to
be evaluated using non-Monte Carlo methods. If we could evaluate r(-) without error,
we could compute the outer integral for « via a sum of the form

Zw /()

for some sequence of points (z1, ..., z,). The particular points zq,. .., z,, could depend
on m (as in a quadrature rule) or z1,..., 2, could be the first m points in an infinite
sequence (which would be more natural when one is sequentially refining the estimator
to achieve a given accuracy). The points 21, ..., z,, could be selected randomly (in which
case we would denote them typically by Zi,...,Z,,) or they could be selected non-
randomly. The “weights” w(z;) could be identically equal to 1/m or they could be non-
constant; when the weights are non-constant, they would typically depend on m.

Suppose that we know that for the particular non-Monte Carlo integration rule
(characterized by the weights and points) and for suitably “smooth” (or “regular”) in-
tegrands r(-) f(-), the estimate of « satisfies

Zw Zz) =a+ By,
=1

where E,, is the error. For quasi-random methods, the weights are 1/m and F,, is gen-
erally of order [logm]*/m?, where ¢, 3 € R*. For quadrature methods with r sufficiently
smooth, E,, would typically be of order 1/m?, where p € IR"; the weights would be of
order 1/m.

Turning next to the case in which r(z) is to be estimated via a Monte Carlo estimator
7+(z), our estimator takes the form

m
E w(z;) (i) f(20)-
=1

jo
©
R

z;wz:z (2:) Z’+t7zz;w +t72;wzl (z:) f ()
1= 1= 1=

%

1 | & b E
a+ FE,, + tTI Zw(zi)Qa’?(zi)f(zz)QG 4+ — 4 =

tY tY
i=1

G b

~ 2 )2 il
~ a+ E,, + mglw 1202 (2) f(2:) m1/2t’7+t’Y
b
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where E! is the error in the integration rule for b. (The approximation uses the fact
E! is always smaller than at least one of the terms preceding, so will never determine
the rate of convergence.)

So if we use quasi-random methods with m of the order ¢* and ¢ of the order ¢' %,
the weights are all equal to 1/m and we obtain that E,, is of order [log c]*/c*?, I,, is of
order 1/c*/2+(1=w)1and the final term in (5) is of order 1/c(!~*)7, Up to logarithmic
terms, the rate of convergence of &(c) equals ¢=*, where

p =min(ws,w/2 + (1 —w)n, (1 —w)y). (6)

In the classical case where 5 = 1, v = 1, and n = 1/2, the minimum rate is p* = 1/2
(up to logarithmic terms) if w = 1/2, so we get the canonical Monte Carlo rate of
convergence. Hence, we definitely do not want to sample the outer integral.

For a quadrature method with weights of order 1/m and rate of convergence 1/m?, if
m is of order c* and ¢ is of order ¢! =%, we have that E,, is of order 1/c*?, I,, is of order
1/cw/2+(=w)n and the final term in (5) is of order 1/c!=*)7, The rate of convergence of
a(c) is clearly given by ¢—?, where

p = min(wp,w/2 + (1 —w)n, (1 — w)7y). (7

(The previous case corresponds to p = 3 — € for all € > 0.) If p = 4 (for example), v =1,
and n = 1/2, the minimum rate is p* = 1/2 (with w between 1/8 and 1/2). Here, the rate
is faster by a logarithmic factor, and the range of good w values does not contract to
a single value (unlike the classical case considered in the previous paragraph, where
only w = 1/2 yielded the rate 1/2 up to logarithmic terms).

The above discussion of quasi-random and quadrature methods assumed that Z has
a known density f. If f is unknown, then quadrature rules cannot be used, but quasi-
random methods can be used to sample the outer integral. Under appropriate smooth-
ness assumptions, the rate of convergence for the known f case still applies, so again
it is better to use quasi-random numbers on the outer integral.

Note that the first, second, and third terms in equations (4), (6), and (7) correspond
to the error associated with the uncertainty about the value of Z, the noise associ-
ated with estimating (Z,),...,r(Z,,) via simulation, and the bias in the estimators of
r(Z1),...,7(Zm), respectively, see items (iii), (i), and (ii) in Section 1. Clearly, if there
is no uncertainty about the value of Z (as would be the case in a typical steady-state
simulation), then the first term vanishes. Similarly, if the values of 7(Z;),...,7(Z)
can be estimated without noise or without bias, then the second or third terms vanish.

We would like to point out that our results hold when o« = E{g(r(Z))}, where g is
a known, smooth function; just put r'(z) = g(r(z)) and apply our theory. This will, for
example, allow us to estimate expected values of functions of steady-state performance
under parameter uncertainty. Moreover, when smoothness in ¢ is violated, some of our
assumptions can break down. Such an example (of practical interest) is when g is
an indicator function, say the indicator of the interval (—oc, z]. One key element that
breaks down is the bias expansion for E{g(r(Z))} (see (3)); note that for z with r(z) = z,
the bias is of order 1. So, our paper does not cover such examples; a different theory is
needed (see, e.g., Lee and Glynn, 2003).

In the remainder of this paper, we will fill in the rigorous details of the above heuris-
tic arguments and provide more thorough analysis and discussion of our results. We
will start by considering some special cases in Sections 3 and 4, and then analyze a
general framework in Section 5.

3. INDEPENDENT SAMPLING

In this section, we analyze the estimator of the unknown quantity « obtained by gen-
erating i.i.d. samples of the random vector Z and averaging simulation estimates of
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the values of the function r at the sampled values of Z. Given a total available compu-
tational budget ¢ € IR™, let m(c) € IN be the number of different values of the random
vector Z used in the estimation of «, and let ¢(¢) € IR" be the (constant) computational
effort expended to obtain the estimate 7, (Z;) of r(Z;) for each i = 1,...,m(c). As in
Section 2, we assume that ¢ = m(c) xt(c), and the resulting dependence of m(c) and ¢(c)
on c¢ is now indicated explicitly. (Note that the processes 7:(-), where ¢t > 0, may also
depend on i. However, we believe that the fact that our notation does not explicitly
show this dependence will not confuse the reader.) Our estimator of o obtained with
the computational budget c is then given by

m(c)

1

A(c) = —— Pi(e) (Zi), 8
CY,(C) m(c) ; Tt(c)( ) ( )
where 7y, ..., Z,, are independent observations of the random variable Z.

This section is organized as follows. We first analyze the asymptotic behavior of the
estimator (8) as the computational budget ¢ grows in Section 3.1. We then study the
behavior of the estimator (8) for finite computational budgets ¢ in Section 3.2.

3.1. Theoretical results

In this section, we study the asymptotic behavior of the estimator &(c) defined in equa-
tion (8) as ¢ — oo when Z,,...,Z,,) are independent observations of the random
vector Z. We first show that in order for &(c) to be an asymptotically unbiased and
consistent estimator of a as ¢ — oo, we generally need both t(¢) — oo and m(c) — o
as ¢ — oo (Propositions 3.1 and 3.2 and Theorem 3.3). Then we present the main re-
sult in this section (Theorem 3.4), which identifies the convergence rate of a(c) to «
as ¢ — oo as a function of the respective growth rates of ¢(c) and m(c) with c. The
following assumption describes more precisely the situation considered in this section.

ASSUMPTION 3.1. Assume that:

(i). The random variable r(Z) is integrable (implying that |a| < co).

(ii). For all c € RY, the parameters m(c) and t(c) satisfy ¢ = m(c) x t(c).

(iii). The random variables Z;, where i € IN, are independent observations of the
random variable Z.

(iv). For all t € R™, the random variables 7+(Z;), where i € IN, are independent
observations of the random variable (7).

(v). Forallt € R and m € N, the random numbers used to generate the estimators
71(Z1),...,7(Zm) are independent of the values of Z1, ..., Z,.

For all z € IR, let | x| denote the integer part of x. The following two propositions are
concerned with the bias and consistency of G(c) as ¢ — oo and either t(c) or m(c) re-
mains constant. The proofs of these propositions are straightforward, and are omitted.

PROPOSITION 3.1. Suppose that Assumption 3.1 holds, that t(c) = t > 0 for all
¢ > 0 and that |E{#(Z)}| < co. Then m(c) = |c/t] for all ¢ > 0, E{a(c)} = E{#(Z)} for
all ¢ > 0, and &(c) — E{#(Z)} almost surely as ¢ — oc.

PROPOSITION 3.2. Suppose that Assumption 3.1 holds, that m(c) = m > 0 for
all ¢ > 0, and that #(z) = r(z) as t — oo for all = € Z. Then t(c) = c¢/m for all
c >0, E{a(c)} = E{fc/m(Z2)} for all ¢ > 0, and a(c) = > ;% r(Z;)/m as ¢ — oo, where
Z1,...,2Z, are independent observations of the random variable Z. If also the set of
random variables {7/, (Z) : ¢ > 0} is uniformly integrable, then E{a(c)} — E{r(Z)} =
aasc— oo.
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Propositions 3.1 and 3.2 show that in order for &(c) to be a consistent estimator
for o as ¢ — oo, it is generally necessary to have that as ¢ — oo, both t(c) — oo
and m(c) — co. We now turn our attention to this case. For all z € Z and ¢ > 0, let
ri(z) = E{f(2)} = E{#(Z)|Z = z} (see part (v) of Assumption 3.1). We will need the
following assumption:

ASSUMPTION 3.2. Assume that:

(i). The set of random variables {[*,(Z) — r,(Z)]? : t > 0} is uniformly integrable.
(i1). The random variables 7+(z) satisfy 7+(z) = r(z) ast — oo forall z € Z.

(iit). The function ry satisfies r¢(z) = r(z) + b(z)/t7 + e(2)o(1/t7) as t — oo for all
z € Z, where b(z),e(z) € R forall z € Z, v > 0, and the o(1/t7) term is uniform in
z € Z.

(iv). The random variables b(Z) and e(Z) are integrable.

The following result is concerned with the bias and consistency of the estimator &(c)
when both ¢(c) — oo and m(c) — oo as ¢ — oo.

THEOREM 3.3. Suppose that Assumption 3.1 and parts (ii), (iii), and (iv) of As-
sumption 3.2 hold, that the set of random variables {7, (Z) — r(Z) : t > 0} is
uniformly integrable, and that as ¢ — oo, both m(c) — oo and t(c) — oo. Then
E{a(c)} = E{ty)(Z)} — E{r(Z2)} = a and &(c) — « in probability as ¢ — oo.

Proof: It is clear that by part (v) of Assumption 3.1, parts (ii) and (iii) of Assumption
3.2, and the fact that t(c) — oo as ¢ — oo, we have that 7,)(Z) — r4)(Z) = 0 as
¢ — oo. Therefore, part (iv) of Assumption 3.1, parts (iii) and (iv) of Assumption 3.2,
the uniform integrability of the random variables #,(Z) — r;(Z), where ¢ > 0, and the
fact that t(¢) — oo as ¢ — oo give that

E{a(c)} — a = E{fyc)(Z) = rye)(2)} + E{rye)(Z) —r(Z2)} = 0

as ¢ — oo. In the remainder of the proof, we show that &(c) — « in probability as
c — OQ.
For all ¢ > 0, we clearly have that

a(e) — a = aq(c) + az(c) + as(c), ()]
where

1 m(c)

di(c) = m(e) Z [Pie) (Zi) = Ti(ey(Zi)]
1 m_(c)

o) = i Z [re(e)(Zi) — r(Z;)], and
1 m_(c)

ds(c) = m(e) Z[T(Zi) —a.

By parts (i) and (iii) of Assumption 3.1, the strong law of large numbers, and the fact
that m(c) — oo as ¢ — oo, it is clear that das(c) — 0 almost surely as ¢ — co. Moreover,
part (iii) of Assumption 3.2 implies that

m(c)

Go(c) = ———— > [b(Z:) + e(Zi)o(1)]. (10)
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Part (iii) of Assumption 3.1, parts (iii) and (iv) of Assumption 3.2, the strong law of
large numbers, and the facts that v > 0 and as ¢ — oo, both m(¢) — oo and ¢(c) —
oo, now imply that és(c) — 0 almost surely as ¢ — oo. Finally, note that Markov’s
inequality and parts (iii) and (v) of Assumption 3.1 imply that for all € > 0,

Pllay(0)] > ¢} < = x Blaa (0]} < « x Bl (2) ~ ro(2)]}:

The facts that t(¢) — oo as ¢ — oo, that the random variables #;(Z) — r(Z) are uni-
formly integrable, and that 7, (Z) — r/()(Z) = 0 as ¢ — oo yield that &;(c) — 0 in
probability as ¢ — oo. The result now foliows from (9). O

In the proof of Theorem 3.3, note that the terms d;(c), d2(c), and &3(c) in the decom-
position (9) of the error in the estimator &(c) correspond to the noise associated with es-
timating r(Z,),...,r(Z,,) via simulation, the bias in the estimators of r(Z7),...,7(Z),
and the error associated with the uncertainty about the value of Z, respectively, see
items (i), (ii), and (iii) in Section 1.

We are now ready to present the main result in this section. Let b = E{b(Z)}, where
the function b(-) is defined in part (iii) of Assumption 3.2 (see also equation (3)). More-
over, for all z,y € IR, let N(z,y?) denote the normal distribution with mean z and
variance 32 (if y = 0 then N(x,4?) equals x). Theorem 3.4 establishes that as the to-
tal available computational effort ¢ grows, the estimator G(c) is asymptotically normal.
Theorem 3.4 also provides the rate at which the estimator &(c) converges to a as ¢ — oo
for different growth rates of m(c) with c.

THEOREM 3.4. Suppose that Assumptions 3.1 and 3.2 hold and that the random
variable Z satisfies 0®> = Var{r(Z)} < oo. Then, the following statements hold:

(a). Assume that when c — oo, we have that m(c)/c*"/(*7+1) — co. Then
t(e)"(&(c) —a)=b as c¢— oc.
(b). Assume that when ¢ — oo, we have that m(c)/c?"/(27+1) — 0. Then
m(c)?(a(c) —a) = N(0,0%) as ¢ — .

(c). Assume that when ¢ — oo, we have that m(c)/c*/ 7D — ¢, where 0 < ¢ < oo,
Then

D (G(e) —a) = N(0b,0%/0) as ¢ — .

Proof: For all ¢ > 0, let &;(c), da2(c), and és(c) be defined as in the proof of Theorem
3.3. Let € > 0. Observe that parts (iii) and (iv) of Assumption 3.1 give that

m(e)B{(a1(c))?} = B{[Pye)(Z) — rye)(2))?}- (an
We start by considering part (a). By Markov’s inequality, we have

P{lt(e)Yan(c)| > €} < M2, m(c) E{(61(c))?}

! = e2m(c) ! '
Equation (11), part (i) of Assumption 3.2, and the facts that ¢ = m(c) x t(c¢) and
m(c)/c*/ 7+ — o0 as ¢ — oo now show that ¢(¢)?@;(¢) — 0 in probability as ¢ — oc.
Moreover, from equation (10), the strong law of large numbers, part (iii) of Assumption
3.1, parts (iii) and (iv) of Assumption 3.2, and the fact that m(c¢) — oo as ¢ — oo, it is
clear that ¢(c)Yd2(c) — b almost surely as ¢ — co. Finally, part (iii) of Assumption 3.1
and the facts that 02 < oo and m(c) — oo as ¢ — oo clearly imply that

m(c)2a3(c) = N(0,02) as c¢— oco. (12)
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Together with the facts that ¢ = m(c) x t(c) and m(c)/c*/*7*1) — o0 as ¢ — oo, this
shows that ¢(¢)"as(c) = 0 as ¢ — oo. Equation (9) now gives the result of part (a).

Since ¢(c) — oo as ¢ — oo in parts (b) and (¢), it follows from Assumptions 3.1 and
3.2 that [y (Z) — 74 (Z)]* = 0 as ¢ — oo (see the proof of Theorem 3.3 for a similar
argument). Hence, part (i) of Assumption 3.2 and equation (11) yield that

m(c)E{(41(c))*} =0 as ¢ — oo. (13)
We now consider part (b). Note that Markov’s inequality gives

P{lm(e)2a1(c)] > €} < 5 x m(e)B{(61(c))?).

Equation (13) now shows that m(c)!/2a;(c) — 0 in probability as ¢ — co. Moreover,
from equation (10), the strong law of large numbers, parts (ii) and (iii) of Assumption
3.1, parts (iii) and (iv) of Assumption 3.2, and the fact that m(c)/c*"/*1) — 0 as
¢ — o0, it is clear that m(c)'/2Gz(c) — 0 almost surely as ¢ — oco. Putting the above
together with equations (9) and (12) gives the result of part (b).

Finally, for part (c), note that Markov’s inequality gives

27/ (27+1)

P{|c/® Dy (e)] > €} < x m(c) B{(61(c)*}.

e2m(c)
Equation (13) and the fact that m(c)/c*/**) — ¢ > 0 as ¢ — oo now show that
/271G, (¢) — 0 in probability as ¢ — oco. Moreover, from equation (10), the strong
law of large numbers, part (ii) and (iii) of Assumption 3.1, parts (iii) and (iv) of As-
sumption 3.2, and the fact that m(c)/c*/**) — ¢ > 0 as ¢ — oo, it is clear
that ¢/ Da,(c) — £7b almost surely as ¢ — oo. Finally, equation (12) and the
facts that ¢ = m(c) x t(c) and m(c)/c*/+1) & ¢ > 0 as ¢ — oo also show that
A/ D64(c) = N(0,0%/f) as ¢ — oo. Putting the above together with equation (9)
gives the result of part (¢). O

Remark 3.5. If in part (a) of Theorem 3.4 we let t(c) = kc® for all ¢ > 0, where
r,8 > 0, then the facts that ¢ = m(c) x t(c) and m(c)/c"/ ) - o0 as ¢ — oo imply
that 6 < 1/(2y + 1). Similarly, if in part (b) of Theorem 3.4 we let m(c) = |kc®| for all
¢ > 0, where r,6 > 0, then the fact that m(c)/c*/*+1) — 0 as ¢ — oo implies that
d < 2v/(2y + 1). Therefore, Theorem 3.4 shows that the maximum convergence rate for
the estimator G(c) is of the order of 1/c¢"/ 7Y with m(c) growing at the rate c¢*//(27+1)
and t(c) growing at the rate ¢'/7*1) as ¢ — oc. Note that v/(2y+1) < 1/2 for all v > 0,
that v/(2v + 1) increases with v, and that v/(2y + 1) — 1/2 as v — oo (i.e., as the bias
in the estimators 7.(z), where t > 0 and z € Z, is reduced, see part (iii) of Assumption
3.2). Finally, note that as long as v > 1/2 (as would typically be the case in practice),
the maximum convergence rate 1/c'/ 271 is obtained by letting m(c) grow at a faster
rate than t(c) as ¢ — co.

Remark 3.6. It is frequently the case that simulation estimators obtained from a
sample path of length t have a principal bias term of the order 1/t; see for example Glynn
and Heidelberger (1992) and Awad and Glynn (2007) for conditions that guarantee this.
This suggests that the special case when v = 1 is of particular interest. We have shown
that when v = 1, then the best possible convergence rate of é(c) to « is 1/c'/?, which
is a considerably slower convergence rate than 1/c'/?, the best possible convergence
rate expected in a simulation environment. However, better convergence rates can be
obtained through the use of bias reduction techniques such as jackknifing that remove
the highest order bias term; see for example Section 2.7 of Bratley, Fox, and Schrage
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(1987), Appendix 9A of Law and Kelton (2000), and Glynn and Heidelberger (1992) for
an introduction to the jackknifing bias reduction technique and Awad and Glynn (2007)
for a discussion of low-bias steady-state estimators. The use of these techniques with a
sample path of length t would typically yield simulation estimates with a principal
bias term of the order 1/t, corresponding to v = 2. Our results then show that the best
possible convergence rate of i(c) to ais 1/c?/°, which is a considerable improvement over
the convergence rate 1/c'/? obtained previously, but nevertheless substantially worse
than the desired convergence rate 1/c'/2. In Section 4 below, we discuss other estimation
techniques than can achieve the desired convergence rate 1/c'/? even when ~ = 1.

3.2. Numerical results

In this section, we provide insights into the behavior of the independent-sampling
estimator &(c) given in equation (8) for finite computational budgets c. The specific
example that we consider involves an autoregressive process {X,} of order one with
an unknown multiplier Z that is believed to be uniformly distributed on the interval
[0.1,0.5]. More specifically, suppose that

Xpi1 =2 % Xy + €n

for all n > 0, where X, € {0.1,1,10,100} is a scalar, Z is uniformly distributed on
the interval [0.1,0.5], and €;, €s, ... are N(0,1) random variables that are independent
of each other and of Z. We are interested in estimating the steady-state mean o =
E{r(Z)}, where for all z € [0.1,0.5], we have r(z) = z 4+ 7'(z) and r/(z) is the steady-
state mean of the autoregressive process {X,} given that Z = z. It is clear that both
the functions () and /(-), and hence also the scalar «, can be computed analytically. In
particular, 7'(z) = 0 and r(z) = z for all z € [0.1,0.5], and hence o = 0.3. This facilitates
using this example to illustrate the approach and results discussed in Section 3.1.
For all z € [0.1,0.5], let { X,,(2) } represent the autoregressive process {X,, } given that
Z = z, and let the total computational budget ¢ be measured in terms of the maximum
number of normal random variables that can be generated in the numerical experi-
ment. Consider estimators &(c) = &, ¢(c) of a of the form given in equation (8), where
Z1,... Zm(c) are sampled at random from the uniform distribution with range [0.1, 0.5],
Fi(2) = 24+ 30 _o Xn(2)/t for all z € [0.1,0.5] and ¢ € IN, ¢ satisfies ¢ = ¢'x 1,000,000
with ¢/ € {10, 20,50, 100, 200,300, ..., 1000}, and m(c) = £c* and t(c) = '~ /¢, where
0 < v < 1land? > 0. Then it is clear that parts (i) through (iii) of Assumption 3.1
are satisfied, and we conduct the simulation in such a way that parts (iv) and (v) of
Assumption 3.1 hold. Moreover, it is not difficult to show that
t+1
ri(z) = B{iy(2)} = 2 + % X 11722 (14)

for all z € [0.1,0.5] and ¢ € IN, so that parts (iii) and (iv) of Assumption 3.2 are satisfied
with v = 1 and b(z) = —e(z) = Xo/(1 — 2) for all z € [0.1,0.5]. Finally, it is also not
difficult to show that for all z € [0.1,0.5] and ¢ € IN,

i(z) = re(2) + Yi(2),
where Y;(z) has a N(0,07(z)) distribution with

1 [(1-2\?
2 < .
o;(z) < 7 X <1—z> .
This implies that parts (i) and (ii) of Assumption 3.2 hold. Since ¢* = Var{r(2)} =
Var{Z} = 1/75 < oo, Theorem 3.4 now shows that the best asymptotic convergence

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39, Publication date: June 2013.



39:12 S. Andradottir and P. W. Glynn

Table I. Performance of the independent-sampling estimator &,, ¢« (c) for different X and c with the asymptotically optimal multiplier £*

c Xo =0.1 Xo=1 Xo =10 Xo = 100
(millions) OR | AD [ RD OR | AD | RD OR | AD | RD OR | AD | RD
10 21/30 | 2.41x10~7 [ 0.61 | 21/30 | 6.21 x 10~7 | 0.38 || 22/30 | 9.36 x 1076 | 1.41 [ 22/30 | 2.69 x 10—° | 1.11
20 21/30 | 6.86 x 10~% | 0.28 || 20/30 0 0 21/30 | 1.19x 1075 | 0.25 || 21/30 | 4.52 x 10-% | 0.21
50 22/30 | 3.25x10~% | 0.29 || 21/30 | 1.07 x 10-° | 2.30 || 22/30 | 1.48 x 10~ % | 0.64 || 21/30 | 7.00 x 10=% | 0.78
100 21/30 | 8.13x10~% | 1.24 || 20/30 0 0 21/30 | 1.34 x 1076 | 1.55 || 21/30 | 5.54 x 10~ | 1.00
200 20/30 0 0 21/30 | 4.30 x 10~7 | 2.77 || 21/30 | 9.30 x 10~7 | 1.23 || 22/30 | 1.90 x 10~6 | 0.41
300 21/30 | 1.18 x 10~% | 0.93 || 20/30 0 0 21/30 | 1.84 x 1076 | 6.08 || 21/30 | 2.37 x 107 | 0.78
400 20/30 0 0 21/30 | 4.35x10~% | 0.71 || 21/30 | 1.27x 107 | 6.92 || 21/30 | 2.41 x 10~% | 1.19
500 19/30 | 1.08 x 10~% | 0.67 || 21/30 | 1.61 x 10~® [ 0.58 || 21/30 | 8.32 x 10~ 7 | 8.32 || 21/30 | 1.58 x 10~° | 8.15
600 20/30 0 0 21/30 | 1.57 x 107 | 3.54 || 20/30 0 0 21/30 | 3.75 x 106 | 3.57
700 20/30 0 0 21/30 | 2.21x 107 | 6.21 || 21/30 | 1.10 x 10~ 7 | 0.43 || 21/30 | 2.66 x 10—7 | 0.15
800 19/30 | 2.18 x 102 | 0.81 || 20/30 0 0 20/30 0 0 21/30 | 1.12x 10~ 7 | 0.13
900 19/30 | 2.26 x 1010 | 0.09 || 20/30 0 0 22/30 | 3.22x 107 | 0.67 || 21/30 | 1.00 x 10=° | 0.63
1000 20/30 0 0 21/30 | 8.55 x 10~Y | 0.38 || 21/30 | 1.24 x 10~ 7 | 0.48 || 21/30 | 2.37 x 1076 | 2.22

rate (as ¢ — o0) is obtained with v = v* = 2v/(2y + 1) = 2/3. Therefore, we consider
v € Y, where T = {15/30,16/30,...,24/30}. Similarly, the value of ¢ that minimizes
the mean-squared error of the asymptotic distribution N (¢7b,02/¢) when v = 1 is

" o2\ '/? 0.42 e 2 2\~ 1/3
= (262) = (150 X7 [ln(1.8)]2> = (937.5 x X§ x [In(1.8)]%) :

Therefore, we consider ¢ satisfying ¢/¢* € L, where £ = {0.01,0.1,0.2,0.5,1,2, 5,10, 100}.
(The expressions for m(c) and ¢(c) are not necessarily integer-valued. Therefore, in our
numerical experiments, we let m(c) = [¢c¥] and ¢(c¢) = |¢/m(c)], unless this leads to
the number ¢ — m(c) x t(c¢) of unused normal random variables being greater than or
equal to t(c), in which case we let t(c) = [c!7?/¢] and m(c) = |c/t(c)].)

We conducted two sets of numerical experiments. In the first set of experiments, we
used the asymptotically optimal multiplier /* and identified the (empirically) optimal
rate (OR) v € T for each initial state Xy, and computational budget c. In the second set
of experiments, we used the asymptotically optimal rate v* and identified the (empir-
ically) optimal multiplier (OM) ¢/¢* € L for each X, and c. In both cases, the objective
was to minimize the mean-squared error (MSE) of the estimator of . In all cases, our
results were obtained by replicating the estimation process 100 times using common
random numbers for different Xy, ¢, v, and ¢ values.

The results of our first set of numerical experiments are shown in Table 1. For each
choice of Xy and ¢, we show the (empirically) optimal rate (OR) (i.e., the v € T with
the smallest average [d., - (c) — a]?), and also the absolute and relative differences (AD
and RD) between the MSE obtained with the observed optimal rate and with the best
asymptotic rate v* = 2/3. The results of our second set of numerical experiments are
shown in Table II. Similar to Table I, for each X, and ¢, we show the (empirically)
optimal multiplier (OM) (i.e., the ¢/¢* with the smallest average [+ ¢(c) — o]?), and
also the absolute and relative differences (AD and RD) between the MSE obtained with
the observed optimal multiplier and with the best asymptotic multiplier ¢*.

Tables I and II show that for finite ¢, the number m(c) of values of Z that yields the
smallest MSE is usually strictly larger than that predicted by the asymptotic theory.
In particular, the best choice of v € T in Table I (OR) is in general larger than the
asymptotically optimal v* = 20/30, and the best choice of £/¢* € £ in Table II is mostly
larger than the asymptotically optimal ¢/¢* = 1. However, the difference between the
empirically optimal and asymptotically optimal parameter choices are not large (i.e.,
no larger than 2/30 in Table I and no larger than 4 in Table II).
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Table II. Performance of the independent-sampling estimator é.,« ((c) for different X and ¢ with the asymptotically optimal rate v*

c X0 =0.1 Xo=1 Xo =10 Xo = 100
(millions) || OM AD | RD || OM | AD | RD || OM | AD | RD OM | AD | RD
10 2 1.12x 1078 | 1.81 2 7.21 x 107 | 0.47 2 1.02x 10~° [ 1.75 2 2.60 x 10~° [ 1.04
20 2 4.55 x 1078 | 0.17 2 3.07 x 10~7 | 0.37 2 2.21 x 1076 | 0.59 2 4.04 x 1076 | 0.19
50 1 0 0 2 1.19 x 1079 | 3.40 2 2.17x 1076 | 1.36 2 4.65 x 1076 | 0.41
100 05 [ 2.95x10°8 | 0.25 2 3.64 x 1078 | 0.11 2 1.05 x 1079 | 0.91 2 4.15 x 10=% | 0.60
200 1 0 0 0.5 [ 4.42x10~7 | 3.07 2 6.99 x 10~7 | 0.71 2 2.29 x 10=% | 0.54
300 1 0 0 2 5.16 x 10~8 | 0.63 2 1.75 x 1076 | 4.44 2 1.81 x 1075 | 0.50
400 1 0 0 1 0 0 2 1.09 x 10~ | 2.99 2 1.82 x 1075 | 0.69
500 2 1.85 x 10~8 | 2.18 1 0 0 2 5.80 x 10~7 | 1.19 2 1.57 x 1075 | 7.77
600 1 0 0 2 1.45 x 107 | 2.59 1 0 0 5 6.87 x 10~7 | 0.17
700 1 0 0 2 2.11 x 10~7 | 4.63 05 [ 1.59x10~7 | 0.78 1 0 0
800 0.5 | 3.44 x10~10 | 0.08 1 0 0 1 0 0 1 0 0
900 1 0 0 1 0 0 2 7.66 x 10~7 | 19.53 2 1.55 x 10=6 | 1.46
1000 1 0 0 1 0 0 05 | 2.76 x 10~7 | 2.62 2 7.39 x 107 | 0.27

Tables I and II also show that the behavior of the independent-sampling estimator
&y ¢(c) depends heavily on the choice of the initial state X,. When X is small, then the
observed optimal rate and multiplier are close to the optimal asymptotic rate and mul-
tiplier, sometimes coincide with the optimal values, and occasionally are smaller than
optimal. On the other hand, for larger X, the observed optimal rate and multiplier are
usually larger than optimal, occasionally optimal, but not smaller than optimal. These
results are reasonable because we do not perform any truncation to remove initializa-
tion bias while estimating the steady-state mean 7/(z) of the autoregressive process
{X,(2)}, where z € [0.1,0.5]. Therefore, X, has a heavy influence on the bias in the
estimator of o (see also equation (14)), and longer sample path lengths are required
to reduce the bias for large X, than for small X, (in other words, the asymptotical
results derived in Section 3.1 come into play for larger values of ¢ when X is large
than when X is small). Tables I and II also show that the rate at which the observed
optimal rate (OR) and multiplier (OM) approach the asymptotically optimal rate and
multiplier are slow, reflecting the slow growth rate of the best asymptotic sample path
length (c) ~ ¢!=v" = ¢!/3 with respect to c.

We conclude this section by showing the behavior of the MSE of the estimator &, ¢~ (c)
as a function of the growth rate v € T, and the behavior of the MSE of the estimator
Gy~ ¢(c) as a function of the multiplier ¢/¢* € L. The results are provided for X, = 1
and ¢ = ¢’ x 1,000,000, where ¢’ € {100, 500,900}, and are shown on a logarithmic scale
in Figures 1 and 2, respectively.

Figures 1 and 2 show that the MSE of the estimator depends heavily on the choice
of the parameters v and ¢, and that this sensitivity is larger when the computational
budget c is large. Specifically, in Figure 1, the difference in MSE from using a subop-
timal rate v can be almost two orders of magnitude for ¢ = 100,000,000 and almost
three orders of magnitude for ¢ = 900,000,000. Similarly, in Figure 2, the difference in
MSE from using a suboptimal multiplier ¢ can be almost three orders of magnitude for
¢ = 100,000,000 and almost four orders of magnitude for ¢ = 900,000,000.

4. EXAMPLE PROCEDURES WITH BETTER CONVERGENCE RATES

In this section, we show that improved convergence rates can be achieved (relative to
the independent sampling approach considered in Section 3) by using other methods to
generate the sampled values of the random variable Z, see equation (2). More specifi-
cally, in Section 4.1, we analyze the case where Z; = z; = h(u;), fori=1,...,m(c), and
{u,} is a quasi-random sequence defined on [0, 1]%. In Section 4.2, we discuss how mod-
est improvements in the convergence rate (over the rates given in Section 4.1) some-
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Fig. 1. Performance of the independent-sampling estimator &,, ¢« (c) for Xo =1,v € T

times can be obtained by using numerical integration techniques that exploit special
structure, and illustrate this idea using Simpson’s rule.

4.1. Quasi-random numbers

In this section, we determine the asymptotic behavior of the estimator &(c) defined in
equation (8) as ¢ — oo when Z; = z1,...,Z,,(c) = Zm(c) are generated using a quasi-
random sequence. As in Section 3.1, we first show that in order for &(c) to be asymp-
totically unbiased and consistent, we generally need both ¢(¢) — oo and m(c) — oo as
¢ — oo (Propositions 4.2 and 4.3 and Theorem 4.5). Then we present the main result in
this section (Theorem 4.9), which identifies the convergence rate of G(c) to « as ¢ — cc.
We will be using the following assumption throughout this section.

ASSUMPTION 4.1. Assume that:

(1). The random variable r(Z) is integrable.

(ii). For all c € R, the parameters m(c) and t(c) satisfy ¢ = m(c) x t(c).

(iit). The random vector Z can be expressed as Z = h(U), where U is a uniformly
distributed random vector on the set [0,1]%, where d € N, and h : [0,1]? = Z isa
known function.

(iv). The sequence {u,} is a deterministic (quasi-random) sequence taking values
in [0,1]¢ with the (star) discrepancy of ui,...,uy being of order O([log N]*/N?) for
all N € IN, where 1,3 € IR" (see for example Niederreiter, 1992, page 14, for the
definition of the star discrepancy of a sequence of points).

(v). For all t € R", the random variables 7(z;), where z; = h(u;) and i € N, are
independent.
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Fig. 2. Performance of the independent-sampling estimator &« ¢(c) for Xo =1,£/¢* € L

Remark 4.1. For results that can be used to show that part (iv) of Assumption 4.1
holds with 8 = 1, see for example Theorems 3.6 and 3.8 of Niederreiter (1992). Note that
the sequences {u,} and {z,} defined in parts (iv) and (v) of Assumption 4.1, respectively,
may depend on the value of ¢ € R (this would for example be the case when Theorem
3.8 of Niederreiter (1992) is used to generate the sequence {u,} and m(c) is not constant
in ¢ € RT), although we suppress this in our notation. There is an extensive literature on
the development and analysis of quasi- and randomized quasi-Monte Carlo sequences,
including measures of discrepancy other than the star discrepancy we consider here (see
part (iv) of Assumption 4.1), see for example L'Ecuyer (2009) for a recent review.

As in Section 3.1, we start by analyzing the bias and consistency of the estimator
&(c) defined in equation (8). Let &4 (c), éa(c), and as(c) be defined as in equation (9) for
all c € IRT. We first consider the case where ¢ — oo and t(¢) remains constant.

PROPOSITION 4.2. Suppose that Assumption 4.1 holds, that t(c) =t > 0 for all ¢ >
0, that the function r, defined by r}(u) = r,(h(u)) for all u € [0,1]? is Riemann integrable,
and that sup;cpy E{[P+(2:) — r(2:)]*} < oo, where the sequence {z,} is defined in part (v)
of Assumption 4.1. Then m(c) = |¢/t| for all ¢ > 0, E{a(c)} = 7 r(z;)/m(c) —
E{#(Z)} as ¢ = o, and &(c) — E{7(Z)} in probability as ¢ — oo, where Z is defined
in part (iii) of Assumption 4.1 and the random numbers used to generate 7,(Z) are
independent of the value of Z.

Proof: From equation (8), parts (ii) and (iv) of Assumption 4.1, the fact that the func-
tion r; is Riemann integrable, and pages 14 and 17 of Niederreiter (1992), it is clear
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that
1 m(c)
E{a(c)} — E{r(2)} = () ri(z;) — E{f(Z)} - 0 as c¢— oc. (15)
1=1
Moreover,
a(c) = a1 (c) + E{a(e)}. (16)
Let € > 0. By Markov’s inequality and part (v) of Assumption 4.1, we have that
) E{[6(c)]2 A
Pla] > o < A — o S (e - na).
i i=1

Therefore, part (ii) of Assumption 4.1 and the fact that sup,cp E{[f¢(2;) — 7¢(2:)]*} < o0
imply that G4 (c) — 0 in probability as ¢ — oo. The convergence in probability of &(c) to
E{#(Z)} now follows from equations (15) and (16). O

We now consider the case when ¢ — oo and m(c) remains constant. The proof of the
following proposition is straightforward, and is omitted.

PROPOSITION 4.3. Suppose that Assumption 4.1 holds, that m(c) = m > 0 for all
¢ > 0, that the values of the sequence {u,} defined in part (iv) of Assumption 4.1 do not

depend on c € RY, and that #,(z;) = 7(z;) ast — oo fori = 1,...,m. Then t(c) = ¢/m for
all ¢ >0, E{a(c)} = > 1%  Teym(2i)/m for all ¢ > 0, and é(c) = 31" r(z)/m as ¢ = oo,
If also the sets of random variables {7/, (z;) : ¢ > 0}, where i = 1,...,m, are uniformly

integrable, then E{a(c)} — Y i~ r(zi)/mas ¢ — .

Propositions 4.2 and 4.3 show that when {z,} is generated using a quasi-random
sequence, we generally need to have that as ¢ — oo, both ¢(¢) — oo and m(c) — oo in
order for &(c) to be a consistent estimator for « as ¢ — oo (this is consistent with the
results obtained earlier for independent sampling, see Section 3.1). We now turn our
attention to this case. For all c € IR and i € IN, let Y;(c) = VEH(E) (Fe(ey (28) — o) (24)),
where the quantities 2, ..., z,,() are defined in part (v) of Assumption 4.1. Further-
more, let the symbol o denote the composition of two functions and let 74 denote the
indicator of the set A for all A. The results given in the remainder of this section will
require some (or all) the parts of the following assumption.

ASSUMPTION 4.2. Assume that:
(1). For all z € Z, the random variables #:(z), where t > 0, satisfy E{t[fi(z) —

r+(2)]?} = 0%(2) uniformly in z € Z as t — oo, where 0%(z) € R™.
(ii). For all ¢ > 0, the random variables Y;(c), where i € IN and c € R*, satisfy

m(c)

clggo ; EE{[Yi(C)FIHYL‘(C)\ZGSC}} =0,

where s2 = ™) B{[Y;(c)]} for all c € R,

(iii). The function o®oh : [0,1]¢ — IR" is Riemann integrable, where the function o>
is defined in part (i) of this assumption and the function h is defined in part (iii) of
Assumption 4.1.

(iv). The function r; satisfies ri(z) = r(z) + b(z)/t? + e(2)o(1/t7) as t — oo for all
z € Z, where v > 0, b(2),e(z) € IR for all = € Z, and the o(1/t7) term is uniform in
z € Z.
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(v). The function bo h : [0,1]¢ — IR is Riemann integrable, where the function b is
defined in part (iv) of this assumption.

(vi). The function eo h : [0,1]¢ — IR is Riemann integrable, where the function e is
defined in part (iv) of this assumption.

(vii). The function r o h : [0,1]? — IR has bounded variation in the sense of Hardy
and Krause (see for example Niederreiter, 1992, page 19, for the definition of bounded
variation in the sense of Hardy and Krause), where the function r is defined in Sec-
tion 1.

Remark 4.4. Note that part (ii) of Assumption 4.2 holds if for each ¢ € R", the
random variables Y;(c), where i € IN, are identically distributed with finite and pos-
itive variance. Part (ii) of Assumption 4.2 also holds if there exists ¢ > 0 such that
sup; . B{[Yi(c)]**“} < oo and parts (ii) and (iv) of Assumption 4.1, parts (i) and (iii) of
Assumption 4.2, and Assumption 4.3 hold (note that s2/m(c) — o2 as ¢ — oo under
these conditions, see the proof of Lemma 4.6 in the online appendix).

We have:

THEOREM 4.5. Suppose that Assumption 4.1 and parts (iv), (v), (vi), and (vii) of
Assumption 4.2 hold, that

lim sup E{|f¢(z;) — ri(2:)|} = 0, am

t—0 i eN
and that as ¢ — oo, both m(c) — oo and t(c) — oo. Then E{a(c)} =
ZZ’;({:) (o) (zi)/m(c) = E{r(Z)} = a and &(c) — a in probability as ¢ — .

Proof: From part (iv) of Assumption 4.2, we have

1 m(c) 1 1 m(c)
E{a(c)} = m() ; 7(zi) + Wy \ mio) ; [b(2:) + e(zi)o(1)]

By part (iv) of Assumption 4.1, parts (v), (vi), and (vii) of Assumption 4.2, the Koksma-
Hlawka inequality (see for example Theorem 2.11 in Niederreiter, 1992), pages 14 and
17 of Niederreiter (1992), and the fact that as ¢ — oo, both m(c¢) — oo and t(c) — oo,
the first term in the above expression converges to a = E{r(Z)} and the second term
converges to zero. This shows that E{da(c)} — a as ¢ — .

Let € > 0. Markov’s inequality gives that

m(c)

LS Bl () — ey (1)1}

P& > ) < s 3

Therefore, equation (17) and the fact that ¢(¢) — co as ¢ — oo imply that 6;(c) — 0 in
probability as ¢ — co. Equation (16) now gives that G(c) — « in probability as ¢ — oc.
O

In the remainder of this section, we will use the following assumption:

ASSUMPTION 4.3. For all ¢ > C, where C € R, assume that the parameter m(c)
satisfies m(c) = |kc®|, where k > 0and 0 < § < 1.

We are now ready to study the rate of convergence of G(c) to @ as ¢ — oo. Let
02 = E{0%(Z)} and ¢ = F{e(Z)}, and recall that b = E{b(Z)} (note that part (iii)
of Assumption 4.1 and parts (iii), (v), and (vi) of Assumption 4.2 imply that the ran-
dom variables b(Z), e(Z), and 0?(Z) are integrable). Recall that the functions é&;(c),
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Go(c), and és(c) are defined in the proof of Theorem 3.3. We shall need the following
three lemmas whose proofs are provided in the online appendix to this paper.

LEMMA 4.6. Suppose that Assumptions 4.1, 4.3, and parts (i), (ii), and (iii) of As-
sumption 4.2 hold. Then

Vea(e) = N(0,0?) as ¢ — oo.

LEMMA 4.7. Suppose that Assumption 4.1, 4.3, and parts (iv), (v), and (vi) of As-
sumption 4.2 hold. Then

A brY 1
Go(c) = a=0) +o S5y | asc oo

LEMMA 4.8. Suppose that Assumption 4.1, 4.3, and part (vii) of Assumption 4.2
hold. Then

%8

l63(c)| < O <[1°gC]L> as ¢ — .

We now present the main result in this section. The following theorem specifies the
rate at which the estimator &(c) converges to a as ¢ — oo as a function of the choice of
the parameter 0 (see Assumption 4.3).

THEOREM 4.9. Suppose that Assumptions 4.1, 4.2, and 4.3 hold. Then, the follow-
ing statements hold:

(@. If 5 > v/(v + B) and (1 — &) > 1/2, then

Ve(a(e) —a) = N(0,0%) as c¢— .
(b). If 6 > v/(v+ B) and v(1 — §) = 1/2, then
Ve(ale) —a) = N(bs7,0%) as ¢ — .
(c). If 6 > v/(v+ B) and v(1 — 0) < 1/2, then

A1 (4(c) —a) = beY as ¢ — .
(d). If 6 <v/(yv+ B)and 6 > 1/(28), then

Ve(a(e) —a) = N(0,0%) as c¢— occ.
(e). If § < /(v + B) and § < 1/(28), then

APla(e) — al/flogc < X(¢) +O(1) as ¢ — oo,

where X (c) = 0 as ¢ — oc.

Proof: Note that § > v/(y+ ) if and only if §8 > (1 — §). The result now follows from
equation (9), Lemmas 4.6, 4.7, and 4.8, and the continuous mapping theorem (see for
example Theorems 4.4 and 5.1 of Billingsley, 1968). O

Remark 4.10. The specific convergence rates provided by part (iv) of Assumption 4.1
and by the Koksma-Hlawka inequality are needed only for Lemma 4.8 and part (e) of
Theorem 4.9. Also, in Theorem 4.5, part (vii) of Assumption 4.2 can be replaced by the
assumption that the function r o h : [0,1] — IR is Riemann integrable.

Remark 4.11. Consider the classical case where 3 = 1. From parts (a), (b), and (d)
of Theorem 4.9, it is clear that when 1/2 < 6 < (2v —1)/(2v) and Assumptions 4.1, 4.2,
and 4.3 hold, then the estimator G(c) converges to o at the rate c~'/? as ¢ — oc. This
is an improvement over the convergence rate obtained using independent sampling, see
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Remark 3.5. However, it is only possible to select 0 in this range when v > 1. When v =1
and § > 1 5/ 2, then part (c) of Theorem 4.9 gives that the estimator &(c) converges to o at
the rate c®~! as ¢ — oo, and when v = 1 and § < 1/2, then part (e) of Theorem 4.9 gives
that the estimator &(c) converges to o at the rate [log(c)]*/c® as ¢ — co. By choosing 6§ =
1/2 when v > 1, it is again clear that we get a computational improvement by generating
{zn} using a quasi-random sequence {u,,}, relative to the situation considered in Section
3. However, this improvement is achieved using additional assumptions, including the
smoothness assumptions in parts (iii), (v), (vi), and (vii) of Assumption 4.2, which may
be difficult to verify in practice. Moreover, this improvement is asymptotic, and need not
be observed in practice for realistic computational budgets c, especially if the dimension
dis large, see for example L'Ecuyer (2009) for additional details. Note that when 6 = 1/2,
then m(c) and t(c) will grow at the same rate as c increases. Thus, when quasi-random
numbers are used, it is not necessary to let m(c) grow as rapidly as when independent
sampling is used, see Theorem 3.5 and Remark 3.5.

4.2. Other numerical integration techniques

As is clear from Theorem 4.9 and Remark 4.11, and given that the estimates 7 (z;) of
r(z;), where i = 1,...,m(c), are generated using simulation (so that one would expect
¢~1/2 to be the best possible convergence rate), there is not much room for improving
the rate at which the estimator &(c) defined in equation (8) converges to the quantity
of interest o as the total computational budget ¢ grows, relative to the convergence
rate obtained when the sequence {z,} is generated using a quasi-random sequence
{un}. However, in the presence of some special structure, it is sometimes possible to
use numerical integration techniques other than the ones considered in Sections 3
and 4.1 (i.e., other than independent sampling and quasi-random sequences) to obtain
(slightly) better rate of convergence results than Theorem 4.9. We illustrate this ap-
proach by analyzing a single other numerical integration technique, namely Simpson’s
rule (see, e.g., Davis and Rabinowitz, 1984, Section 2.2).

More specifically, in this section we assume that the underlying integration prob-
lem is one-dimensional (i.e., Z = h(U), where U is uniformly distributed on [0, 1]) and
smooth (in a sense that is specified later). In this case, we can use Simpson’s rule to
improve upon Theorem 4.9. This involves using an estimator of the form

m(c)

a(c) = ) wi(e)fye)(zi(e)), (18)

i=1
where ¢ € IRT, to estimate a. Details on how z1(c), ..+, Zm(e)(c) and the weights
w1(c), ..., Wn()(c) are selected are provided in the online appendix to this paper, to-

gether with our analysis of the estimator (18). The main conclusion is that the esti-
mator (18) converges to o at the rate c™'/? as ¢ — oo when 1/8 < § < (2v — 1)/(2y)
under the assumptions stated in the online appendix. Moreover, the interval [1/8, (2y—
1)/(27)] is non-empty for all v > 4/7 and includes the value 6 = 1/2 for all v > 1 (as
would typically be the case in practice). This is an improvement over the rate of con-
vergence results obtained in Sections 3.1 and 4.1, see Remarks 3.5 and 4.11.

5. GENERAL FRAMEWORK

In Sections 3 and 4, we studied three specific methods for estimating the quantity
« defined in equation (2). In all cases, we provided theoretical results specifying the
rate of convergence of the estimator under consideration to « as the total available
computational budget ¢ grows. In this section, we present a unified framework for
proving such rate of convergence results for a broad class of estimators that includes
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the estimators (8) and (18) considered in Sections 3, 4.1 and in Section 4.2, respectively,
as special cases. However, as the form of the general estimator and the associated
analysis are relatively abstract, we believe it is of value to include the analysis of the
specific estimators of Sections 3 and 4 as well.

More specifically, in this section the estimator of « obtained with the computational
budget c is given by

m(c)
ale) = Z Wi(€)P4(e) (Zi(c)),

where Z)(c),..., Zp)(c) are the different (and possibly random) values (locations)
of the random vector Z used in the estimation of «a, 7;)(Z1(c)), ..., T¢(c)(Zm(e)(c))
are the estimates of r(Z;(c)),...,7(Zmn(c)(c)) obtained using the computational effort
t(c), and Wi(c), ..., Wiy, () (c) are the (possibly random) weights given to the estimates
Pe(ey(Z1(€)), -+ ey (Zm(e)(c)), Tespectively.

Let 7 denote the o-algebra generated by the locations 7 (c), . .., Z,,() (c) and weights
Wi(c), ..., W (c), for all c € RY, and let Fy(z,2) = P{#(2) <z} forall z € Z,¢ > 0,
and =z € IR. The following assumption describes more precisely the framework for
estimating o considered in this section.

ASSUMPTION 5.1. Assume that:

(i). For all c € IRT, the parameters m(c) and t(c) satisfy ¢ = m(c) x t(c).

(ii). The parameter m(c) satisfies m(c)/c® — d as ¢ — oo, where d € R" and 0 < § <
1.

(iii). For all c € R, the random variables Tie)(Z1(€)), -, Te(e) (Zme)(c)) satisfy

m(c)

P{iyey(Zi(c)) < xi,Vi=1,...,m(c)|F} = H Fye)(Zi(c),2:)

forall xi,... 2y € R
(iv). The weights Wi(c),..., W) (c) satisfy Z,:l(f) Wi(e) = 1lasc — ccand | <
m(c)Wi(c) <uforalli=1,...,m(c)and c € R, where | and u are positive constants.

Forall z € Z andt > 0, let r;(2) = E{#:(2)}. Moreover, for all z € Z and ¢ > 0, let

Y;(2) = Vt[f¢(z) — r¢(2)]. The results given in the remainder of this section will require
some (or all) the parts of the following technical assumption.

ASSUMPTION 5.2. Assume that:

(i). There exists a function 02 : Z — IR such that for all z € Z, the random variables
Y;(z), where t > 0, satisfy E{[Y;(2)]*} — o2(2) uniformly in z € Z as t — oo, where
inf,ez 0%(2) > 0.

(ii). There exists ¢ > 0 such that the random variables Y;(z), where z € Z and t > 0,
satisfy sup,c z 1> E{[Y;(2)]*T} < o0

(iii). There exist functions b : Z — IR and ¢ : Z — IR such that the function r,
satisfies m¢(z) = r(z) + b(2)/t7 + e(2)o(1/t7) as t — oo for all z € Z, where v > 0 and
the o(1/tY) term is uniform in z € Z.

(iv). The locations Zi(c),. .., Zy)(c), weights Wi(c),..., Wy, (c), and function r
satisfy

m(c)

Y- Wi@r(Zie) = a+ 2

g(e)’
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where g : RT — IR" is a deterministic function, Xs(c) = X3 as ¢ — 0o, and X3 is a
(proper) random variable.

(v). The locations Zi(c),..., Zm)(c), weights Wi(c),...,Wy((c), and func-
tions o%, b, and e defined in parts (i) and (iii)) of this assumption sat-
isfy P Wile)o(Zi(e) = E{o*(2)}, TP Wieb(Zi(e) = E{d(Z)}, and
S Wile)e(Zi(e) = E{e(Z)} as ¢ — o

Note that the function g in part (iv) of Assumption 5.1 is not uniquely defined. As will
become clear later (see Theorem 5.4 below), it is best to define g such that g(c) grows
as rapidly as possible with ¢, so that X3 is different from zero with positive probability.

As in equation (9), it will be useful to express the estimate @(c) as follows:

a(c) —a=ai(c) + az(c) + as(c), (19)

where

m(c)
ar(e) = Y Wile)lise (Zi()) = ruey(Zile))),
=1

m(c)

as(c) = ZW )[rige)(Zi(e)) — r(Zi(c))], and

m(c)

as(c) = ZWi(c)r(Z ¢

for all ¢ > 0. Define 02 = E{0?(Z)} and b = E{b(Z)}. We shall need the following two
lemmas.

LEMMA 5.1. Suppose that Assumption 5.1 and parts (i), (it), and (v) of Assumption
5.2 hold. Then, for all ¢ € R*, there exist random variables X (c) and &/ (c) such that
Veay(e) = Xq(e) x @i (¢), VI<Xi(c)<+vu, and & (c)=Y ~ N(0,0%) asc— co.
Moreover, (&) (c), X3(c)) = (Y, X3) as ¢ — oo, where Y and X5 are independent.
Proof: For all ¢ > 0, define

m(c)

2 = Z (Wi(0)* B{[Ya(e) (Zi(e))]?| F},
m(c)

$=ZWEmm<Wm

and X (c) = v/m S/S We have

m(c m
i=0 +(ZW >+ZW [E{[Yi(o)(Zi ()| F} — 0*(Zi(0))] -

It now follows from parts (iii) and (iv) of Assumption 5.1, parts (i) and (v) of Assump-
tion 5.2, and the converging together lemma (see, e.g., Theorem 25.4 of Billingsley,

1995) that 5’62 = 02 as ¢ — oo. Moreover, part (iv) of Assumption 5.1 implies that
1 <[X1(e))? <.
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From part (i) of Assumption 5.1, we have that for all ¢ > 0, \/ca:(c) = X1(c) x & (c),
where
. W, (e) Yoo (Zs
C_E/l(c) _ SC % 21:1 Z(CA) t(C)( 1(0))’
Se
It follows from parts (i), (ii), (iii), and (iv) of Assumption 5.1 and part (i) of Assumption
5.2, that there exists C > 0 such that

2 inf,cz 0?(2)

0
m(c) x 2 ~

SZ >

for all ¢ > C. Therefore, parts (iii) and (iv) of Assumption 5.1 and part (ii) of Assump-
tion 5.2 imply that

0 < S WAOPT Bl (2]

S§+s

2u? Ite/2 y SUP.ez t>0 E{[Yi(2)]*T}
12inf,cz 02(z) [m(c)]</2 ’

for all ¢ > C, and hence that

QWi ()] E{ Vi) (Zi ()2 F
CIEEOZ;[ ()] {[gg(Jr)e( 17y _

by part (ii) of Assumption 5.1. By part (iii) of Assumption 5.1 and Lindeberg’s theo-
rem (see for example Theorems 27.2 and 27.3 of Billingsley, 1995), we now have that
the conditional distribution of the term > () W;(e)Yy(e)(Zi(c))/Se given F always con-
verges to the standard normal distribution N(0,1) as ¢ — oo (for all possible locations
and weights). The weak convergence of @(c) to Y ~ N(0,02) as ¢ — oo now follows
from the continuous mapping theorem, the bounded convergence theorem (see for ex-
ample Theorem 16.5 of Billingsley, 1995), and the fact that S? = ¢2 as ¢ — co. Sim-
ilarly, the asymptotic independence of & (¢) and X3(c) now follows from the bounded
convergence theorem. O

Remark 5.2. If (X1(c), X5(c)) = (X1,X3) as ¢ — oo, then the bounded convergence
theorem can be used to show that (&} (c), X1(c), X3(c)) = (Y, X1, X3) as ¢ — oo, where Y
and (X1, X3) are independent (see the proof of Lemma 5.1 for a similar argument).

LEMMA 5.3. Suppose that parts (i) and (ii) of Assumption 5.1 and parts (iii) and
(v) of Assumption 5.2 hold. Then

as(c) = Xa(e)/[t(c)]”, where Xs(c) = bas ¢ — cc.

Proof: By part (iii) of Assumption 5.2, we clearly have that
b 1

m(e) G,
~ I+ T | X M) - +o () 3wz

as ¢ — 0o. The result now follows from parts (i) and (ii) of Assumption 5.1 and part (v)
of Assumption 5.2. O

The following theorem specifies the rate at which a(c) converges to « as ¢ — cc as a
function of the choice of the parameter ¢ (see part (ii) of Assumption 5.1).
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THEOREM 5.4. Suppose that Assumptions 5.1 and 5.2 hold. Then the following
statements hold:

(@). When § < (2y —1)/(27), there are two cases:
(i). If \/c/g(c) = g as c — oo, where g € IR, then

Ve(a(e) — a) = X1 (e)a) (c) + gXs(c) + €(c),

where \/1 < X1(c) < uforall c € RY, (@ (c), X3(c)) = (Y, X3) as ¢ — co with Y
and X3 being independent, and ¢(c) = 0 as ¢ — oo.
(i1). If \/c/g(c) = oo as ¢ — oo, then

gle)(@e) —a) = X3 as ¢ — oo.

(b). When 6 = (2y — 1)/(2v), there are two cases:
(). If \/c/g(c) = g as ¢ — oo, where g € IR, then

Ve(a(e) - a) = X1(0)ah (¢) + bd” + gXs(c) + (o),

where \/1 < X1 (c) < uforall c € R, (@) (c), X3(c)) = (Y, X3) as ¢ — oo with Y
and X3 being independent, and ¢(c) = 0 as ¢ — oc.
(ii). If \/c/g(c) = oo as ¢ — oo, then

glo)(alc) —a) = X3 as ¢ — oc.

(c). When 6 > (2v —1)/(2v), there are two cases:
(). If =9 Jg(c) = g as ¢ — oo, where g € IR, then

A1 (a(e) —a) = bd” + gX3 as ¢ — oo.
(ii). If =9 /g(c) — oo as ¢ — oo, then
gle)(@(c) —a) = X3 as ¢ — oo.

Proof: Note that equation (19), Lemmas 5.1 and 5.3, part (i) of Assumption 5.1, and
part (iv) of Assumption 5.2 imply that

_ Xu(9)ai(e) | Xa(e)  (mle)\" | Xs(o)
T e e e ) T
for all ¢ € IR*. Moreover, it is clear that v(1 — §) > 1/2 if and only if § < (27 — 1)/(27).

The result now follows from Lemmas 5.1 and 5.3, part (ii) of Assumption 5.1, part (iv)
of Assumption 5.2, and the continuous mapping theorem. O

alc) —a

Remark 5.5. It is clear from Theorem 5.4 and its proof that when Assumptions 5.1
and 5.2 hold with b # 0, then 6 < (2y—1)/(2v) is a necessary condition for the estimator
a(c) to converge to o at the best possible rate ¢/, and § < (2y—1)/(27) and \/c/g(c) —
g as ¢ — oo, where g € IR, is a sufficient condition for this result. Also, it is frequently
the case that simulation estimators obtained from a sample path of length t have a
principal bias term of the order 1/t, see Remark 3.6, and hence the special case when
~ = 1is of particular interest. In this case, the necessary condition for obtaining the best
possible convergence rate ¢ /2 is given by 6 < 0.5, implying that a(c) will only converge
to a at the best possible rate when the number of locations m(c) grows no faster than the
computational effort t(c) used to estimate the value of the function r at each location.
This is consistent with Theorems 4.9 and B.4, see Remarks 4.11 and B.5 (Theorem B.4
and Remark B.5 are provided in the online appendix to this paper).
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6. CONCLUSION

The use of Bayesian methods to determine the expected performance of a stochastic
system often requires the computation of the quantity o« = E{r(Z)}, where the vector
Z represents the uncertain (input) parameters of the system and the function values
r(z) represent the expected performance of the system when Z = z. We have studied
the bias, consistency, and rate of convergence of three classes of simulation estimators
for o as the total computational effort ¢ grows. We have also provided a general frame-
work for estimating «, and have characterized the convergence rate of the resulting
estimator.

The three specific classes of estimators we consider all involve using simulation to es-
timate the function values r(z) for a number of different values z of the random vector
7. The primary difference between the three approaches lies in the choice of the values
z of Z for which the function values r(z) are estimated. The first approach generates
these values using independent sampling, the second approach uses a quasi-random
sequence, and the third approach is based on Simpson’s numerical integration rule. We
show that the estimators based on Simpson’s rule have the best possible convergence
rate ¢'/2 and that the use of a quasi-random sequence leads to a better convergence
rate than the use of independent sampling. Other specific methods could of course be
used to choose the values of Z (e.g., stratification, Latin hypercube sampling, etc.). The
study of these methods is a valuable direction for future work, but is outside the scope
of the current paper.
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Online Appendix
Computing Bayesian Means Using Simulation
Sigran Andradoéttir, Georgia Institute of Technology
Peter W. Glynn, Stanford University

A. SUPPORTING MATERIAL FOR SECTION 4.1 IN THE MAIN PAPER
Proof of Lemma 4.6: For all ¢ > 0, we have
2 m(c) 1 m(c)
c 2 2 2 2 2
Sttt | s S ) =07 | + | s Y [BIGOP) - )]

i=1 i=1

By part (iv) of Assumption 4.1, part (iii) of Assumption 4.2, Assumption 4.3, and pages
14 and 17 of Niederreiter (1992), it is clear that the second term in the above expression
converges to zero as ¢ — co. Similarly, it follows from part (ii) of Assumption 4.1, part
(i) of Assumption 4.2, and Assumption 4.3 that the third term in the above expression
converges to zero as ¢ — co. This shows that s2/m(c) — o2 as ¢ — co. From part (ii) of
Assumption 4.1, we have that for all ¢ > 0,

se | SEPYie)
m(c) Sc

Veai(c) =

By part (v) of Assumption 4.1, part (ii) of Assumption 4.2, and Lindeberg’s theorem

we have that Zﬁf) Yi(c)/sc = N(0,1) as ¢ — oo. The result now follows from the
continuous mapping theorem. O

Proof of Lemma 4.7: By part (iv) of Assumption 4.2, we clearly have that

m(c)

brY b ¢1(1-9) 1 1
A — Y R E N
Gzle) = c7(1=9) + c7(1=9) < t(c)” " >+ t(c)Y | m(c) b(z) b

i=1

m(c)

I (t(iw) mt@ -

as ¢ — oo. From part (ii) of Assumption 4.1 and Assumption 4.3, we have that
(=9 /t(c)? — k7 as ¢ — oo. The result now follows from the fact that part (iv) of As-
sumption 4.1, parts (v) and (vi) of Assumption 4.2, Assumption 4.3, and pages 14 and
17 of Niederreiter (1992) imply that 52 b(2;) converges to b and e, S e(z,)
toeasc— oco. O

Proof of Lemma 4.8: By the Koksma-Hlawka inequality and part (vii) of Assumption
4.2, we have that

e(2i)

m(c) .
las(c)| = ! r(zi) —« SO(W) as ¢ — oo.

m@) &

The result now follows from Assumption 4.3. O

B. SUPPORTING MATERIAL FOR SECTION 4.2 IN THE MAIN PAPER

The following assumption gives additional details on how Simpson’s rule would be used
to estimate « (see the estimator (18)).

ASSUMPTION B.1. Assume that:
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(i). The random variable r(Z) is integrable.

(ii). For all c € R, the parameters m(c) and t(c) satisfy ¢ = m(c) x t(c).

(iii). The random vector Z can be expressed as Z = h(U), where U is a uniformly
distributed random variable on the set [0,1] and h : [0,1] — Z is a known function.
(iv). Forallcc R  and i=1,...,m(c), let uj(c) = (i — 1)/(m(c) — 1).

(v). For all ¢ € R", the random variables Ti(e)(2i(c)), where z;i(c) = h(u;(c)) and
i € IN, are independent.

(vi). For all c € RY, the weights w;(c), where i = 1,...,m(c), satisfy

(0 = { 1/8(m(c) = 1] if i € {1,m(c)},

4/[3(m(c) — 1)] if 1 < i < m(c) and i is even,
(¢) and i is odd.

Cc

2/[B(m(c) =] ifl<i<m
(vii). For all ¢ > C, where C € IR™, the parameter m(c) satisfies m(c) = 1 + 2|rc?],
where Kk > 0and 0 < § < 1.
For all c € IR™, let
Y-/(C) _ { V t(c)(ft(C)(Zi(C)) - Tt(C)(zi(C)))/z ifi € {1»m(c)}a
¢ V) (Prey(zi(c)) — ooy (2i(e))  if 1 < i <mfe),

where z1(c), ..., Zn()(c) are defined in part (v) of Assumption B.1. The results given
in the remainder of this section will require some (or all) the parts of the following
technical assumption.

ASSUMPTION B.2. Assume that:

(i). For all z € Z, the random variables #(z), where t > 0, satisfy E{t[fi(z) —
r+(2)]2} = 02(2) uniformly in z € Z as t — oo, where 0%(z) € R".
(i1). For all € > 0, the random variables Y/ (c), where i € IN and c € R™, satisfy

(m(c)—1)/2 1
anolo Z (se)gE{[YQ/j (c)]QI{‘YQ/j(C)‘ZESZ}} =0 and
Jj=1 ¢
(m(c)+1)/2 1
. / 2 —
CILH;O z:l (Sg)QE{[Yijl(C)] I{lYéjfl(c)\Zesg}} - 07
j=

where (s¢) = {7702 B{[Y3;(0)?} and (s2)? = X772 B{[Y3;_(c)]?) for all
ce R

(iii). The function o® o h : [0,1] — IR is two times continuously differentiable.

(iv). The function r; satisfies r.(z) = r(z) + b(z)/t" + e(z)o(1/t7) as t — oo for all
z € Z, where v > 0, b(2),e(z) € IR for all z € Z, and the o(1/tY) term is uniform in
z € 2.

(v). The function bo h : [0,1] — IR is two times continuously differentiable.

(vi). The function eo h : [0,1] — IR is two times continuously differentiable.

(vii). The function r o h: [0,1] — IR is four times continuously differentiable.

To conserve space, we do not present results on the bias and consistency of the es-
timator a(c) as ¢ — oo, but focus on studying the rate of convergence of &(c) to « as
¢ — 0. As in equation (9), let

a(c) —a=ai(c) + az(c) + as(c), (20)
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where

3
=
&

ai(c) = 4 w; (0)[Fe(c) (2i(€)) — Te(e) (2i(0))],

.>
Il
-

3
=
&

jo)
=
&

I
g

w;(c)[ry(e)(2i(c)) —r(zi(c))], and

[

(
az(c) = wi(c)[r(zi(c)) —

1

for all ¢ > 0. As before, define b = E{b(2)}, e = E{e(2)}, and 0 = E{0?(Z)}, and
note that part (iii) of Assumption B.1 and parts (iii), (v), and (vi) of Assumption B.2

imply that the random variables b(Z), e¢(Z), and 0?(Z) are integrable. We shall need
the following three lemmas.

~.

3

o
~

~.
Il

LEMMA B.1. Suppose that Assumption B.1 and parts (i), (ii), and (iii) of Assump-
tion B.2 hold. Then

Vear(e) = N(0,1002/9) as ¢ — oo.

Proof: For all ¢ > 0, we have

1 (m(c)=1)/2
+ (m(c) [E{[Yz’j(c>]2}—0—2(@]-(@))]), @1)

(52)2 _ o? 1 (72 2 o? 1 10 \12 ’ 2
e = 2 4 ( ]z:: 0%(z25-1(c)) — o> + (o) [E{[Y1(C)] b+ E{[Y 0 ()] }}
1

(m(c)—1)/2
+(m<c> , [E{[Yéj-ﬂcﬂ?}—o2<z2j_1<c>>])- 22)

By part (vii) of Assumption B.1, part (iii) of Assumption B.2, and equation (2.1.12) in
Davis and Rabinowitz (1984), we have that the second term in equation (21) converges
to zero as ¢ — oo. Similarly, by part (vii) of Assumption B.1, part (iii) of Assumption B.2,
and equation (2.1.11) in Davis and Rabinowitz (1984), we have that the second term in
equation (22) converges to zero as ¢ — co. Moreover, from part (vii) of Assumption B.1
and part (i) of Assumption B.2, we have that the third term in equation (21) and the
third and fourth terms in equation (22) converge to zero as ¢ — oo. This shows that
(s¢)2/m(c) — o%/2 and (s2)?/m(c) — 0%/2 as ¢ — oo.
From parts (ii) and (vi) of Assumption B.1, we have that for all ¢ > 0,

_4sty/m(c) o Z;Z%c>71)/2 Yyi(e)  259/m(c) " Z;Z%C)“)/Q Y3 -4(c)
~ 3(m(c) - 1) s¢ 3(m(c) — 1) 59 '

(&)

Vea(c)

By part (v) of Assumption B.1, part (ii) of Assumption B.2, and Lindeberg’s theorem,
we have that the terms Z;ch)fl)ﬂ Yy;(c)/sc and Zygc)ﬂ)ﬂ Yy, _1(c)/s¢ both converge
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weakly to the standard normal distribution N(0,1) as ¢ — oo. Since part (v) of As-
sumption B.1 implies that the two terms in the above expression are independent, the
result now follows from the continuous mapping theorem and the additive property of
the normal distribution. O

LEMMA B.2. Suppose that Assumption B.1 and parts (iv), (v), and (vi) of Assump-
tion B.2 hold. Then

b27KY 1
ao(c) = n 0 (

A1=5) cv(1—5)> as e ee

Proof: By part (iv) of Assumption B.2, we clearly have that

b2V K b (c"*(l_‘s) 1 m()

6a(e) = it + s (e _gvm) ey ;wi(c)b(zi(c))—b

+o (i) 32 )

i=1

as ¢ — oo. From parts (ii) and (vii) of Assumption B.1, we have that ¢*(*~%) /t(e)? —
27k7 as ¢ — oo. The result now follows from the fact that part (vii) of Assumption B.1,
parts (v), and (vi) of Assumption B.2, and equations (2.1.11) and (2.1.12) in Davis and
Rabinowitz (1984) imply that

m(c) (m(c)—1)/2 (m(c)+1)/2

2b

Yo wilb(zi(e) bl < | Y wa()b(zai(e) = |+ | Y. wa1(e)b(225-1(c)) —

3
i=1 j=1 j=1

= (op) = (@)

and ‘Zﬁ(f) wi(c)e(zi(c)) — e’ <O(45)asc—o00.0

LEMMA B.3. Suppose that Assumption B.1 and part (vii) of Assumption B.2 hold.
Then

. 1

|as(c)| < O <c4‘5> as ¢ — oo.
Proof: By part (vii) of Assumption B.2 and equation (2.2.6) in Davis and Rabinowitz
(1984), we have that

m(c)

Gs(0)] = | 3 wi@r(s()) —a| <0 (chm) as ¢ oo,

i=1

The result now follows from part (vii) of Assumption B.1. O
The following theorem specifies the rate at which &(c) converges to « as ¢ - o0 as a
function of the choice of the parameter ¢ (see part (vii) of Assumption B.1).

THEOREM B.4. Suppose that Assumptions B.1 and B.2 hold. Then, the following
statements hold:

(@). If 6 > v/(v + 4) and v(1 — &) > 1/2, then
Ve(a(e) —a) = N(0,106%/9) as ¢ — oc.
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(®). If 6 > v/(v+4) and v(1 — &) = 1/2, then
Ve(a(e) —a) = N(b2767,100%/9) as ¢ — oc.
(¢). If § > /(v +4) and v(1 — §) < 1/2, then
A1 (a(c) —a) = 1277 as ¢ — oo,

(d). If § <~/(v+4) and 6 > 1/8, then

Ve(a(e) —a) = N(0,100%/9) as ¢ — oo.
(e). If 6 <~/(y+4)and § =1/8, then

Vela(e) —al < X(¢) +O(1) as ¢ — oo,

where X (c) = N(0,1002/9) as ¢ — .
. If § <~v/(y+4) and § < 1/8, then

*®la(e) —al < X(e)+0(1) as ¢— oo,
where X (c) = 0as ¢ — oc.

Proof: Note that § > /(v +4) if and only if 4§ > (1 — §). The result now follows from
equation (20), Lemmas B.1, B.2, and B.3, and the continuous mapping theorem. O

Remark B.5. From parts (a), (b), (d), and (e) of Theorem B.4, it is clear that when
1/8 < § < (2y — 1)/(2v) and Assumptions B.1 and B.2 hold, then the estimator &(c)
converges to a at the rate ¢c~/? as ¢ — co. Moreover, the interval [1/8,(2y — 1)/(27)] is
non-empty for all v > 4/7 and includes the value § = 1/2 for all v > 1 (as would typically
be the case in practice). Thus, we can always obtain the best possible convergence rate
c~Y/2 in this situation (as long as Assumptions B.1 and B.2 hold and v > 4/7), and
when v > 1, we can always obtain the best possible convergence rate with § = 1/2.
This is an improvement over the rate of convergence results obtained in Sections 3.1
and 4.1, see Remarks 3.5 and 4.11. However, as in Section 4.1, this improvement is
achieved using assumptions that may be difficult to verify in practice, including the
smoothness assumptions in parts (iii), (v), (vi), and (vii) of Assumption B.2. Note that
we have more flexibility here in the choice of the growth rates of m(c) and t(c) with
respect to ¢, and that we can even let t(c) grow at a faster rate than m(c) and still obtain
the best possible convergence rate. This is again an improvement over the independent
sampling and quasi-random approaches, see Remarks 3.5 and 4.11.

Remark B.6. If part (vii) of Assumption B.2 is replaced by the assumption that the
function r o h : [0,1] — IR is two times continuously differentiable, then one can use
equations (2.1.11) and (2.1.12) of Davis and Rabinowitz (1984) to show that |as(c)| <
O(1/c*) as ¢ — oc. This fact can then be used together with Lemmas B.1 and B.2 to
obtain a revised version of Theorem B.4.
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