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Let K be a global field and X, Y two proper, connected K-schemes, with X normal and Y regular. Let
f : X → Y be a finite, flat, generically Galois K-morphism which is tamely ramified along a normal crossings
divisor on Y . For closed points y ∈ Y outside of the branch locus of f and points x ∈ f−1(y), we use the
‘geometric’ inertia groups of f and intersection numbers involving y and the branch locus in order to compute
the ‘arithmetic’ inertia groups in Gal(K(x)/K(y)) at all places of K(y) except for those which lie over some

fixed finite set of places Σf of K, with Σf depending only on f . This generalizes a theorem of Beckmann,

who considered geometrically connected, generically Galois covers of P1
K , with K a number field.

Introduction

Let X and Y be proper, normal, connected schemes over a field K, and let f : X → Y be a finite, flat
K-morphism which is generically Galois (i.e., the extension of function fields K(Y ) ↪→ K(X) is Galois) with
Galois group G. It is well-known that for the Zariski-open complement U ⊆ Y of the branch locus of f ,
the map f−1(U) → U is a (right) G-torsor. Thus, for any y ∈ U and x ∈ f−1(y), the extension of fields
K(x)/K(y) is Galois and the stabilizer in G of x maps isomorphically to the Galois group Gal(K(x)/K(y)).
In particular, when the fiber f−1(y) is irreducible, then Gal(K(x)/K(y)) = G.

If K is a global field, it is natural to ask how the injection Gal(K(x)/K(y)) ↪→ G relates ‘arithmetic’
inertia groups in Gal(K(x)/K(y)) with ‘geometric’ inertia groups in G, corresponding to ramification in
the map f . The same question can be asked more generally when K is the function field of a connected,
normal, noetherian scheme S with positive dimension, where ‘arithmetic’ ramification in Gal(K(x)/K(y))
corresponds to ramification in K(x) of the valuations on K(y) arising from codimension 1 points of the
normalization of S in K(y).

A special case of this question was investigated by S. Beckmann. She considered the case when K is
a number field (with integer ring OK), Y = P1

K , and X is a geometrically connected curve over K. Let
a1, . . . , am be the finitely many branch points of f . Since K has characteristic 0, so f is tamely ramified
over each ai, the inertia groups of f over the ai’s are cyclic subgroups of G.

For any closed point y ∈ P1
K , it is not difficult to show that the scheme-theoretic closure {y} in P1

OK
,

which is proper over OK , is also quasi-finite and therefore finite over OK . For example, if y, y′ ∈ P1
K are

distinct closed points, then {y} ∩ {y′} is artinian. In particular, when y is a K-rational point distinct from
the ai’s, the intersection {y} ∩ {ai} is an artinian closed subscheme of {y} ' Spec(OK). Let Ip(y, ai) ≥ 0
denote the length of the part of {y} ∩ {ai} which lies over p ∈ Spec(OK), so obviously Ip(y, ai) = 0 for all
but finitely many p (depending on y and ai).

Let Σf denote the finite set of primes p of OK at which one of the following occurs:

• some K(ai)/K is ramified at p,
• Ip(ai, aj) > 0 for some i 6= j (i.e., the closures {ai} and {aj} in P1

OK
meet over p),

• the p[t]-adic valuation on K(P1
K) = K(t) is ramified in K(X),

• p divides the degree of f .

Note that Σf can be effectively determined and depends only on the the geometry of f and the arithmetic
in some of the fibers of f . Beckmann proved the following result:
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Theorem 0.1. [B, Prop 4.2] For any prime p 6∈ Σf , any K-rational point y ∈ P1
K distinct from the ai’s,

and any x ∈ f−1(y), p is unramified in K(x) if Ip(a, ai) = 0 for all i, and if some Ip(y, ai0) > 0 then the
inertia groups at p in Gal(K(x)/K) are the subgroups of Ip(y, ai0)th powers in the (cyclic) inertia groups of
f over ai0 (these subgroups may be trivial).

One interesting application of Theorem 0.1 is given in [DG, §3], where it is used to analyze the finiteness
of the number of solutions to certain generalized Fermat equations. Another application of Theorem 0.1 is
that, in certain cases (e.g., generically Galois coverings of P1

K with prime power degree) it allows one to
make the Hilbert Irreducibility Theorem effective by using just the Chinese Remainder Theorem rather than
an effective version of the Cebotarev Density Theorem. This is explained in [B, 1.2, 1.3].

Beckmann’s proof of Theorem 0.1 uses topological considerations over C (hence the geometric connect-
edness hypothesis) and algebraic calculations based on Galois theory, Abhyankar’s Lemma, and the fact
that the base is P1

K . The calculations use that K has characteristic 0, that the discrete valuations on K
have perfect residue fields, and that y is K-rational. Grothendieck’s theory of specialization for the tame
fundamental group [SGA1, XIII, §2.10ff] does not seem to yield Theorem 0.1, but it suggests that Beck-
mann’s result is best understood via geometry and that such a viewpoint should lead to a similar result for
generically Galois, tamely ramified coverings of curves and higher-dimensional varieties over more general
base fields (such as global fields with positive characteristic).

The purpose of this paper is to prove such a generalization. The requirement above that Σf contains
primes dividing the degree of f is used in order to avoid wild ramification. Geometric considerations will
show that the other conditions in the definition of Σf (which do have geometric significance) already take
care of this problem. Most of our effort is devoted to reformulating the basic problem in the correct geometric
framework. Once this is done, the actual proof of our generalization is very conceptual. For example, we
will see that the ‘arithmetic’ condition that all K(ai)/K are unramified at p 6∈ Σf is simply a convenient
way to ensure that a certain ramification divisor is a normal crossings divisor over p.

We now describe our version of Theorem 0.1 only in the case of curves, with K a global field (the essential
point is that we can include global fields with positive characteristic). Let G and f : X → Y be as at the
beginning, but assume X and Y are curves. For each branch point ai ∈ Y of f , let Ii ⊆ G be an inertia
group for f at ai. Assume that f is tamely ramified over each ai (this is automatic when K has characteristic
0), so the Ii’s are cyclic. Let BX/Y ↪→ Y be the (reduced) branch scheme of f ; i.e., the closed subscheme
defined by the annihilator of f∗Ω1

X/Y on Y . The underlying set of BX/Y is the set of ai’s. A special case of
our main result (Theorem 2.4) is the following:

Theorem 0.2. With the notation as above, choose any closed point y ∈ Y distinct from the ai’s and any
x ∈ f−1(y), so K(x)/K(y) is a finite Galois extension with Gal(K(x)/K(y)) ⊆ G. There exists a finite set of
non-archimedean places Σf of K, depending only on f (and not on x or y), so that for any non-archimedean
place v of K(y) not lying over Σf , we can define an intersection number (y,BX/Y )v ≥ 0 with the following
properties:

(1) For all but finitely many v, depending on y, (y,BX/Y )v = 0.
(2) If (y,BX/Y )v = 0, then v is unramified in K(x).
(3) If (y,BX/Y )v > 0, the inertia groups at v in Gal(K(x)/K(y)) are conjugate in G to the subgroup of

(y,BX/Y )vth powers in one of the cyclic groups Ii (this subgroup may be trivial)

Note that in Theorem 0.2, we do not require y to be a K-rational point on Y (nor do we require that
K(y)/K is separable or that Y is smooth over K at y). The definition of (y,BX/Y )v and the particular i
which occurs in the third case of Theorem 0.2 can be described in terms of the geometry of certain integral
models of f (as we will see in §2). Theorem 0.2 is a special case of Theorem 2.4 below, in which branch
points are allowed to “meet over v” and K can be the fraction field of any noetherian normal domain A
with infinitely many height 1 primes (i.e., A has dimension > 1 or A is Dedekind and has infinitely many
maximal ideals), provided that either

• A is excellent, or
• the curves X and Y are smooth over K and the residue field extensions K(ai)/K are separable.
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In particular, no excellence hypotheses are needed if K has characteristic 0. The excellent case includes
most interesting cases and we can formulate Theorem 0.2 as a result about curves over the fraction fields of
excellent Dedekind domains, rather than as a result about curves over global fields. Thus, Theorem 0.1 is
an algebro-geometric assertion, not an arithmetic one.

After a review of some relevant background in §1, we begin the setup for the proof of Theorem 0.2 (or
rather, a more general result) in §2. This proof consists of two steps. The first step is mostly linguistic and
consists of constructing the right kind of ‘integral model’ of f : X → Y . This is not difficult. Arithmetic
ramification in the closed fibers of f can be viewed as geometric data in such models. The second step is to
combine this geometric viewpoint with the étale local description of tamely ramified maps (via Abhyankar’s
Lemma) in order to relate the ‘arithmetic’ inertia groups in the closed fibers of f with the ‘geometric’ inertia
groups in G of the map f . The desired result follows from this by local calculations, as we explain in §3. In
§4, we consider cases in which f is not generically Galois.

Although our motivation is the case of tamely ramified coverings of curves, we formulate most of our
discussion in arbitrary dimension for tamely ramified covers with a normal crossings branch divisor. This
greater generality should clarify the geometric reasoning.

Terminology. For any local ring (R,m), we let Rh denote the henselization of R. The local R-scheme
Spec(Rh) is the limit of ‘all’ pointed étale maps (X,x) → (Spec(R),m) with k(x) = R/m. If we choose a
separable closure i : R/m ↪→ (R/m)sep and instead require our pointed étale maps to come equipped with
an embedding of k(x) into (R/m)sep over i, the resulting limit is called a strict henselization Rsh

m,i of R. An
isomorphism between separable closures of R/m uniquely lifts to an isomorphism between the corresponding
strict henselizations. If the choice of i does not matter or is clear from context, we write Rsh

m instead of Rsh
m,i.

For basic properties of henselizations and strict henselizations, including universal mapping properties and
the compatibility of formation of (strict) henselizations with respect to finite maps (especially surjections),
we refer the reader to [EGA, IV4, 18.6–18.8]. In particular, since a semi-local ring which is integral over a
local henselian ring is a finite product of henselian local rings [EGA, IV4, 18.6.8], it follows by a direct limit
argument that the normalization of a henselian local domain in a finite extension of its fraction field is again
a henselian local domain. We use this without comment.

For any map of locally noetherian schemes X → S, we say that X is a regular (resp. normal) S-scheme
when X is intrinsically regular (resp. normal) as a scheme; that is, all of the noetherian local rings OX,x
for x ∈ X are regular (resp. normal). In particular, this does not mean that the map X → S is a regular
(resp. normal) morphism in the sense of [EGA, IV2, 6.8.1] (i.e., the fibers of X → S do not have to be
geometrically regular (resp. geometrically normal)).

For any field k, we define a curve over k to be a separated, finite type k-scheme with pure dimension 1.
We do not require curves to be connected (this is purely for technical reasons, so we can avoid geometric
connectivity assumptions and still use change of the base field).

A local map of local rings A→ B is said to be essentially étale if B is a local ring on an étale A-algebra.
For example, henselizations and strict henselizations of a local ring R are constructed as direct limits of
essentially étale R-algebras. A map of schemes g : V → W is said to be ind-étale if, for every v ∈ V , the
OW,g(v)-algebra OV,v is a direct limit of essentially étale OW,g(v)-algebras. This property is preserved by base
change.

Notation. When forming fiber products X ×Y Z with X, Y , or Z equal to an affine scheme Spec(A), we
usually write A instead of Spec(A) in the fiber product notation (e.g., X ×Y A if Z = Spec(A)).

For a point x on a scheme X, we write k(x) for the residue field of the local ring OX,x. The same notation
will be used without any risk of confusion in case X is a scheme of finite type over a base field which is also
denoted k. However, in such cases, we will often write k(X) for the product of the residue fields of X at its
finitely many generic points.

A separable closure of a field K is denoted Ksep.
If R is a strictly henselian local ring and e ∈ Z is a unit in R, we often write µe, instead of µe(R), for the

cyclic group of eth roots of unity in R. This should not cause confusion.
The symbol

∐
is used to denote a disjoint union.
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For a ring R, we denote by R× the group of units in R. For a module M over R, we denote by annR(M)
the ideal of elements r ∈ R which annihilate M .

For elements g1, . . . , gn in a group G, we denote by 〈gi〉 the subgroup of G generated by the gi’s.

1. Galois Groups, Inertia Groups, and Tame Covers

Since we are concerned with Galois groups and inertia groups from a geometric point of view, we begin
with a review of some standard geometric facts concerning inertia groups and Galois maps. All assertions
in this section are explained in much greater detail in [SGA1, Exp. V, XIII].

Let G be a finite group. A faithfully flat, quasi-compact map π : X → Y between two schemes is said
to be a (right) G-torsor if we are given a right action of G on X (over Y ) such that the map of schemes
X × G → X ×Y X given by “(x, g) 7→ (x, x.g)” is an isomorphism. This implies that π is finite étale with
constant degree equal to the order of G. When X and Y are connected and non-empty, a right action of G
on X (over Y ) makes π a right G-torsor if and only if π is étale with constant degree equal to the order of
G and the map of groups G→ Aut(X/Y )0 is an isomorphism, where (·)0 denotes the “opposite group.” In
this case, we say that π is Galois and G is the Galois group. The property of being a G-torsor is preserved
by base change, whereas the property of being Galois is not, due to the connectedness conditions. When
passing to the fibers of a torsor, the following result will be used frequently:
Lemma 1.1. Let G be a finite group, Y = Spec(k) for a field k, and X = Spec(k′) for a non-zero, finite
k-algebra k′ which is equipped with a left G-action. The finite flat map X → Y is a (right) G-torsor if and
only if X is reduced, k(x)/k is Galois for all x ∈ X, G acts transitively on X, and the stabilizer group in G
of each x ∈ X maps isomorphically to Gal(k(x)/k) = Aut(Spec(k(x))/Spec(k))0.

Consider a finite, flat, generically étale map π : X → Y between normal noetherian schemes. The branch
scheme BX/Y is defined to be the closed subscheme of Y defined by the annihilator of π∗(Ω1

X/Y ), so the
complement of the branch scheme is the largest open in Y over which π is étale. Let Spec(k(Y )) be the
scheme of generic points of Y and let Spec(k(X)) be the scheme of generic points of X. We say that π is a
generic G-torsor if the map

X ×Y Spec(k(Y )) = Spec(k(X))→ Spec(k(Y ))

is a G-torsor. Since X is the normalization of Y in k(X), every automorphism of k(X) over k(Y ) uniquely
extends to an automorphism of X over Y . Thus, by a normalization argument, we see that a generic G-torsor
structure on π is ‘the same’ as a G-torsor structure on π−1(U) → U , where U is the complement of BX/Y

in Y .
Suppose that π is a generic G-torsor. From Lemma 1.1, it follows that for any point y ∈ Y outside of

BX/Y and any x ∈ π−1(y), the extension k(x)/k(y) is a finite Galois extension and the stablizer in G of x
maps isomorphically to Gal(k(x)/k(y)). Moreover, the action of G on π−1(y) is transitive, so the subgroups
Gal(k(x)/k(y)) are conjugate in G for x ∈ π−1(y). On the other hand, for any y ∈ BX/Y , it can be shown
that G acts transitively on π−1(y) and for any x ∈ π−1(y) the extension k(x)/k(y) is merely normal (perhaps
inseparable), with the stabilizer of x in G surjecting onto Aut(k(x)/k(y)). The kernel of this surjection is
defined to be the inertia group I(x|y) of x over y. These inertia groups are conjugate in G for all x over a
fixed y ∈ Y , and we call any I(x|y) an inertia group over y.

Now drop the hypothesis that π is a generic G-torsor, but assume that Y is regular. Let {ai} be the
generic points of BX/Y . Since Y is regular, by the Zariski-Nagata theorem on purity of the branch locus
[SGA1, Exp X, Thm 3.1], the points ai ∈ Y are all codimension 1 points. We say that π is tamely ramified if,
for all i and all x ∈ π−1(ai), the natural map of discrete valuation rings OY,ai → OX,x is tamely ramified in
the usual sense; i.e., the residue field extension k(x)/k(ai) is separable and the ramification degree of OX,x
over OY,ai is prime to the characteristic of k(ai). Of course, when π is a tamely ramified generic G-torsor,
the inertia groups in G over each ai are cyclic with order relatively prime to the characteristic of k(ai). It is
well-known that if a generic G-torsor π is tamely ramified over ai and x ∈ π−1(ai), then there is a canonical
isomorphism

I(x|ai) ' µe(x|ai)(k(ai)sep),
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where e(x|ai) is the ramification degree of π at x.
In the special case where X and Y are of finite type over a field k, with π a generic G-torsor and a

tamely ramified k-morphism, the inertia groups of G over ai are ‘geometric’ in nature, in the sense that they
behave well with respect to a separable extension of the base field. More precisely, consider base change by
a separable extension k′ of k. Each ai decomposes into a finite set of (reduced) points aij ∈ Y ×k k′. The
aij ’s are the generic points of the branch scheme of π ×k k′. The following lemma is not difficult to prove
and will be used later on, when we compute inertia groups after making a separable change of the base field.

Lemma 1.2. For any j, the set of inertia groups in G over aij is equal to the set of inertia groups in G
over ai.

We will be particularly interested in the case of tamely ramified π for which the branch scheme BX/Y is
a normal crossings divisor (which is automatic in the case of curves). Recall that an effective Cartier divisor
D on a regular scheme Y is said to be a strictly normal crossings divisor if D is Zariski-locally defined by
a product of part of a regular sequence of parameters. In more geometric terms, D is reduced and, Zariski-
locally on Y , is set-theoretically a union of regular hypersurfaces, arbitrary intersections of which are again
regular. Slightly more generally, if we relax ‘Zariski local’ to ‘étale local’, we get the notion of a normal
crossings divisor D on a regular scheme Y .

The relative version of this concept goes as follows. If Y is a smooth scheme over some base S, then a
normal crossings divisor on Y relative to S is an effective relative Cartier divisor D over Y over S which is
étale-locally (on Y ) isomorphic to the crossing of several coordinate hyperplanes in affine space (over S). Of
course, when S is regular, this relative notion is a special case of the non-relative notion defined above.

For a rather degenerate example of normal crossings divisors, consider an effective divisor D on a regular
curve C over a field k. The divisor D is a normal crossings divisor precisely when the corresponding closed
subscheme of C is reduced, and D is a normal crossings divisor relative to k precisely when, in addition,
k(x)/k is separable for each of the finitely many closed points x in the support of D. Thus, in the case of
curves over a field, the notion of a normal crossings divisor is not interesting. However, this concept will
clarify what is really going on in our later considerations.

As a convenient reference for later on, we now mention some basic properties of normal crossings divisors.

Lemma 1.3. An effective Cartier divisor D on an excellent, regular scheme Y is a (strictly) normal crossings
divisor in a Zariski open neighborhood of y ∈ Y if and only if the induced divisor Dy on the local scheme
Spec(OY,y) is a (strictly) normal crossings divisor.

Let D be an effective Cartier divisor on a quasi-compact, quasi-separated smooth S-scheme Y , with D a
normal crossings divisor relative to S. If {Si} is a (filtered) inverse system of quasi-compact, quasi-separated
schemes with affine transition maps and inverse limit S, then the pair (D,Y ) over S is the base change of
an analogous pair (Di, Yi) over some Si, with Di a normal crossings divisor on Yi relative to Si.

Proof. The essential content of the proof consists of the many tedious results in [EGA, IV3, §8–§12] on inverse
limits of schemes and the behavior of all ‘reasonable’ properties of schemes with respect to such limits. The
idea is this. If S = Spec(A) and A = lim−→Ai is a direct limit of rings, then any finitely presented A-scheme
is defined in terms of finitely many equations, all of whose coefficients come from some Ai, and so any such
A-scheme should be a base change of a finitely presented Ai-scheme; likewise with finitely presented quasi-
coherent sheaves or maps between such schemes or sheaves. The theory in [EGA, IV3, §8–§12] verfies that
not only is this true, but more importantly all reasonable properties of schemes, sheaves, and morphisms,
including flatness of maps and exactness of suitable complexes of quasi-coherent sheaves (which are not
visibly ‘defined by finitely many equations’), also ‘descend’ through such limits. For example, if (D,Y ) is
as in the second part of the lemma, with D defined by some sequence of functions {f1, . . . , fn} on Y which
form a regular sequence relative to S, then if we desend the data of the fj ’s to some Si-scheme Yi, we want
this to still be a regular sequence relative to Si, or perhaps relative to Si′ after base change to Si′ for some
i′ ≥ i. Intuitively, since the desired property holds after base change all the way up to S, it should hold
after base change to some Si′ . This follows from [EGA, IV3, 11.3.9]. Using the theory of limits in this way,
we get the second part of the lemma.
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For the first part of the lemma, we use this theory of limits (applied in the elementary case of a local
ring viewed as a limit of ‘basic affine opens’) and the fact that the regular locus on an excellent scheme
is always open [EGA, IV2, 7.8.3(iv)]. The theory of limits takes care of regularity of sequences and étale
neighborhoods, and the openness of the regular locus is relevant because we need to know that if a closed
subscheme Z of Y through y (such as one defined by several of the equations cutting out D) has regular
local ring OZ,y, then Z has an open neighborhood of y ∈ Z which is regular; this is exactly the meaning of
‘openness of the regular locus’ on the (excellent) scheme Z. �

For our purposes, the importance of the notion of a normal crossings divisor is its role in:

Lemma 1.4. (Abhyankar’s Lemma) Let Y be a regular noetherian scheme, X a normal noetherian scheme,
and f : X → Y a finite, flat, generically étale map which is tamely ramified. If the support of the branch
scheme of f coincides with the support of a normal crossings divisor D on Y , then

• X is regular,
• BX/Y = D as closed subschemes of Y , so BX/Y is a normal crossings divisor on Y ,
• for each y ∈ BX/Y and x ∈ f−1(y), there is an isomorphism of Osh

Y,y-algebras

(1.1) Osh
X,x ' Osh

Y,y[T1, . . . , Tr]/(T e11 − f1, . . . , T
er
r − fr),

where f1, . . . , fr define the normal crossings divisor D in an étale neighborhood of y and e1, . . . , er ≥ 1
are relatively prime to the characteristic of k(y).

Proof. The essential content is [SGA1, XIII, Prop 5.2, Cor 5.3], but at the suggestion of the referee we
explain why. For all y ∈ Y , we have

X ×Y Osh
Y,y '

∏
x∈f−1(y)

Osh
X,x.

Since the hypotheses are preserved by the base change Spec(Osh
Y,y) → Y (e.g., the normality and tameness

assumptions are not harmed by ind-étale base change) and it suffices to check the conclusions after all such
(flat) base changes (e.g., Osh

X,x is regular if and only if OX,x is regular), we are reduced to the case where Y
is local and strictly henselian with closed point y, so X =

∐
Xi is a finite disjoint union of local and strictly

henselian schemes Xi. If we can prove the theorem for each Xi → Y , then

BX/Y =
⋂
i

BXi/Y =
⋂
i

D = D.

Thus, we may assume X is connected.
Recall that the tame fundamental group πt1(Y,D) of Y relative to D classifies connected normal finite

Y -schemes which are étale over Y − D and tamely ramified over the generic points of D (e.g., X → Y ).
Since Y is regular, local, and strictly henselian, [SGA1, XIII, Cor 5.3] gives the determination of the tame
fundamental group πt1(Y,D) for Y relative to the divisor D. This group is abelian, so X is generically Galois
over Y . Let D be defined by fi’s, so these form a regular sequence cutting out regular subschemes of Y . In
particular, the fi’s are relatively prime in the UFD OY,y. Once we know that (1.1) holds, it is clear by the
definition of normal crossings divisor and the regularity of Y that X is regular. Likewise, since the exponents
in (1.1) are invertible on the regular local Y , a direct computation gives the equality of ideal sheaves

ann(f∗Ω1
X/Y ) =

⋂
(fiOY ) = (

∏
fi)OY ,

so BX/Y = D as closed subschemes of Y .
Thus, we just have to verify (1.1). Since X → Y is generically Galois, the (tame) ramification degrees of

X → Y at all points over the generic point of (fi) are equal. Calling this common number ei, it follows from
[SGA1, XIII, Prop 5.2] that all of the ei’s are actually invertible on all of Y and for the regular scheme

Y ′ = Spec OY,y[T1, . . . , Tr]/(T e1 − f1, . . . , T
er − fr),
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the normalization of the reduced Y ′-scheme X ×Y Y ′ is finite étale over Y ′. But Y ′ is local and strictly
henselian, so the normalization of X ×Y Y ′ is a finite disjoint union of copies of Y ′. Choosing any one of
these components, we claim that the natural finite map Y ′ → X is an isomorphism. Obviously

Aut(Y ′/Y ) ' µe1 × · · · × µer ,

and the intermediate X corresponds to some subgroup G in Aut(Y ′/Y ). If we can show that G = 1, then
Y ′ = X by connectedness/normality and we are done. To see that G = 1, it suffices to check that G
projects to 1 in each µei . But the quotient µei of Aut(Y ′/Y ) corresponds to the inertia group for Y ′ over the
codimension 1 generic point ξi of (fi), and Aut(X/Y ) compatibly projects onto the same µei (rather than a
proper quotient of it) by the very definition of ei; what we are using here is that Y ′ and X have the same
(tame) ramification degrees over the ξi’s. The kernel G of Aut(Y ′/Y ) � Aut(X/Y ) therefore does project
to 1 in each µei , as desired. �

When the conditions in Abhyankar’s Lemma hold, we say that f is tamely ramified along a normal
crossings divisor. As we noted in the proof above, the map of fraction fields corresponding to (1.1) is Galois,
with Galois group canonically isomorphic to µe1 × · · · × µer , where (ζ1, . . . , ζr) sends Tj to ζjTj .

2. Integral Models

For the rest of this paper, we fix a finite, generically étale, surjective map fK : XK → YK between proper,
normal schemes over a field K, with YK regular and XK , YK of pure dimension d ≥ 1. Assume also that
fK is tamely ramified along a normal crossings divisor. We want to relate ramification in the map fK with
‘ramification of codimension 1 points’ in the closed fibers of fK .

In order to make sense of ‘ramification of codimension 1 points’ in the fibers f−1
K (y) for closed points

y ∈ YK , we assume that K is the function field of a connected, normal, noetherian scheme S. The cases of
most interest below will be when S has infinitely many codimension 1 points (i.e., the generic point is not
open in S). Fix a choice of S. For example, when K is finitely generated over its prime field (resp. over a
field k), we can choose S to be a finite type scheme over Z (resp. over k). For technical reasons, we need to
set things up for more general S, including the case S = Spec(R) for a discrete valuation ring R. The case
S = Spec(K) is uninteresting.

Consider an arbitrary finite extension K ′ of K and let S′ → S denote the normalization of S in K ′ [EGA,
II, 6.3.6]. A codimension 1 point s′ in K ′ is defined to be a codimension 1 point s′ ∈ S′. This concept
depends on the choice of S, but it generalizes the usual notion of ‘prime (or non-archimedean place) in a
global field’. We define the local ring Os′ = OS′,s′ ⊆ K ′.

Although S′ might not be noetherian (e.g., if K ′/K is not separable and S is not Japanese), by the
Krull-Akizuki Theorem [M, Thm 11.7 and Corollary] we know that the normalization Õs of Os in K ′ is a
semi-local Dedekind domain whose maximal ideals have residue fields which are of finite degree over k(s).
Thus, Os′ is a discrete valuation ring with residue field finite over k(s) and there are only finitely many
codimension 1 points s′ in K ′ which lie over a given codimension 1 point s ∈ S (corresponding to the finitely
many maximal ideals in Õs). Terminology from classical valuation theory (e.g., unramified, tamely ramified,
inertia groups) will be used when discussing these codimension 1 points.

In order to study ramification of codimension 1 points in the closed fibers of fK , we will need to use
certain models of fK over open subschemes of S. The construction and basic properties of the models we
need are straightfoward, and are intended to extend properties of fK and XK , YK over non-empty opens in
S.

We define a normal integral model of fK to be a triple (U, fU , i) where
• U ⊆ S is a non-empty open subscheme,
• fU : XU → YU is a finite flat map between proper, flat U -schemes, with XU normal and YU regular,
• i is an identification of the K-fiber map fU ×U K with fK ,
• all fibers of XU → U and YU → U are of pure dimension d,
• the branch scheme BXU/YU ↪→ YU is the scheme-theoretic closure of its generic fiber BXK/YK ,
• the branch scheme BXU/YU is a normal crossings divisor in YU .



8 BRIAN CONRAD

When XK and YK are K-smooth and BXK/YK is a normal crossings divisor relative to K, we define a smooth
integral model of fK to be a triple (U, fU , i) as above, except that we require XU and YU to be U -smooth
(rather than normal and regular, respectively) and we require BXU/YU to be a normal crossings divisor in
YU relative to U . When S is regular (e.g., the spectrum of a discrete valuation ring), smooth integral models
are normal integral models.

The terminology integral model refers to either a smooth or normal integral model, with the understanding
that XK , YK are K-smooth and BXK/YK is a normal crossings divisor in YK relative to K whenever we
speak of smooth integral models.
Lemma 2.1. Let S, K, and fK be as above.

(1) When S is excellent, a normal integral model fU of fK exists over some non-empty open U in S.
If XK and YK are K-smooth and BXK/YK is a normal crossings divisor in YK relative to K, then
a smooth integral model fU of fK exists over some non-empty open U in S, without any excellence
hypotheses.

(2) If fU , fV are integral models for fK over non-empty opens U, V ⊆ S, then for a suitable non-empty
open W ⊆ U ∩V , the integral models fU ×UW and fV ×V W are isomorphic (in a necessarily unique
way).

(3) Let fU be an integral model of fK and U ′ a connected, normal, noetherian scheme with function
field K ′. If U ′ → U is an ind-étale map (so K ′ is separable algebraic over K), then fU ×U U ′ is an
integral model of fK ×K K ′.

Proof. The fact that integral models can be isomorphic in at most one way follows from flatness over the
integral scheme S. Since the properties of integral models are analogues of properties which are satisfied by
fK and XK , YK over the generic point Spec(K) of S, the existence and uniqueness of integral models (aside
from regularity and normality properties) follows from Lemma 1.3 and various direct limit and constructibility
results in [EGA, IV3, §8–§12]. To illustrate the basic idea, once we construct a map fU : XU → YU between
finite type U -schemes for some open U which induces fK over Spec(K), we want to know that, if we shrink
U a little, then fU should be finite flat and the fibers of XU → U should be pure dimension d. Since
fK = fU ×U K is finite flat, by [EGA, IV3, 9.6.1(vi), 11.2.6.1(ii)] it follows that fU is finite flat for small U
(we view the local scheme Spec(K) as the limit of its open affine neighborhoods). Now consider the question
of fiber dimensions. Define Z to be the set Z of points u ∈ U for which Xu is pure d-dimensional, so Z
contains the generic point of U . We want Z to contain an open neighborhood of this generic point, so it
suffices to show that Z is constructible, or equivalently that its complement is constructible. Since the image
of a constructible set under fU is again constructible, it suffices to show the constructibility of the set of
points x ∈ XU for which (XU )fU (x) does not have dimension d at x, which is equivalent to the constructibility
of its complement in XU : the set of x ∈ XU at which (XU )fU (x) has dimension d. The constructibility of this
latter set follows from [EGA, IV3, 9.9.1] (and the equivalence of constructibility and local constructibility
on noetherian schemes). The other properties (properness, etc.) follow by a similar kind of technique, via
the theorems in [EGA, IV3, §8–§12]

In order to get the regularity and normality conditions when S is excellent, it suffices to show more
generally that if Z → U is a proper scheme with Z ×U K regular (resp. normal), then Z ×U V is regular
(resp. normal) for some non-empty open V ⊆ U . This is immediate from properness considerations and the
openness of the regular (resp. normal) locus in an excellent scheme [EGA, IV2, 7.8.3(iv)].

For the last part of the lemma, we note that formation of the branch scheme commutes with flat base
change. Since ind-étale maps are flat,

BXU/YU ×U U
′ ' BXU′/YU′

,

where XU ′ = XU ×U U ′, YU ′ = YU ×U U ′. It remains to check that if a finite type U -scheme Z is regular,
then so is the finite type U ′-scheme Z ×U U ′. Since Z ×U U ′ → Z is ind-étale, we just need to check that
if A → B is a local ind-étale map of local noetherian rings, then A is regular if and only if B is. The
natural map Ash → Bsh between strict henselizations is an isomorphism, so it suffices to treat the case of
the ind-étale map A→ Ash. This is handled in [EGA, IV4, 18.8.13]. �
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The role of integral models is that they allow us to define certain intersection numbers (Z ′K , ZK)s′ as
needed in Theorem 2.4 below (or Theorem 0.2 in the Introduction). The data used in the definition of these
intersection numbers is a choice of integral model fU : XU → YU of fK , a pair of disjoint closed subschemes
Z ′K and ZK on YK with respective dimensions 0 and d − 1, and a choice of codimension 1 point s′ in the
field K(y) for some closed point y ∈ YK .

Fix a choice of fU and choose Z ′K , ZK , and y. Let Z ′U and ZU be the respective scheme-theoretic closures
of Z ′K and ZK in YU . By the valuative criterion for properness, the map

(2.1) y : Spec(K(y))→ YK

over K extends uniquely to a map

(2.2) ys′ : Spec(Os′)→ YU

over U . The pullback of ZU ∩ Z ′U under ys′ is a closed subscheme of Spec(Os′) with empty generic fiber, so
it is artinian. We define the intersection number (Z ′K , ZK)s′ ≥ 0 to be the length of the corresponding local
artinian quotient of Os′ :

(2.3) (Z ′K , ZK)s′ = length(y∗s′(ZU ∩ Z ′U )).

This vanishes for all but the finitely many s′ in K(y) lying over the finitely many codimension 1 points in
the (closed) image of Z ′U ∩ ZU in U .

As an example, suppose U = Spec(O) for a Dedekind domain O, YU = P1
O , K(y) = K, and Z ′K = {a′},

ZK = {a} for closed points a′, a ∈ Spec(K[t]) = A1
K ⊆ P1

K with K(a′) = K. We have K(a) ' K[t]/(q) for
a unique irreducible, monic polynomial q ∈ K[t]. If y = a′, p is the maximal ideal in O corresponding to s′,
and q ∈ Os′ [t] ⊆ K[t], then

(Z ′K , ZK)s′ = ordp(q(a′)).
As another example, in the special case where y ∈ Z ′K (which is what we will use later), so Spec(Os′)→ YU
factors through Z ′U ⊆ YU , we have

(2.4) (Z ′K , ZK)s′ = length(y∗s′(ZU )).

For a fixed Z ′K , ZK , and y ∈ YK , it is obvious that (Z ′K , ZK)s′ = 0 for all but the finitely many codimension
1 points s′ of K(y) which lie over the image of Z ′U ∩ ZU in U . Although (for fixed S) these intersection
numbers depend heavily on the choice of integral model, by Lemma 2.1 we see that any two integral models
define the same numbers (Z ′K , ZK)s′ for all but those s′ lying over a finite set of codimension 1 points on S
(depending only on the integral models being considered). Thus, the choice of integral model of fK will be
unimportant for our purposes.

Later calculations of these intersection numbers will only be possible after replacing U by its strict
henselization at a codimension 1 point, due to the role of strict henselizations in Abhyankar’s Lemma. Thus,
we need to briefly discuss base change to strict henselizations. The following lemma (which is a variant on
[EGA, IV4, 18.8.11]) is useful for this purpose.
Lemma 2.2. Let (R,m) be a discrete valuation ring with fraction field K and let R′ denote the normalization
of R in a finite extension K ′/K, so R′ is a semi-local Dedekind domain with [R′/m′ : R/m] < ∞ for all
m′ ∈ Max(R′). Choose a separable closure (R/m)sep of R/m and let Rsh denote the corresponding strict
henselization. The natural map

(2.5) R′ ⊗R Rsh →
∏

m′∈Max(R′)

∏
x∈Spec(R′/m′⊗R/m(R/m)sep)

R′
sh
m′,ix

is an isomorphism, where ix : R′/m′ → k(x) is the separable closure of R′/m′ associated to a point

x ∈ Spec(R′/m′ ⊗R/m (R/m)sep).

In particular, R′ ⊗R Rsh is noetherian and is the normalization of Rsh in K ′ ⊗R Rsh.
In this lemma, we do not assume K ′/K is separable, so it may in fact happen that R′ is not finite over

R. But this does not cause any problems, because the Krull-Akizuki Theorem [M, 11.7] ensures that R′ is
nevertheless semi-local Dedekind and the residue field extensions are all finite. This is what we need.
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Proof. The ring R′ is a semi-local Dedekind domain which is integral over the discrete valuation ring R.
Also, for each maximal ideal m′ of R′, the residue field R′/m′ is finite over R/m. Thus, for a sufficiently
large finite R-subalgebra Rα ⊆ R′, the map Spec(R′) → Spec(Rα) is a bijection and if a maximal ideal m′

of R′ contracts to the maximal ideal m′α of Rα, then m′αR
′ = m′ and Rα/m

′
α = R′/m′. In particular,

Spec(R′/m′ ⊗R/m (R/m)sep)→ Spec(Rα/m′α ⊗R/m (R/m)sep)

is an isomorphism. Since R′ is the direct limit of the Rα’s and we can view a separable closure of R′/m′ as
a separably closed extension of Rα/m′α, it follows that there is a natural map

lim−→(Rα)sh
m′α
→ R′

sh
m′

and this map is an isomorphism by [EGA, IV4, 18.8.18].
Thus, in order to prove that (2.5) is an isomorphism, it suffices to prove the analogous assertion with R

replaced by an arbitrary local ring and R′ replaced by an arbitrary finite R-algebra. In fact, by using

R′ ⊗R Rsh ' (R′ ⊗R Rh)⊗Rh Rsh,

it suffices to prove:

• for a finite algebra R′ over a local ring R, the map

(2.6) R′ ⊗R Rh →
∏

m′∈Max(R′)

R′
h
m′

is an isomorphism,
• when (R,m) is a henselian local ring and (R′,m′) is a finite local R-algebra, then the natural map

(2.7) R′ ⊗R Rsh →
∏

x∈Spec(R′/m′⊗R/m(R/m)sep)

R′
sh
ix

is an isomorphism.

For a proof that (2.6) is an isomorphism, see [EGA, IV4, 18.6.8]. In order to analyze (2.7), note that the
ring R′ ⊗R Rsh is finite over Rsh, so it is a finite product of strictly henselian local rings. These local factor
rings must be the localizations of R′⊗RRsh at its maximal ideals, which are naturally indexed by the points
of Spec(R′/m′ ⊗R/m (R/m)sep). It remains to check each localization of R′ ⊗R Rsh at a maximal ideal is a
strict henselization of R′. This follows from the proof of [EGA, IV4, 18.8.10]. �

Here is how Lemma 2.2 reduces the calculation of (Z ′K , ZK)s′ to the case of the strictly henselian base
Spec(Osh

s ), where s ∈ U is the image of s′. Let Ksh
s be the fraction field of Osh

s . By Lemma 2.2, we can
identify a strict henselization Osh

s′ with the normalization of Osh
s in one of the factor fields of K(y)⊗K Ksh

s .
Such a choice of factor field corresponds to a choice of ysh

s′ ∈ YK ×K Ksh
s lying over y ∈ YK under the

canonical projection
πsh
s : YK ×K Ksh

s → YK .

Note that the maximal ideal of Osh
s′ is the unique codimension 1 point s′ of Ksh

s (ysh
s′ ) relative to the base

Spec(Osh
s ). In terms of such choices, one easily finds:

Lemma 2.3. With the above notation, we have an equality

(Z ′K , ZK)s′ = (Z ′Ksh
s
, ZKsh

s
)s′ ,

where ZKsh
s

= ZK ×K Ksh
s and Z ′Ksh

s
= Z ′K ×K Ksh

s .

Proof. Going back to the definitions, the equality amounts to the statement that for a local ring A and a
finite-length A-module M , the Ash-length of M ⊗AAsh is equal to the A-length of M . This follows from the
fact that Spec(Ash)→ Spec(A) is flat and the fiber over the closed point is the spectrum of a field. �
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We are now ready to state the main result. First, we recall the running notation. S is a normal, connected,
noetherian scheme with function field K, fK : XK → YK is a map between proper, normal K-schemes, with
YK regular and XK , YK of pure dimension d ≥ 1. The map fK is tamely ramified along a normal crossings
divisor relative to K, with branch scheme BXK/YK having generic points {ai}. We assume moreover that
either S is excellent or that XK , YK are K-smooth, so (by Lemma 2.1) we may choose an integral model
fU : XU → YU of fK . All intersection numbers (·, ·)s′ will be computed in terms of this model. The finitely
many codimension 1 points of S outside of U play a role analogous to the finite set Σf in Theorem 0.2. The
following result, a more general version of Theorem 0.2 in the Introduction, is our goal:
Theorem 2.4. With the above notation and hypotheses, let G be a finite group and suppose that our map
fK is a generic G-torsor. Choose a closed point y ∈ YK outside of BXK/YK and pick some x ∈ f−1

K (y), so
K(x)/K(y) is a finite Galois extension with Gal(K(x)/K(y)) ⊆ G. Let s′ be a codimension 1 point of K(y)
lying over U .

(1) We have

(2.8) (y,BXK/YK )s′ =
∑
i

(y, ai)s′

and s′ is tamely ramified in K(x).
(2) If ei is the ramification degree of fK over ai and ni = (y, ai)s′ , then the inertia groups over s′ in

Gal(K(x)/K(y)) are abstractly isomorphic to the group generated by the µniei ’s inside of K×sep, where
µniei denotes the subgroup of nith powers in µei . In particular, the ramification degree of s′ in K(x)
is equal to the order of the subgroup 〈ni/ei〉 ⊆ Q/Z generated by the fractions ni/ei.

(3) There exists a choice of inertia group Ii(y) ' µei of fK over ai so that
• the Ii(y)’s commute in G,
• the canonical map of groups

I1(y)× · · · × Im(y)→ G

is injective,
• the inertia groups over s′ in Gal(K(x)/K(y)) ⊆ G are conjugate (in G) to

(2.9){
(ζ1, . . . , ζm) ∈ µn1

e1 × · · · × µ
nm
em ⊆ I1(y)× · · · × Im(y) ⊆ G |

∏
ζ
aj
j = 1 whenever

∑
ajnj/ej ∈ Z

}
.

In order to prove Theorem 2.4, we first reduce to the case of a strictly henselian S and then will interpret
everything geometrically in terms of ‘specializations’. Let s ∈ U be the image of s′ and let Ksh

s denote the
fraction field of a strict henselization of Osh

s . By Lemma 2.2 and [BLR, 2.3/11], we know that for a discrete
valuation ring (A, n) with fraction field F and integral closure A′ in a finite Galois extension F ′/F , the inertia
group of A′ over A at a maximal ideal n′ ∈ Spec(A′) is exactly the automorphism group of A′shn′ over Ash

n .
Thus, by Lemma 1.2, (2.4), and considerations as in Lemma 2.3, we can reduce to analyzing the situation
after base change by the ind-étale map Spec(Osh

s )→ U and replacing y by a suitable point ysh
s′ ∈ Y ×K Ksh

s

over y.

3. Specializations

We may now assume U = S = Spec(R) for a (strictly) henselian discrete valuation ring R. In par-
ticular, Os′ is the full integral closure of R in K(y) and is a strictly henselian discrete valuation ring, so
Gal(K(x)/K(y)) is the full inertia group at s′ in K(x). For simplicity, we denote Os′ by R′. Also, we write
f : X → Y for our integral model of fK : XK → YK over Spec(R) and we write (·, ·) instead of (·, ·)s′ ,
since y ∈ YK is fixed and the integral closure R′ of R in K(y) has only one height 1 prime. The main
reason for making the base R a (strictly) henselian discrete valuation ring is that it allows us to work with
‘specializations.’ We need to precisely define what specializations are so that we may use them in order to
prove Theorem 2.4.

If z ∈ YK is a closed point and R(z) is the integral closure of R in the finite extension K(z)/K, then
R(z) is a discrete valuation ring which is integral over R, so the unique map Spec(R(z)) → Y extending
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z : Spec(K(z)) → YK has a closed image in Y which has the form {z, z0} for some closed point z0 in
the closed fiber of Y → Spec(R). We call z0 the specialization of z ∈ YK . The scheme-theoretic closure
{z} in Y has underlying set {z, z0} with the topological structure of the spectrum of a discrete valuation
ring. In particular, z0 is not an open point in {z}. If we carry out specialization on XK as well, then the
specializations of the points in f−1

K (z) obviously lie inside of f−1(z0). An important fact is:
Lemma 3.1. For any closed point z ∈ YK with specialization z0 ∈ Y , the specialization map of sets

f−1
K (z)→ f−1(z0)

is surjective.

Proof. The finite map f−1({z})→ {z} is flat, hence open [EGA, IV1, 1.10.4]. Since the closed point z0 ∈ {z}
is not open, there can be no non-empty open subset of f−1({z}) lying over z0.

However, by the very definition of specialization, the closure of f−1
K (z) in f−1({z}) is exactly the union of

f−1
K (z) and the image of the specialization map. Therefore, the complement of the image of the specialization

map in f−1(z0) is open in f−1({z}) and lies over z0. This forces the complement to be empty. �

Let y0 be the specialization of y ∈ YK . Note that X and Y are normal, flat R-schemes and the local rings
at all closed points in the closed fibers of X, Y over Spec(R) are (d+ 1)-dimensional normal local rings. The
local rings on Y are even regular. Since X is a G-torsor over the generic points of Y , so the G-action on
connected components of X over a fixed component of Y is transitive, it is easy to reduce to the case where
X and Y are also connected (so X is generically Galois over Y ). This step causes G to be replaced by a
subgroup, but that is harmless.

With connectedness, A = OY,y0 is a (d+ 1)-dimensional regular local ring with fraction field K(Y ), so the
integral closure B of A in K(X) is a semi-local normal domain with fraction field K(X) and

(3.1) Spec(B) = X ×Y Spec(A).

In particular, there is a natural identification of sets

(3.2) Max(B) = f−1(y0)

which we will use often. Recall that {ai} denotes the set of generic points of the branch locus of f . Each ai
with (y, ai) > 0 gives rise to a height 1 prime pi in A, with A/pi the local ring of {ai} at y0. We want to
use these pi’s to explicitly describe X and Y in an étale neighborhood of y0. This is going to be done via
Abhyankar’s Lemma, but we must first check the following conditions.
Lemma 3.2. The height 1 primes in A which ramify in B (i.e., over which B is not étale) are exactly the
pi’s. Moreover,

(1) A/pi is a regular local ring (with dimension d),
(2) pi = (ti) for elements ti ∈ A which form part of a regular system of parameters for A,
(3) each pi is tamely ramified in B with inertia groups in G equal to those of fK over ai.

Proof. Since A is a regular local ring, it is catenary and is a unique factorization domain [M, 17.8, 17.9, 20.3].
Thus, all height 1 primes p of A are principal [M, 20.1] and

dimA/p = dimA− dimAp = d.

Since fU is an integral model of fK , BX/Y is a normal crossings divisor and therefore its irreducible (reduced)
components {aj} are regular. Since y0 ∈ {aj} if and only if Spec(A) meets {aj}, we obtain the first two
parts of the lemma.

In order to analyze the precise ramification at pi, we just have to look at the map Api → Bpi . These
localizations can be computed by first inverting a uniformizer of R, as such elements do not lie in pi (since
the closure {ai} of Spec(A/pi) in Y contains a generic fiber point, ai ∈ YK). This makes it clear that
Api = OYK ,ai , so Api → Bpi is the normalization map of OYK ,ai in K(X) = K(XK). But the finite map
fK : XK → YK is tamely ramified over ai, so we are done. �
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Since y will be fixed for the rest of this section, we only need to consider those ai for which (y, ai) > 0.
Label these as a1, . . . , ar (and we may assume r > 0 or there is nothing to prove). This simplifies the
exposition, since we will not have to repeatedly use the phrase “where i runs through those indices for which
(y, ai) > 0.” Since A is a regular local ring, Lemma 3.2 provides us with all of the conditions required to
apply Abhyankar’s Lemma (Lemma 1.4). We conclude that

• B is regular
• the ramification degree ei of pi = (ti) in B is a unit in A, so since R→ A is a local map,

(3.3) ei ∈ R×,

• for each maximal ideal m of B there is an Ash-algebra isomorphism

(3.4) Bsh
m ' Ash[T1,x, . . . , Tr,x]/(T ejj,x − tj),

where x ∈ f−1(y0) corresponds to m ∈ Max(B) under (3.2).
Since A and Bm have separably closed residue fields, we can rewrite (3.4) in the more convenient form

(3.5) Bh
m ' Ah[T1,x, . . . , Tr,x]/(T ejj,x − tj).

As we noted after the statement of Lemma 1.4, the stabilizer Gx in G of x is

(3.6) Gx = I(x|y0) = µe1 × · · · × µer .

Our goal is to calculate the inertia groups I(x|y) of fK at points x ∈ f−1
K (y). This calculation will require

working with the regular local rings Ri = A/pi (whose fraction field is K(ai)) and the integral closure R′ of
R in K(y). Since y specializes to y0 ∈ Y , we have a canonical map ϕ′ : A = OY,y0 → R′ corresponding to
the unique map Spec(R′)→ Y over Spec(R) extending y : Spec(K(y))→ YK . The map ϕ′ uniquely factors
through the (strict) henselization Ah of A, since R′ is (strictly) henselian.

Combining (3.5) with the fact [EGA, IV4, 18.6.8] that

(3.7) B ⊗A Ah '
∏
m

Bh
m,

we get

(3.8) B ⊗A R′ ' (B ⊗A Ah)⊗Ah R′ '
∏

x∈f−1(y0)

R′[T1,x, . . . , Tr,x]/(T ejj,x − ϕ
′(tj)),

or, more geometrically (by (3.1)),

(3.9) X ×Y R′ = Spec(B ⊗A R′) =
∐

x∈f−1(y0)

Spec(R′[T1,x, . . . , Tr,x]/(T ejj,x − ϕ
′(tj))).

Since f−1
K (y) = (X ×Y R′)×R′ K(y), we deduce the following result from (3.3) and (3.9):

Lemma 3.3. The part of f−1
K (y) which specializes to a point x ∈ f−1(y0) is the generic fiber of

(3.10) Spec(R′[T1,x, . . . , Tr,x]/(T ejj,x − ϕ
′(tj)))→ Spec(R′).

In particular, K(x)/K(y) is tamely ramified for all x ∈ f−1
K (y).

Similar fiber calculations allow us to establish a useful uniqueness result:

Lemma 3.4. Choose x0 ∈ f−1(y0). There is a unique point xi ∈ f−1
K (ai) whose closure {xi} in X contains

the point x0, and

(3.11) [K(xi) : K(ai)] =
∏
j 6=i

ej .

In terms of the calculation (3.6) of Gx0 = I(x0|y0), the inertia subgroup I(xi|ai) of fK at xi is the ith factor
subgroup µei of Gx0 = µe1 × · · · × µer .
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Proof. Let Kh
i denote the fraction field of Rh

i ' Ah/ti and let ϕi : Ah → Rh
i be the canonical map. Using

(3.1), (3.5), and (3.7), we see that

X ×Y Rh
i = Spec(B ⊗A Rh

i )

= Spec((B ⊗A Ah)⊗Ah Ah/ti)

=
∐

x∈f−1(y0)

Spec((Ah/ti)[T1,x, . . . , Tr,x]/(T ejj,x − ϕi(tj)))

=
∐

x∈f−1(y0)

Spec(Rh
i [T1,x, . . . , Tr,x]/(T ejj,x − ϕi(tj))),

where the factor indexed by x ∈ f−1(y0) has generic fiber over Spec(Rh
i ) consisting of those points in

f−1
K (ai)×K Kh

i whose closure in f−1({ai})×Ri Rh
i contains x.

Obviously ϕi(ti) = 0 and the ϕi(tj)’s for j 6= i are part of a regular system of parameters in Rh
i . Thus,

for any x ∈ f−1(y0), the generic fiber of

Spec(Rh
i [T1,x, . . . , Tr,x]/(T ejj,x − ϕi(tj)))→ Spec(Rh

i )

is
Spec(Fi,x[Ti,x]/(T eii,x)),

where
Fi,x = Kh

i [Tj,x; j 6= i]/(T ejj,x − ϕi(tj)).
Since Rh

i is regular and the ϕi(tj)’s for j 6= i are part of a regular system of parameters, the local ring
Rh
i [Tj,x; j 6= i]/(T ejj,x − ϕi(tj)) is regular, hence a domain, and is finite over Rh

i . Thus, Fi,x is a field and
clearly has degree

∏
j 6=i ej over Kh

i . This proves the uniqueness of the point xi ∈ f−1
K (ai) with closure {xi}

containing a chosen point x0 ∈ f−1(y0), and that (3.11) holds. In fact, we have proven the stronger result
that this assertion holds after the separable algebraic base change K(ai)→ Kh

i .
It is obvious from the description via Abhyankar’s Lemma that I(xi|ai) = µei inside of Gx0 . �

It remains to compute the intersection numbers (y, ai) and relate them to the group Gal(K(x)/K(y)) for
any x ∈ f−1

K (y). Choose x0 ∈ f−1(y0), and consider only those x ∈ f−1
K (y) which specialize to x0.

By (2.4), the number (y, ai) is equal to the length of the R′-module (A/ti)⊗AR′. Using the factorization
of A→ R′ through A→ Ah, we have an R′-module isomorphism

(3.12) (A/ti)⊗A R′ ' (Ah/ti)⊗Ah R′.

Combining (3.3), (3.5), (3.7), and the second part of Lemma 3.2, it is easy to calculate that

annAh(Ω1
B⊗AAh/Ah) =

⋂
(tiAh) =

(∏
ti

)
Ah,

so (y,BXK/YK ) is the sum of the lengths of the artin local rings

R′/ϕ′(ti) ' (A/ti)⊗A R′.
Thus, (2.8) holds. We remind the reader that ϕ′(ti) ∈ R′ ⊆ K(y) is non-zero for all i because y 6∈ BX/Y .

Let ni = ordR′(ϕ′(ti)) = (y, ai) > 0. We want to compute Gx = Gal(K(x)/K(y)) ⊆ G in terms of the
ni’s and the groups I(xi|ai) from Lemma 3.4. By Lemma 3.3 and Lemma 3.4, this amounts to determining
the subgroup of Gx0 = µe1 × · · · × µer which fixes a choice of point x on the generic fiber of

(3.13) Spec(R′[T1,x0 , . . . , Tr,x0 ]/(T ejj,x0
− ϕ′(tj)))→ Spec(R′).

The generic fiber in (3.13) is the Gx0-torsor

Spec(K(y)[T1,x0 , . . . , Tr,x0 ]/(T ejj,x0
− ϕ′(tj)))→ Spec(K(y)).

Since Gx0 is abelian, we see that for all x ∈ f−1
K (y) specializing to x0,

Gal(K(x)/K(y)) ⊆ Gx0 ⊆ G
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is independent of x. By (3.3) and the fact that R′ is strictly henselian, we can write

ϕ′(tj) = u
ej
j π

nj ,

where uj ∈ R′× is a unit and π ∈ R′ is a uniformizer.
Choose an ejth root π1/ej of π in K(y)sep, so it suffices to consider the point

x : K(y)[T1,x0 , . . . , Tr,x0 ]/(T ejj,x0
− ϕ′(tj))→ K(y)sep

which sends Tj,x0 to uj(π1/ej )nj for all j. The extension field K(x)/K(y) is identified with the subfield
of K(y)sep generated by the elements (π1/ej )nj , so by Kummer theory Gx ' Gal(K(x)/K(y)) is naturally
identified with the subgroup of R× generated by the µnjej ’s. Since the stabilizer Gx in G of x lies inside of
Gx0 = µe1 × · · · × µer , if we recall how the projections Gx0 → µej are defined, then the inclusion Gx ⊆ Gx0

corresponds to an injection
Gx ↪→ µe1 × · · · × µer

in which the image of g ∈ Gx under projection to µej is the element in µnjej giving the action of g on (π1/ej )nj .
This gives an inclusion

Gx ↪→ µn1
e1 × · · · × µ

nr
er

and we need to check that the image is exactly the subgroup defined (2.9). The necessary and sufficient
conditions for

(ζ1, . . . , ζr) ∈ µn1
e1 × · · · × µ

nr
er

to lie in Gx are exactly that there be a well-defined automorphism of K(x) which sends (π1/ej )nj 7→
ζj(π1/ej )nj for all j. Clearly it is necessary that

(3.14)
∏

ζ
aj
j = 1 whenever

∑
ajnj/ej ∈ Z.

For sufficiency we just have to check that the subgroup H1 ⊆ µn1
e1 × · · · × µ

nr
er defined by (3.14) already has

the same cardinality as the subgroup H2 of R× generated by the µnjej ’s (which we have seen has the same
size as Gx).

If we non-canonically choose a primitive (e1· . . . ·em)th root of unity, thenH2 is identified with the subgroup
〈nj/ej〉 ⊆ Q/Z, while H1 is identified with the group{(

b1
e1
, . . . ,

bm
em

)
∈
(

1
e1

Z/Z
)
× · · · ×

(
1
em

Z/Z
)
|
∑ ajbj

ej
= 0 whenever

∑ ajnj
ej

= 0
}
.

Using the perfect pairing between
∏

1
ej

Z/Z and
∏

Z/ejZ and the fact that the annihilator of the annihilator
of a subgroup under this pairing is the subgroup itself, we see thatH1 is identified with the subgroup generated
by the single element (n1/e1, . . . , nm/em) in

∏
1
ej

Z/Z. We want the size of this subgroup to coincide with
the size of the subgroup 〈nj/ej〉 ⊆ Q/Z. Looking at p-primary components for all primes p, this is clear.

This completes the proof of Theorem 2.4.

4. The Non-Galois Case

In this last section, we explain the analogue of Theorem 2.4 when we remove the generic torsor condition
(still assuming tame ramification). Also, we make the set Σf in Theorem 0.2 completely explicit.

When fK : XK → YK is generically étale but not necessarily a generic torsor, one can still ask how
the ramification degrees in the closed fibers of fK relate to the ramification degrees in the map fK . We
again assume that fK is tamely ramified along a normal crossings divisor. These ramification degrees may
now vary as we run through the points xij lying over a fixed generic point ai of BXK/YK . An analogue of
Theorem 2.4 would be a formula for the ramification degrees of a codimension 1 point s′ of K(y) in the
fibers f−1

K (y), for y ∈ YK a closed point outside of BXK/YK , in terms of the ramification degrees e(xij |ai)
and the intersection numbers (y, ai)s′ .

This question was considered by Beckmann in [B, §5] for K a number field, YK = P1
K , and XK geo-

metrically connected over K. However, Beckmann’s formula is given in terms of a topological description
(via fundamental groups) of the Galois closure of XK ×K C over P1

C (for a choice of embedding K ↪→ C).
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Thanks to the more general geometric framework we set up above, this question can be answered in a purely
algebraic manner with greater generality.
Theorem 4.1. Let K, S, fK be as above. Assume that S is excellent or that XK , YK are K-smooth and
fK is tamely ramified along a normal crossings divisor relative to K. Let fU be an integral model of fK .

(1) For y ∈ YK outside of BXK/YK , any x ∈ f−1
K (y), and any codimension 1 point s′ in K(y) lying over

U ,
• (y,BXK/YK )s′ =

∑
(y, ai)s′ ,

• s′ is tamely ramified in K(x), and for each codimension 1 point s′′ in K(x) over s′, the ramifi-
cation degree e(s′′|s′) is equal to the order of the subgroup

(4.1)
〈

(y, ai)s′
e(xi,s′′ |ai)

〉
⊆ Q/Z

for suitable xi,s′′ ∈ f−1
K (ai).

(2) The ramification degrees for s′ in the fiber f−1
K (y) are the orders of groups

(4.2)
〈

(y, ai)s′
e(xi|ai)

〉
⊆ Q/Z,

with
(xi) ∈

∏
(y,ai)s′ 6=0

f−1
K (ai)

running through elements such that the {xi}’s contain a common point over s′.

Proof. As in the proof of Theorem 2.4, we can reduce to the case where U = S = Spec(R) and XK , YK are
connected. We let f : X → Y denote our integral model of fK over R and let R′ be the integral closure of
R in K(y). The ring A = OY,y0 is a (d+ 1)-dimensional regular local ring, its normalization B in K(X) is a
(d+ 1)-dimensional, normal, semi-local domain. Also, (3.1) and Lemma 3.2 still hold, except for the inertia
group claim at the end of Lemma 3.2 (as this has no global analogue when XK → YK is not generically
Galois).

As before, let a1, . . . , ar be the ai’s with (y, ai) > 0 and let pi = (ti) be the height 1 prime in A

corresponding to {ai}. It may now occur that the different height 1 primes in B over pi may have different
ramification indices over pi (e.g., some may be unramified over pi). By Abhyankar’s Lemma, we conclude
that B is regular and (as in the proof of Theorem 2.4) that

• the ramification degrees of pi in B lie in R×,
• for each m ∈ Max(B), there is an Ah-algebra isomorphism

(4.3) Bh
m ' Ah[T1,m, . . . , Tr,m]/(T ej(m)

j,m′ − tj).

for suitable positive integers ej(m) which are units in R.
Fix m, corresponding to a choice of x0 ∈ f−1(y0). If we now run through generic fiber calculations as near

the end of the proof of Theorem 2.4, we see (as in Lemma 3.4) that there is a unique point xi,m ∈ f−1
K (ai)

whose closure in X contains x0. Moreover,
• ei(m) = e(xi,m|ai) for all i,
• for all x ∈ f−1

K (y) specializing to x0, e(x|y) is the order of the subgroup〈
(y, ai)

e(xi,m|ai)

〉
⊆ Q/Z.

The second assertion in the theorem follows from Lemma 3.4 and some straightfoward base change con-
siderations. �

When XK , YK are curves and S is an excellent Dedekind scheme, one would like to know some explicit
finite set of closed points {s1, . . . , sn} which has to be removed from S so that a tamely ramified map
fK : XK → YK as in Theorem 4.1 admits a normal integral model over the complement U ⊆ S of the sj ’s.
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We give an explicit description of a set of sj ’s which is adequate for this purpose. First, we recall a basic
fact:

Lemma 4.2. Let S be Dedekind and X → S a proper flat map whose generic fiber has pure dimension d.
Then

• for every closed point x ∈ X, dim OX,x = d+ 1,
• the closed fibers of X → S have pure dimension d.

Proof. By the dimension formula for flat maps, the first assertion follows from the second. The second
assertion is a consequence of the openness of the proper, flat map X → S and [EGA, IV3, 14.2.5]. �

Returning to the situation with our curves XK and YK , there is some proper, flat, regular S-scheme Y
whose generic fiber is YK and whose other fibers over S are curves (we call such a Y a regular integral model
of YK over S). Indeed, since the curve YK is projective over K, by taking a suitable closure in some PN

S

and normalizing we obtain a proper, flat, normal S-scheme Y ′ whose generic fiber is YK . By Lemma 4.2
(with d = 1) and Lipman’s resolution of singularities for normal, noetherian, excellent surfaces [L], we get
a regular integral model Y of YK over S. Of course, in many cases there is an explicitly known Y ; e.g., if
YK = P1

K we just take Y = P1
S .

Choose a regular integral model Y of YK over S and let X be the normalization of Y in K(XK). Since
X is S-flat with generic fiber XK and the map f : X → Y is finite, it follows Lemma 4.2 that the fibers of
X → S are curves and all local rings at closed points on X are 2-dimensional and normal. In particular, by
applying [M, 11.5(i)] at the closed points, we see that the local rings on X are Cohen-Macaulay. Thus, by
[M, 23.1], the finite normalization map f : X → Y is flat at all points (only at the closed points is flatness
not obvious).

Since S is Dedekind and fK is tamely ramified, by Abhyankar’s Lemma we see that (BX/Y )red is a normal
crossings divisor and is S-flat if and only if BX/Y is a normal crossings divisor and is the scheme-theoretic
closure of its generic fiber. Thus, the only obstruction to f being a normal integral model of fK over S is
that (BX/Y )red might not be a normal crossings divisor or S-flat. Since the fibers of Y → S are curves, by
purity of the branch locus we see that in order to get S-flatness for (BX/Y )red it is necessary and sufficient
to remove those s ∈ S for which the finite flat fiber map fs : Xs → Ys is not generically étale. With these
preparations, we have essentially proven:

Corollary 4.3. Let fK : XK → YK be a generically étale, tamely ramified map between curves as above, with
S excellent and Dedekind. Let Y be a regular integral model of YK over S and let X be the normalization of
Y in K(XK). Let {s1, . . . , sn} be the finitely many closed points s ∈ S such that at least one of the following
holds:

• three of the closures {ai} ⊆ Y meet over s, or two of the closures meet with non-reduced intersection
over s,
• some closure {ai} is not normal over a neighborhood of s,
• Xs → Ys is not generically étale.

The following assertions hold:

(1) The restriction of the finite flat map f : X → Y to U = S − {s1, . . . , sn} is a normal integral model
of fK and U is the largest open subscheme of S with this property.

(2) If K(ai)/K is separable for all i, then U = S −{s1, . . . , sn} contains the complement V of the finite
set of closed points s ∈ S over which at least one of the following holds:
• three of the closures {ai} meet over s, or two of the closures meet with non-reduced intersection

over s,
• s is ramified in some K(ai),
• the fiber map Xs → Ys is not generically étale.

(the point here is just that the second condition in this list is implied by the second of the three
conditions originally defining the {si}’s).
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Proof. The maximality of U is because the si’s are exactly the points over which (BX/Y )red is not a normal
crossings divisor or is not S-flat, as we explained above. We now turn to the second part of the corollary.
We just need to check that the condition of s being unramified in all K(ai) forces all {ai} to be normal over
s. Working over the local ring at s and passing to the strict henselization without loss of generality (as it
suffices to check after such ind-étale base change), we may suppose V = S = Spec(R) for a strictly henselian
discrete valuation ring R. Since V = R, we have K(ai) = K for all i due to the unramifiedness hypothesis.
It is then obvious from the valuative criterion for properness that {ai} ' Spec(R), which is normal. �

As a special case, note that if all ai are K-rational and Y is smooth over S with connected fibers, then
{s1, . . . , sn} is equal to the union of the following two finite sets:

• the set of s ∈ S for which K(YK) ↪→ K(XK) is ramified at the discrete valuation on K(YK)
corresponding to the generic point of Ys,
• the set of s ∈ S over which three of the sections ai ∈ YK(K) = Y (S) meet, or over which two of the

sections ai meet with non-reduced intersection.
The set of such s can be determined explicitly by working with K(XK) and a regular integral model Y of
YK over S; one does not need to compute X.
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