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Abstract

Short-term tradeoffs between productivity and safety often exist in the operation of critical facilities such as nuclear power plants, offshore

oil platforms, or simply individual cars. For example, interruption of operations for maintenance on demand can decrease short-term

productivity but may be needed to ensure safety. Operations are interrupted for several reasons: scheduled maintenance, maintenance on

demand, response to warnings, subsystem failure, or a catastrophic accident. The choice of operational procedures (e.g. timing and extent of

scheduled maintenance) generally affects the probabilities of both production interruptions and catastrophic failures. In this paper, we present

and illustrate a dynamic probabilistic model designed to describe the long-term evolution of such a system through the different phases of

operation, shutdown, and possibly accident. The model’s parameters represent explicitly the effects of different components’ performance on

the system’s safety and reliability through an engineering probabilistic risk assessment (PRA). In addition to PRA, a Markov model is used to

track the evolution of the system and its components through different performance phases. The model parameters are then linked to different

operations strategies, to allow computation of the effects of each management strategy on the system’s long-term productivity and safety.

Decision analysis is then used to support the management of the short-term trade-offs between productivity and safety in order to maximize

long-term performance. The value function is that of plant managers, within the constraints set by local utility commissions and national

(e.g. energy) agencies. This model is illustrated by the case of outages (planned and unplanned) in nuclear power plants to show how it can be

used to guide policy decisions regarding outage frequency and plant lifetime, and more specifically, the choice of a reactor tripping policy as

a function of the state of the emergency core cooling subsystem.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Risk management; Safety; Production; Trade-off; Maintenance; Critical systems; Nuclear reactors; Dynamic modeling; Probabilistic

risk assessment

1. Managing the short-term productivity/safety trade-off

Maintaining high levels of productivity and safety is a

primary objective for many industries, especially those that

operate complex, hazardous production systems such as

nuclear power plants, offshore oil platforms, chemical

plants, and space transport systems. In the long term,

accident avoidance and high productivity are tightly linked.

In the short term, however, these systems may operate under

tight resource constraints and there are often tradeoffs

between immediate productivity and safety [1]. A number

of accidents, for example, the loss of the space shuttle

Challenger and of the Piper Alpha oil platform, have

occurred because upgrades and/or maintenance

operations were delayed in order to meet production goals

or deadlines [2–4].

Safety management strategies for critical systems

involve multiple dimensions including design philosophy,

maintenance policies, and procedures of personnel hiring,

training, and evaluation. At one end of the spectrum,

the most conservative approaches rely on a robust system

design, frequent preventive maintenance, and early response

to warnings. At the other end, aggressive strategies are

driven by demanding production schedules, single-string

system designs, and minimal inspection and maintenance to

obtain maximum production with minimum interruptions.

The difference, of course, lies in the immediate costs and in

the resulting level of system failure risk. Further discussion

of comprehensive risk management strategies in critical
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systems and their effect on system productivity and safety is

presented elsewhere [5].

Production interruptions can be caused by scheduled

inspection and maintenance, or by unplanned

circumstances including warnings of transients, production

failures, and accidents. Maintenance operations can include

inspection, parts replacement, repair, and refueling or

restocking. Many maintenance tasks can be performed

while the system remains in operation; but major scheduled

shutdowns are needed in critical systems and have a

significant effect on system productivity, cost, and safety.

Unplanned production interruptions may also be costly,

but they are generally benign. Accidents, by contrast,

can result in catastrophic and unrecoverable failures with

large financial, human, and environmental costs. Therefore,

the choice of an appropriate risk management strategy

depends on the probabilities and consequences of

production failures and of accidents of variable levels of

severity under different options. It also depends on the

preferences and risk attitude of the decision maker.

There are two basic approaches to the mathematical

modeling of safety and productivity. For systems with

sufficient historical data about production interruptions, one

can use a global empirical method to obtain a measure of the

system’s failure risk based on a statistical analysis of

production failures and on a set of hypotheses about the link

between production interrupters and the likelihood of

catastrophic failures [6,7]. When this information is not

available, another approach is to rely on systems’ analysis

and probabilistic risk assessment (PRA) to compute the

probabilities, the effects, and the costs of both production

interruptions and catastrophic failures. For critical systems

(such as nuclear reactors), the empirical approach

may provide sufficient data to analyze production

interruptions because these occur relatively frequently.

However, empirical safety assessments based on production

measures rely on the assumption that production failures are

highly correlated with catastrophic failures. This is not

necessarily true. The correlation depends on the overlap

between events that may lead only to production interrup-

tions, and those that may also lead to accidents. In reality,

these two types of events are generally distinct.

Therefore, we use a systems’ analysis approach and

probabilities to model productivity and safety over the life

of a critical facility.

One problem of short-term operations policies and

production decisions is that they are often myopic.

For example an individual operator or manager might

have different or limited concerns and objectives than those

best overall for the organization (e.g. a short-term

departmental production or cost focus rather than a long-

term, organization-wide focus). Therefore, there may be a

‘principal-agent problem’ associated with the discrepancies

of preferences (and incentives) between the different parts

of the organization, and perhaps, the public interest in cases

such as nuclear power plants. Thus, there is a need for an

overarching organizational objective function by which

alternative operating and maintenance policies are evalu-

ated. In this paper, we do not attempt to analyze the effects

of the behaviors of operators or managers who may find it

convenient to bypass the procedures required by the

organization. Instead we try to provide managers with a

decision support system that accounts for these possible

discrepancies.

We thus assume that the long-term preferences of the

firm’s top management prevail and are effectively

implemented in operations decisions. A decision support

system that reflects these preferences is then an asset

because it can be used across the board to reflect

consistently the preferences of the firm’s highest level of

Nomenclature

M decision variable cycle length or time between

planned maintenance periods

L decision variable number of cycles in the lifetime of

the system

X ðXn : 0 # n # MÞ; discrete time Markov chain with

time index n

i index of the cycle of operation

{S} Markov chain state space, as defined in Section 3,

{S} ¼ {x1; x2;…; xk1þk2
}

{S1} subset of overall state space, planned maintenance

states, {S1} ¼ {x1; x2;…; xk1
}

P11ðiÞ corresponding sub-matrix of transition probabilities for

maintenance states during the ith cycle of operation

{S2} planned operating state space subset, {S2} ¼

{xk1þ1; xk1þ2;…; xk1þk2
}

P22ðiÞ corresponding sub-matrix of transition probabilities for

planned operating states during the ith cycle of

operation

P12ðiÞ matrix defining transitions from S1 states to S2 states

during the ith cycle of operation

PðiÞ one-step partitioned transition matrix, operating

cycle i

Px;yðiÞ probability of transition from state x to state y

during cycle i; element ðx; yÞ of PðiÞ

miðnÞ state distribution vector at time n within cycle i;

miðnÞ ¼ ½PðXn ¼ x1Þ;PðXn ¼ x2Þ;…;PðXn ¼

xk1þk2
Þ�

f state occupancy cost per unit time, column vector

f ðxÞ element of the f vector, rate at which cost accrues

in state x per time unit

g state transition cost vector, column vector

gðxÞ element of the g vector, cost incurred for each visit

to state x

Ciðmið0Þ;MÞ accumulated monetary value (costs or benefits)

during cycle i of duration M with initial state

distribution mið0Þ:
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management. Therefore, each decision is made in a larger

context, and not separately on the basis of variable

objectives that may depend on the time horizon of

individual operators and managers.

The question is then: whose value function should be

used here? In a nuclear power plant, for example, many

parties are involved in informing or making daily and

long-term decisions, e.g. plant management, regulatory

agencies, an independent safety committee, the world

experience evaluation group, and various internal groups

as identified by Vaurio [8]. Industries that manage critical

systems plants and for which the safety of operations is

paramount to operating decisions are generally regulated by

federal, state, and local agencies (e.g. the US Nuclear

Regulatory Commission or the Federal Aviation Adminis-

tration). This is to ensure that the profitability requirements

of utility or airline companies, for instance, do not

jeopardize system safety. These firms must thus first satisfy

these rules and regulations, then manage their operations in

a prudent and cost-conscious way. Therefore, in what

follows, we assume that the interests of the public are

protected by these regulations and guidelines and that there

is no attempt on the part of industry to take short cuts with

respect to safety rules or a mandated price structure.

The question here is thus to satisfy an objective function that

reflects the long-term interests of the firm (which of course,

are very dependent on safe and reliable operations)

within the requirements of the different elected or appointed

bodies.

The purpose of this paper is to illustrate the use of

mathematical and engineering models to support consistent

choices of general operations policies and of short-term

management options, based on a long-term assessment of

their effects on the system’s productivity and safety, and a

long-term vision of the consequences of immediate

decisions. Our analytical framework combines PRA,

stochastic systems, decisions and cash flows. We include

these in a dynamic model of the evolution of a safety-critical

production system through states characterized by different

levels of safety, productivity, and cost. System performance

attributes that are the output of our dynamic model

(including production revenue, costs, human casualties,

and environmental impacts) are then variables of an

objective value function specified by the decision maker.

Related approaches to the dynamic modeling of

component or system reliability, productivity, or safety

have been proposed in the literature [9–13]. For example,

Vesely [9] used a Markov model to quantify maintenance

effects on component availability and risk. Similarly, we

model the effects of maintenance costs and benefits on

component performance, but with the purpose of measuring

availability and risk at the system level in order to support a

range of risk management decisions. Furthermore, Vesley’s

optimum is based on availability alone, whereas our optimal

policy is based on a balance between measures of failure

risk and productivity. Martorell et al. [10] describe

an approach that considers the integrated effect of various

surveillance and maintenance tasks on specific critical

components and seek to explore impacts on both risk and

cost. However, their approach is not dynamic, and they do

not explicitly attempt to resolve the cost versus risk tradeoff.

We illustrate our model by the case of the management of

outages in a nuclear power reactor system to link measures

of short-term and long-term productivity and safety to

policy decision variables (i.e. the choice of an interval

between maintenance operations and of the plant’s life-

time). We then illustrate the specific use of the model to

determine a decision rule for reactor trips caused by failures

of the emergency core cooling system (ECCS).

2. Failure types and initiating events

We define two types of system failures: accidents (A),

and unplanned shutdowns or breakdowns (B). Whereas

accidents affect measures of both productivity and safety,

unplanned shutdowns only affect system productivity. In a

nuclear reactor, accidents are the rare events that can result

in core damage and the release of radioactive material inside

or outside the containment building. Unplanned shutdowns

(such as trips or SCRAMS), result in production failures.

They may reflect the system’s physical inability to operate,

for example because of the failure of a turbine generator, or

a technical decision to interrupt production in order to repair

a deteriorating component or a failed standby safety feature.

Such a decision may thus be the result of a prudent response

to a system challenge. While potentially costly, unplanned

shutdowns do not generally threaten health and safety.

Yet, they may lead to an accident if the shutdown itself

involves safety issues. For example, in the case of nuclear

power plants, the rapid shutdown process and the restarting

of a reactor after a SCRAM may cause transient events that

can be accident initiators. Our probabilistic model thus

involves explicitly accidents, breakdowns and shutdowns.

2.1. Link between accidents and breakdowns

In some cases, the link between accidents and

breakdowns is clear. A single event may cause a production

interruption and increase the risk of an accident.

For example, in a nuclear power plant, a steam leak in the

piping between the steam generator and the turbine renders

the production system inoperable. The same event can also

be an initiator of an accident sequence. Not all production

interruptions, however, result in an increase of accident

risk: well-performed maintenance on demand requires

production interruptions and improves safety. Conservative

operating policies in which operations are interrupted for

minor abnormal events also result in additional unplanned

shutdowns. They generally, but not always, lead to a higher

level of safety.
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2.2. Failure modeling

PRA often starts with the identification of a set of

initiating events (IEs) of accident sequences [14]. They are

structured into an exhaustive set of mutually exclusive

events. The occurrence of an initiating event does not

necessarily imply that an accident (A) will occur, and it may

or may not cause an interruption in production (B). To model

all relevant states of operation, we expand the traditional set

of initiating events to include not only potential accident

initiators, but also events that may lead to production

failures only. Our set of initiating events thus consists of two

subsets: accident initiators (IEA) and production failure

events (IEB). For example, in a car, accident initiators

include a blown tire or failure of the breaks, and shutdown

initiators include engine failure and running out of gas.

By definition, IEA events may lead to accidents (A) or to

unplanned system downtime (B), while IEB events generally

only lead to unplanned downtime (B).1

3. System states and model structure

The initiating events of accident sequences and

breakdowns are included here in a dynamic model based

on transitions among operating and failure states over the

life of the system. The modeling is performed at the system

level, but the states and state transitions are defined in terms

of sub-system and component failure rates.

3.1. Model assumptions

The lifetime of the system is divided into distinct cycles

of operation defined as the time elapsed between successive

starts of planned maintenance periods. The model requires

that each cycle length be specified according to the chosen

maintenance policy. The duration of these cycles is assumed

to be constant throughout the life of the plant. This

assumption can be relaxed if needed to allow for planned

cycles of different duration.

The division of a system’s lifetime into cycles of

operation allows representation of the correction, at the

time of planned maintenance, of the short-term deterioration

that occurred during the previous cycle. The system state at

the end of a cycle thus depends on the choice of the cycle

length. If a long time elapses between planned maintenance

operations, we assume that more extensive system wear and

deterioration occurs before adjustment. This is represented,

in our model, by higher probabilities of transition to

different failure states within a cycle of operation.

The probabilities of transition to failure states are thus

functions of management policies such as the choices of

maintenance cycle length, and of the total number of

cycles in the system’s lifetime (i.e. the system’s age at

decommissioning time).

Each cycle of operation consists of a planned mainten-

ance phase (PM) followed by a period of planned operation

(Op). Within each of these two modes of operation, the

system may evolve through a number of distinct states, such

as unplanned outages (UPO) during the planned operating

phase. Let L be the life of the system, and Mi ¼ M be the

maintenance cycle length (assumed equal over time)

for each cycle i: Over the total time horizon there are L=M

distinct cycles of operation. While the length of each cycle

is deterministic (M time units), the amount of time spent in

the planned maintenance phase and in planned operation

within each cycle is the result of a stochastic analysis of

transitions in which the first k time units are spent in

maintenance states, and the remaining time in planned

operating states.2 Each cycle of operation is modeled as a

Markov process.3 A discussion of the strengths and

weaknesses of alternative modeling approaches for risk

assessment in dynamic systems is presented by Siu [11].

Within each cycle, we assume that the transition

probabilities per time unit are constant, but that they are a

function of chosen management policies such as cycle

length.4 In addition, transition probabilities may vary from

one cycle to the next to account for effects such as long-term

system deterioration. These cycles are then linked to

determine life-time performance measures for the system.

3.2. Model structure

During each cycle of operation, we model separately

planned maintenance (typically for inspection and

preventive maintenance activities) and planned operation.

The overall system state space {S} is thus divided into two

subsets: {S1}; planned maintenance states and {S2}; planned

operations states. While in a state of planned maintenance,

the model tracks transitions through different states of the

shutdown sequence, including compromised system

configurations during the shutdown process, stable

1 In rare circumstances an event classified as a breakdown initiator may

result in an accident (e.g. engine failure on a busy freeway). Events that

may result in either breakdowns or in rare instances accidents, should either

be classified as an accident initiating event or the event rate can be split into

two initiators, one for accidents and one for breakdowns.

2 If the duration of the planned maintenance state within a cycle of

operation is known with certainty or if the need to model transitions among

distinct maintenance states is unnecessary, the approach can be simplified

to skip the stochastic analysis of PM transitions, and simply add fixed times

and associated costs between our linked cycles of operation to obtain an

appropriate lifetime objective function.
3 Markov modeling is a standard technique for the mathematical

representation of dynamic systems. It easily handles the time dependent

nature of the system and allows for the explicit specification of unique

system configurations. We discuss some of its specific limitations in

Conclusions.
4 In the application to nuclear reactors, the maintenance cycle is specified

in quarters (3-month intervals). State transitions are defined in terms of a

finer time scale, per week in the example. For a car system, the time unit

might be defined in terms of weeks or months.
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shutdown configurations, and possible accidents. While in

most systems, shutdown states preclude the possibility of an

accident, a system such as nuclear power plant (or a car

immobilized on a freeway) is at risk of an accident even

during system shutdown. For generality, we thus assume

that accidents can occur during planned shutdowns.

During operations, the Markov model tracks transitions

through periods of system operation under normal and

compromised conditions and into unplanned shutdowns and

accidents.

For each cycle of operation, the overall transition matrix

can be represented as a partitioned matrix composed of the

transition matrices for the state space subsets {S1} and {S2}:

The overall transition matrix for cycle i is then of the

following form:

PðiÞ ¼

S1 S2

S1

S2

P11 P12

0 P22

" #
: ð1Þ

P11 and P22 sub-matrices are the matrices of transition

probabilities among states of planned maintenance and

planned operation respectively. P11 and P22 are thus square

matrices of dimension k1 and k2; respectively, where k1

represents the number of distinct states in {S1} and k2 in

{S2}: P12 is therefore an k1 by k2 matrix that accounts for

transitions from planned maintenance to operation.

Transitions in the lower left part of PðiÞ are not allowed

during a single cycle of operation. They would represent

transitions from operating states to planned shutdown states,

which by construction, occur in subsequent cycles of

operation. The duration M of each operating cycle is fixed

and specified as part of the risk management strategy.

Therefore, the transition matrix PðiÞ is valid for the M time

units of cycle i: Each cycle begins with transitions among

maintenance states as defined by the P11 sub-matrix.

After some k (random) periods, transition occurs from a

maintenance state to an operating state (a P12 transition).

The remaining M 2 1 2 k transitions occur among the

planned operating states, defined by the P22 sub-matrix.

3.3. State space

Within each of the state space subsets {S1}

(planned shutdown) and {S2} (planned operations), we

distinguish unique system shutdown and operating states to

a level of detail necessary to capture differences in

productivity or safety measures. We group these states

into the high-level sets listed below. While the actual state

space is unique to each system, the types of states required

for modeling purposes is general.

{S1} : Planned Maintenance States

Set of Planned Shutdown and Maintenance States

Set of Accident States possible during Planned

Maintenance

{S2} : Planned Operation States

Set of Operating States

Set of Unplanned Shutdown States

Set of Accident States possible during Planned

Operation

While the state space is representative of the system’s

evolution over its lifetime, the probabilities within the

transition matrix may change from one cycle to the next

because the terms of this matrix are a function of both

management policies and system age. Fig. 1 indicates the

types of high-level state and the transitions that may occur

during a particular cycle of operation. Because we focus

here on critical systems, we model accidents as absorbing

states. Recoverable accident states are modeled as

unplanned shutdowns with relatively low exiting transition

rates and high costs.

In practice, the development of a PRA model for the

system is thus an important part of our approach because it

allows us to identify unique states of system operation,

and to represent unique failure probabilities and rates of

deterioration at the component or subsystem level where the

data are often more readily available.

3.4. External events

External events, such as storms and earthquakes,

affect system safety to the degree that they affect the

probability of component or subsystem failures, or the

ability of the system to respond to initiating events.

These external events increase the probabilities of accident

initiators and/or decrease the system’s ability to respond to

the challenge. Therefore, they influence the probabilities of

failure scenarios and their consequences given the occur-

rence of an initiating event. Because of their potential

effects on system performance, external events are part of

our dynamic model. External events are treated explicitly

in the PRA method. For example, see Mosleh [15] and

Budnitz [16].

In our model, the probabilities of initiating events and of

subsequent evolution paths that constitute the transition

matrix are conditioned by external events, and the state

space reflects the system’s evolution with and without the

occurrence of a particular external event. This is important

because the choice of a risk management strategy may

influence the effect of an external event on the system.

Fig. 1. Basic system states types and transitions for a cycle of operation.
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Managers can set policies that limit operations during (or in

anticipation of) certain types of external events. For

example, production on an offshore oil platform may be

limited in anticipation of a severe storm, and a nuclear

power plant can automatically shut down during an

earthquake. Such policies may reduce the consequences of

an initiating event, but they also reduce temporarily the

system’s productivity.

3.5. Output, costs, risks and value model

Production and risk patterns are tracked by our dynamic

stochastic model as the system evolves through the state

space over time. We model each of these factors through the

succession of cycles of operation under a Markov

assumption. We then link successive Markov cycles to

compute the different performance measures (e.g. through

expected values) over the life of the system. The model

computes the expected time spent in each state and the

expected number of transitions to each state. Output

measures from the model are then used as inputs to a

decision model to provide support for the design of a risk

management strategy. The decision model includes an

objective function that aggregates the values attributed by

the decision maker to productivity and safety measures.

Our approach is to encode and to use the value function

of an actual and specific decision maker. We assume that the

organization can identify this actual decision maker (e.g. the

plant manager of power generation at a nuclear power

station), and that the decision maker and the organization

will benefit from consistency of goals and objectives.

Therefore, this approach requires that the organization

(via its highest levels of management, informed by various

internal and external parties) explicitly consider the relative

values of short-term and long-term costs, risks, production

levels, etc.

Each defined system state is characterized by two value

components: one based on time spent in the state, and the

second based on transitions to the state. These values are an

aggregation of both financial measures (i.e. costs and

revenues) and of non-financial attributes such as safety

effects and aversion to certain high-risk states. Values may

be a function of the cycle number (or other attributes)

to account for such factors as long-term system wear.

Productivity and safety measures that are a function of

either the time in-or transitions to-a particular state are

modeled in the objective function. For example, to

determine the productivity of a nuclear reactor, we keep

track of the length of planned shutdown periods as well

as the amount of time spent in non-producing states of

planned operation.

We characterize these values by ‘costs’ that represent

actual or hypothetical monetary values (costs or benefits)

of the following performance measures: (1) revenues from

operations, (2) fixed and variable operations and

maintenance costs, and (3) penalties for downtime,

near-misses, and transitions to high-risk states.

These penalties represent a ‘willingness-to-pay’ to avoid

these system states, and therefore, the utility, preferences

and risk attitude of top management. We also assume that

they satisfy first the existing laws, regulations and decrees of

the relevant jurisdiction. The optimum strategy is the

solution that corresponds to a net maximization of benefits

(or to a cost minimization). Value tradeoffs among

monetary and non-monetary attributes are handled through

the process of assigning these monetary values.

An alternative would have been to use explicitly a

multi-attribute utility model [17]. We chose to use cost

values instead because they are easier to encode and to

understand intuitively. This approach, however, assumes

that the different cost components are additive and

independent of each other, which may not always be true

(e.g. willingness to pay to avoid problems may depend on

the revenues so far). In either case, an aggregation of the

different attributes must ultimately be performed, a difficult

and unavoidable process which, in our approach,

requires explicit consideration by managers of the classic

tradeoffs between human safety and monetary measures

[18] as opposed to implicit tradeoffs through intuitive

choices.5

4. Dynamic modeling of one cycle of operation

The computations require first an estimation of the

system’s performance over time. The resulting objective

function during a particular cycle of operation involves the

transitions among states, the time spent in the different

states, and the values assigned to corresponding levels of

productivity and safety in the objective function.

4.1. Objective function

The objective is to maximize the expected equivalent

monetary value associated with operations over the life

of the system. Because we use a discrete Markov model,

the expected monetary value is the product of the cost

components and the probability of being in each state at

each time period. The overall objective function is the

sum (or discounted sum) of expected monetary values for

each of the distinct operating cycles:

Ctotal ¼
X# of cycles

i¼1

Ciðmið0Þ;MÞ: ð2Þ

5 It is assumed in this paper that the system operates within a range of

safety that justifies cost-benefit analysis [38]. This implies that the

probability of severe accident is low enough for the individual risk to be

acceptable in the first place both on-site and off-site. Otherwise, the system

should simply not operate until it has reached first that minimum safety

level on the basis of the threshold and the time horizon (e.g. annual

probability) specified by the regulatory authorities.
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The value associated with operation and shutdown over

M time periods in the ith cycle of operation consists of

two monetary components.6 Cif is the cost of spending

time in the various states, and Cig is the expected cost of

transitions to the different states. The total cycle cost is

the sum of these cost elements:

Ccycle ¼ Ciðmið0Þ;MÞ ¼ Cif þ Cig: ð3Þ

4.2. Cost computation for a single cycle of operation

We compute first the cost Cif of occupying specified

states. It is computed as the conditional expectation:

Cif ¼ Emið0Þ

XM21

n¼0

f ðXnÞ

" #
: ð4Þ

The expected cost of spending time in the various states

during each time period is given by the vector product of the

state distribution and the f -cost vector. The cumulative

expected cost associated with time spent in different states

during the M time periods of cycle i can be computed

recursively, updating the cumulative expected cost function

as we update the state distribution at time n; mn: Because the

Markov assumption holds within each cycle of operation,

the state distribution at time n is:

miðnÞ ¼ miðn 2 1Þ·PðiÞ ð5Þ

The cumulative expected state occupancy cost at time zero,

with initial cycle state distribution mið0Þ; denoted as

Cifðmið0Þ; 0Þ; is zero, because no costs have been incurred.

With the passing of each successive time period, one incurs

the expected cost associated with the state distribution

during each time period. The cumulative cost function is

therefore computed recursively as:

Cifðmið0Þ; nÞ ¼ Cifðmið0Þ; n 2 1Þ þ miðn 2 1Þ·f ð6Þ

Next we compute the expected cost of state transitions,

Cig; also computed as a conditional expectation of the

Markov Chain, where expected costs are incurred at the time

of transitions. IðXn – Xn21Þ is an indicator function that is

equal to one if an actual transition to a different state occurs

(i.e. if Xn – Xn21Þ and zero otherwise. Thus:

Cig ¼ Emið0Þ

XM
n¼1

gðXnÞ·IðXn – Xn21Þ

" #
: ð7Þ

The expected cost of transitions at the end of each time

period is given by the vector product of the expected

number of transitions to each state and the g-cost vector.

Let the expected number of transitions to a particular state x

during a single time period n be an½x�: The expected number

of transitions to each state during a particular time period

can be represented by a modified state distribution vector,

in which a transition is recorded only if the new state is

different from the previous one:

an½x� ¼ miðnÞ½x�·IðXn – Xn21Þ ð8Þ

To represent the indicator function I; we define a new matrix

HðiÞ with the same dimension as the one-step transition

matrix PðiÞ and containing the same elements except for the

diagonal elements which are zero so as to account only for

actual transitions. The elements of the H matrix are thus:

hx;yðiÞ ¼
px;yðiÞ x – y

0 x ¼ y

(
ð9Þ

The vector of expected transitions for one time period an in

cycle i is then computed as:

anðiÞ ¼ miðn 2 1Þ·HðiÞ ð10Þ

The cumulative transition cost at time zero, with initial

cycle state distribution mið0Þ; is denoted as Cigðmið0Þ; 0Þ: It is

equal to zero because no transition costs have been incurred.

Thereafter, transition costs are incurred during each new

time period. The cumulative transition cost function is

computed recursively:

Cigðmið0Þ; nÞ ¼ Cigðmið0Þ; n 2 1Þ þ miðn 2 1Þ·HðiÞ·g ð11Þ

The combined conditional expectation for cost in a single

cycle i is therefore:

Ciðmið0Þ;MÞ

¼ Emið0Þ

XM21

n¼0

f ðXnÞ þ
XM
n¼1

gðXnÞ·IðXn – Xn21Þ

" #
: ð12Þ

5. Successive cycles of operation

The model described in Section 4 is used to compute the

net expected value of operation and maintenance over a

single cycle of operation. In this section, we discuss the

differences among cycles of operation and we describe

the computations necessary for linking successive cycles to

determine the total expected cost over the life of the system.

5.1. Linking operating cycles

Successive cycles of operation are linked because the

final state distribution of one cycle (after M time units)

affects the initial distribution of the subsequent cycle, and

because deterioration that occurs in one cycle is present in

the next one. The initial distribution for a new cycle i is

determined as a function of the ending distribution of the

previous cycle using a matrix T which represents the

probabilities of all possible transitions from cycle-end states

to next-cycle planned maintenance states. T is a square

matrix of order k1 þ k2 corresponding to {S1} and {S2}:

6 Again, in all that follows the term ‘costs’ is used to represent monetary

values that may be positive or negative to reflect revenue, actual costs, and

penalties.
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Because, by construction, each cycle begins in a planned

maintenance state, the transformation matrix T is sparse.

Transitions may only be to a subset of the planned shutdown

states of {S1}: The initial distribution for each new cycle i is

therefore determined probabilistically as:

mið0Þ ¼ mi21ðMÞ·T ð13Þ

5.2. Modeling deterioration effects

Within each cycle of operation, we assume that the

transition probabilities are constant and represent mostly

system deterioration. During one cycle, the extent of the

eventual deterioration is determined, in part, by manage-

ment policies such as the cycle length: less frequent

maintenance leads to more severe component deterioration

before the subsystem is fixed. For example, planned

maintenance on a 2-year instead of a 1-year schedule yields

higher cycle failure probabilities and therefore higher

transition probabilities. We also assume that equipment

failure probabilities generally increase with successive

cycles of operation as the system ages (i.e. for higher

cycle numbers). Therefore, the deterioration at the end of

the system’s life also depends on the policy decision of how

long the system is or will be kept in operation. Defining base

transition probabilities for a given cycle as a function of the

cycle length and the cycle number allows us to capture both

the short-term and the long-term effects of these two

management decisions on the system’s performance over

time during its total lifetime.

We model equipment failure probabilities as an

increasing function in the cycle number (i) in the life of

the plant (i.e. system age) and in maintenance cycle length

ðMÞ: A transition probability can be any function of i and M

that is consistent with previous operating experience or

expert opinion. In general, transition probabilities may be

monotonic or not, and increasing or decreasing in time.

Individual failure probabilities can change over time

according to system and component characteristics.

For example, we model our transition probabilities to

unplanned outage states as an increasing function in the

number of previous unplanned outages to account for the

cumulative deterioration effects of such abrupt and stressful

shutdowns.

This formulation assumes that the deterioration depends

only on the system’s age from the start ði ¼ 0Þ and is

independent of specific events in previous cycles.

If appropriate, one can capture relevant mid-life events

such as the complete replacement of a deteriorated

subsystem by resetting the age index. This simply requires

the definition of specific age indices for the subsystems that

are likely to sustain periodic but infrequent replacements.

These indices can be reset upon entry into unique states of

planned maintenance that occur in rare instances (e.g. every

10 or 20 years) to account for major overhauls and

replacements.

Another potential effect of system deterioration is an

increased probability of both planned and unplanned

shutdown complications resulting in longer shutdown

durations. Assuming that such deterioration effects increase

with both i and M; the transition probabilities out of planned

and unplanned outage states may decrease with i and M: The

result is an increase in expected planned and unplanned

shutdown durations with system age and with longer

intervals between planned maintenance. In our application

of the model, we use exponential functions of i and M to

reflect both effects. Additional issues in the choice of

deterioration functions are discussed by Bier [19]. Martorell

et al. [20] describe their approach for modeling deterioration

in NPP safety components while considering the effects of

both maintenance activities and working conditions.

5.3. Discounting and non-linear costs

The objective function is generally non-linear with

respect to time and number of transitions. In the model,

we take into account two important non-linear effects: the

time value of money (i.e. the opportunity cost of capital),

and increase in fixed costs associated with successive

transitions to the different states, and in particular,

transitions to unplanned shutdown states. We discount

the costs on a per-cycle basis, assuming end-of-cycle

lump sums.7 The social rate of discount that we use is the

result of an equilibrium between the marginal rate of

transformation (that reflects the ability of the economy to

generate capital over time) and the marginal rate of

substitution that reflects the desire of individuals that

constitute society to consume now rather than later. Over

the long run, and in constant monetary units, such a rate

can be set in the order of 3–3.5% [21]. We also make the

classic assumption of a common discount rate for dollars

and human safety. The core of the argument is based on

equity, with the objective to provide all generations with

the same amount of safety measures over time in a

situation where wealth accumulates over years. Further

discussion of this classic choice is provided in Paté-

Cornell [21]. While discounting at the same rate all

attributes of the cost function (including the number of

lives saved by various safety measures) seems to imply

that ‘future lives are cheaper than present ones’, the

opposite is true: if all generations are to be equally

protected, the same amount of life saving technology

should be made available to all individuals at all times.

By virtue of the geometric growth of the money

accumulated by society at the social rate of discount,

this implies that the ratio of number of lives saved to

safety investments should remain the same (in constant

7 This is a reasonable approximation to the extent that the cycle length is

in the order of 1 year or less.
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monetary units). It should be noted that this result is based

on the conservative hypothesis that life saving

technologies will remain at the same cost level in the

future (in constant monetary units). In reality, one might

expect technological progress to reduce these costs, and

the rate of discount of the safety attribute could be

increased to reflect this rate of progress. Therefore, in

what follows, we assume a single social rate of discount

of 3%, free of risk and free of inflation, applied to all

aspects of the failure costs integrated into a single figure.

Again, the risk is included in the probability of the

failure scenarios and all computations are in constant

monetary units.

Let t be the cycle number in the overall system life and

iM the chosen per-cycle discount rate. The present value

ðCycleCost0Þ of the cost incurred during the tth cycle of

operation is:

CycleCost0 ¼
CycleCostt

ð1 þ iMÞ
t
: ð14Þ

For costs that increase non-linearly with the number of

transitions to a particular state, we modify the correspond-

ing elements in the cost vectors. For example, because

unplanned shutdowns often cause severe stresses in the

system that may have a cumulative deterioration effect, we

model the cost of successive transitions to such states as an

increasing function of the transition number.

For example, let gðxiÞ be a cost element of the g

(transition) cost vector associated with a transition to

state xi; an unplanned shutdown state. If the cost of the

first transition to state xi; g1ðxiÞ; is Cbase; successive

transition charges can be assess as a function of the

number of previous transitions to an unplanned shutdown

state. Let k be a cost rate modifier factor. One can use, for

example, a simple linear model to represent the increasing

cost of a transition to state xi as a function of the

transition number j :

gjðxiÞ ¼ 2½Cbase þ kðj 2 1Þ�: ð15Þ

6. Computational improvement

Both cost terms Cif and Cig can be computed more

efficiently by taking advantage of the partitioning of the

state space into the two sets {S1} (planned maintenance)

and {S2} (planned operation). We use the same recursive

relations as in Section 4.2. Cost quantities, however, are

computed separately for each mode of operation.

We represent the state distribution vector at any time n

during a cycle in terms of its block components: mi1ðnÞ;

the distribution of planned outage or maintenance states at

time n; and mi2ðnÞ; the distribution of planned operating

states at time n :

miðnÞ ¼ ½mi1ðnÞ;mi2ðnÞ�: ð16Þ

Because, by definition, each cycle begins in a planned

maintenance state, the initial state distribution for each

cycle i can only be non-zero in {S1}: Therefore, we can

represent the initial state distribution in block-partitioned

format as:

mið0Þ ¼ ½mi1ð0Þ; 0�: ð17Þ

In Section 4.2, Cif and Cig are computed recursively as a

function of the successive calculations of the

state distribution, miðnÞ: In this section, we compute

miðnÞ in terms of its block-partitioned components as

miðnÞ ¼ ½mi1ðnÞ;mi2ðnÞ�:

Because of the structure of the PðiÞ transition matrix, the

distribution of planned maintenance states in {S1} at time n

during cycle i; mi1ðnÞ; is a function of the previous

distribution of planned maintenance states and of the

P11ðiÞ sub-matrix. Within a cycle of operation, new

transitions to an S1 state can only occur from within the

{S1} state space according to the P11ðiÞ matrix.

Therefore, we compute mi1ðnÞ according to the following

relation:

mi1ðnÞ ¼ mi1ðn 2 1Þ·P11ðiÞ: ð18Þ

The distribution of {S2} (planned operating states) at time

n during cycle i is a function of both the prior distribution

of S1 states and S2 states. Changes in the S2 state

distribution may occur because a transition occurs from an

S1 state to an S2 state during the time period as described

by the elements of the P12ðiÞ sub-matrix. Transitions may

also occur if the system is already in an S2 state. In that

case, the system evolves according to the P22ðiÞ

sub-matrix that defines transitions among the S2 states.

The distribution of S2 states is therefore computed as:

mi2ðnÞ ¼ mi1ðn 2 1ÞP12ðiÞ þ mi2ðn 2 1ÞP22ðiÞ ð19Þ

Objective function computations are performed as

described in Section 4, using corresponding block

components of the f and g cost vectors.

7. Illustration: management of outages in nuclear

reactors

As an illustration of this model, consider its application

to the management of outages in a nuclear power plant.

In the nuclear power industry worldwide, one can observe a

spectrum of safety management strategies ranging from the

general conservatism of Western designs and operations to

the approach sometimes used, for example in Eastern

Europe, of running a plant without interruption until serious

problems occur [22].

7.1. Nuclear power plant outages

Some of the inspection and maintenance activities

required for the reliable operation of a nuclear power
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system are performed while the reactor is producing

electricity. Much of this work, however, is accomplished

during outages (planned and unplanned)8 and their

management has implications for plant safety and

productivity, both in the long term and in the short term [23].

The frequency and extent of planned outages are

generally determined by the reactor type and regulatory

requirements, and often coincide with refueling activities.

Planned outage policies and execution affect long-term

safety through the frequency and quality of maintenance and

have an important effect on system capabilities in

emergency situations. The scheduling of outage tasks also

determines the configuration of available subsystems during

the outage itself that, in turn, affects short-term reactor

safety. Unplanned outages, in contrast, are fairly rare and

can represent major disruptions of productivity. They have

direct implications for safety because they may

indicate degraded conditions, inadequate maintenance,

poor operator practice, or legitimate challenges to the

system [24].

PRA models have been used extensively in the US

nuclear power industry since the Reactor Safety Study [25]

to estimate reactor risks during operation and more recently,

to quantify and study short-term reactor risks sustained

during planned outages [26,27]. These studies, however, do

not include an analysis of the system’s evolution, of the

long-term effects of specific outage management policies,

and of the dynamics of deterioration. PRAs are typically

used in the design phase, in a static mode, for licensing

decisions and other regulatory purposes. As currently

employed in some industries, PRA models can give an

inaccurate (often on the optimistic side) description of the

safety of the system because they are seldom updated over

time as the system wears and as new operating and outage

policies are adopted. However, in the nuclear power

industry, the use of PRAs is much more extensive.

In nearly all nuclear power plants, PRAs are routinely

updated to reflect changing component and system

characteristics. Several plants even have on-line risk

monitors that are updated as systems and data change.

Such ‘living’ PRAs help to evaluate and plan maintenance

activities and to make short-term decisions about safe

operations [8].

Our modeling approach thus uses PRA as one of several

analytical tools and allows for the explicit evaluation of

dynamic effects of particular types of management policies

over time. Our approach is to evaluate alternative operations

and maintenance policies proactively, before they have been

in effect to produce the system and data changes picked up

by such on-line risk monitors as described above.

Rather than relying on a sequence of static PRA risk

snap-shots to inform reactive maintenance policies, we

model the long-term dynamics of system risk and reliability

as a function of alternative policies to identify the optimum

at the beginning of the system’s lifecycle.

7.2. Outage decision making

Until relatively recently, most of the attention on the

efficient management of planned outages has been focused

on the minimization of downtime. The concepts of

Reliability Centered Maintenance (RCM) and Reliability-

Focused Maintenance (RFM) have more recently been

developed to manage maintenance activities based on the

‘criticality’ of components. The objectives here are to

improve reliability and to reduce costs [28,10]. A limited

number of utility companies have sponsored their own

studies on effective outage management programs to

address system vulnerabilities during planned outages

[27]. The US Nuclear Regulatory Commission (USNRC)

provides Technical Specifications (TS) requirements for

operating and maintaining safety-related systems and

components. For example, TSs define Limiting Conditions

for Operation (LCOs) to ensure safety during operation,

Allowed Outage Times (AOTs) to limit safety-system repair

time, and Surveillance Test Intervals (STIs) to specify

regular test intervals. However, the rationale behind certain

outage-related policies, such as AOTs and STIs, has not

always been clear or consistent and some requirements may

be much more conservative than others. Recent efforts

based on risk- and reliability-based methods have been

proposed to improve TS requirements in general [29],

and STIs or AOTs in particular [10,30,31]. In terms of

objectives, Yang et al. [30] and Harunuzzaman et al. [31]

seek to minimize cost while holding safety at a fixed level.

Martorell et al. [10] compute policy impacts on both cost

and risk (i.e. unavailability), but as noted earlier, do not

propose to resolve the tradeoff.

Our model provides additional guidance to improve

LCOs and AOTs, as well as establishing risk-informed

planned maintenance schedules, reactor trip criteria, and

plant life decisions. For example, the framework can be

used to evaluate the long-term effects of alternative AOT

policies on system productivity and safety. One can define,

for each subsystem, unique AOT policies by defining the

corresponding allowable Markov state space and transition

probabilities. One can then use PRA to link the performance

of individual components and subsystems to the

performance of the overall system. Like Čepin et al. [32],

our analysis depends on the identification of several unique

plant configurations with differing levels of safety

(i.e. conditional probability of core damage as computed

using PRA). The differences in core damage frequency

(and associated accident costs) that correspond to different

plant configurations are then balanced through our objective

function against corresponding differences in production

capabilities. While many of the nuclear studies related to

8 In reality, reactors may also operate at a reduced power level, i.e. a

partial outage, due to equipment problems or restrictions imposed by the

regulators. Such conditions and their corresponding contribution to

productivity can be modeled in our approach.
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the evaluation of alternative AOTs or LCOs focus either on

schedule optimization or on safety alone, our model

provides an integrated approach for balancing the

production and safety effects of policy options.

7.3. Nuclear system model

Our illustration focuses on the three primary subsystems

of a hypothetical nuclear production system: the reactor

core, the reactor cooling system, and the electricity

generation system. The reactor core contains the fuel rod

assembly that, through the nuclear fission process, generates

heat to produce steam that drives the electricity generation

system. The reactor cooling system consists of a primary

cooling loop and a number of redundant and independent

ECCS. The electricity generation system consists primarily

of a turbine and a generator that convert heat energy from

the core into electricity. Failures within any one of these

subsystems may affect both system production and safety.

In addition, subsystem operations rely on common support

systems such as a source of electricity.

We assume that failure of the cooling system may lead to

excessive core heating and to accidents, while failure of the

electricity generation system creates only an interruption in

planned production. (In reality, failures in this system can

also create safety problems). We also assume that core

damage results only from failures in the core cooling

system. Furthermore, loss of off-site electrical power

renders subsystems such as core cooling inoperable until

power is restored or supplied by backup generators.

We consider the following sets of initiating events:

Accident initiating events

IE1: pipe breaks-leading to a potential loss of coolant

accident (LOCA)

IE2: losses of off-site power (LOOP)

Shutdown initiating events

IE3: turbine-generator trips

We consider here only one type of accident: severe core

damage. Accident Initiating Events may result in severe

core damage (with major safety and productivity costs),

unplanned production interruptions, or no significant

consequences for productivity or safety. Shutdown

Initiating Events may result only in production interruption

and/or no significant consequences.

In our illustrative application, we define 41 distinct states

of operation and shutdown, namely 17 planned shutdown

states {S1} and 24 planned operating states {S2}: The states

are based on unique system conditions and configurations

that affect reactor productivity or system safety. We use the

failure modes identified by a reactor PRA study and

the results of a reactor outage study to identify relevant

system configurations, conditions, and events. For example,

in {S1}; x1 is a specific unstable state through which the

system must pass during the normal planned shutdown

sequence, x9 represent cold shutdown mode, and x14

characterizes a state of loss of off-site power during cold

shutdown and compromised system configuration (loss of

ECCS redundancy). In {S2}; x18 is normal, full power

operation, and x23 represents operation at full power with

the loss of an ECCS subsystem.

The P11 sub-matrix is a 17 £ 17 matrix that defines

transitions among the 17 planned shutdown states defined in

{S1}: The P22 sub-matrix is a 24 by 24 matrix defining

transitions among the planned operating states of {S2}:

The time unit is one week. State transitions can be triggered

by accident sequence initiators identified in a system PRA

(e.g. coolant pipe rupture), production interrupters

(e.g. turbine trip), or subsystem breakdowns leading to

compromised modes of operation (e.g. loss of standby

emergency core cooling system). They can also be the result

of external events (e.g. an earthquake). Transition prob-

abilities are a function of system operating capabilities, and

are obtained using failure rates from the plant’s PRAs,

modified as appropriate to reflect the impact of time and of

alternative operations and maintenance policies as

described in Section 5.2.

The model is run using a set of base costs (or benefits)

corresponding to the time spent in each state (f cost vector)

and to state transitions (g cost vector). These costs

(or benefits) are monetary values that represent the

preferences and risk attitude of the decision maker for

both monetary and non-monetary attributes of the con-

sequences. Cost values must be estimated for each system

state. They reflect real operations costs as well as any non-

direct costs and penalties that the decision maker chooses to

represent his willingness to pay to avoid some system states

as described in Section 3.5. For example, the values that

correspond to a planned maintenance state include inspec-

tion and maintenance costs, loss of revenue or cost of

replacement energy, failure costs, and penalty costs. As an

illustration, in our base model, the cost of normal (cold)

downtime, f ðx9Þ; is $500,000 per week.9 A transition to an

accident state, gðx17Þ or gðx41Þ; involves a large cost, $1

billion. We also specify costs for each state of planned

operation. For example, normal system operation, f ðx18Þ;

provides a net benefit of $5 million per week. The cost of

transition to an unplanned outage state is a function of the

expected number of previous unplanned outages: the first

one costs $200,000 and increases thereafter with each

successive transition to account for effects of system

9 Downtime is expensive because of the loss in revenue, and because of

the cost of maintenance personnel and materials and the relatively high cost

of replacement energy that must be purchased when the system itself is

unable to generate electricity. Our cost figure for shutdown states includes

downtime costs in excess of lost revenue, and is based on the incremental

increase in cost of maintenance operations and the cost of supplying

replacement energy relative to normal operating costs.
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deterioration. The total cost of unplanned outage time is a

loss of net revenue plus penalty costs for occupying certain

high-risk states (e.g. $200,000 per week).

7.4. Choice of maintenance cycle length and system life

Table 1 presents a summary of the effects of different

combinations of maintenance cycle lengths and system

lifetimes on the overall objective function for the base-case

model. For a given system life and for increasing

maintenance cycle lengths, there is an increasing followed

by a decreasing trend in the objective function. At one

extreme, an overly conservative (i.e. frequent) maintenance

policy is suboptimal because it severely constrains revenues

from operations. At the other extreme, infrequent mainten-

ance leads to greater system deterioration and therefore to a

larger number of transitions to unplanned outages (reflected

in higher transition probabilities in each cycle). This limits

production and reduces safety in the long-term. For each

cycle length and for increasing system lifetimes, there is

also an increasing followed by a decreasing trend in the

value function as very long lives eventually result in many

production interruptions and safety problems. Furthermore,

as a system ages, maintenance costs typically increase,

particularly when essential subsystems (e.g. steam

generators) must be replaced. These non-routine costs can

be incorporated in the model, for example, by defining an

exceptional state of costly planned maintenance, which is

entered in rare instances (e.g. every 20 years on average)

and for which the time index is reset to zero upon exit.

Fig. 2 illustrates the effect of maintenance cycle and

system life (a) on the average percentage of operating time

spent in a shutdown state (including both planned and

unplanned outages), and (b) on the probability of severe

core damage. The objective function includes both

productivity and safety and depends on the relative costs

assigned by the decision maker to the various states and

transitions. The optimal maintenance cycle and system life

are the ones that best balance the different costs

(and probabilities) associated with system operation,

planned and unplanned shutdown, and possible accidents.

The effect of maintenance cycle and system life on the

overall objective function for our illustrative nuclear

production system is shown in Fig. 2(c).

7.4.1. Optimal policy

In our illustrative case, and for the considered decision

maker, the preferred policy is a 100-year life with planned

maintenance every 2.75 years. If the expected life of the

plant is set at 40 years, as is the case for most US reactors,

the optimal maintenance interval is 3 years. In our

illustration, the optimum maintenance cycle is relatively

insensitive to a range of system life-times. This is a

consequence of our assumptions regarding deterioration. It

is not a general result.

The optimal policy is generally not the policy that yields

the minimum system risk or the policy that minimizes

system downtime. It depends on the costs (or benefits)

assigned to the different states and transitions. This effect is

examined next.

7.4.2. Comparison of optimal policies under different cost

assumptions

We evaluated the effects of alternative maintenance and

decommissioning policies under two additional cost

assumptions: high risk-cost (and average outage-cost)

assumptions, and high outage-cost (and average risk-cost)

assumptions. These two sets of cost assumptions reflect the

preferences of two hypothetical decision makers, one driven

primarily by safety and the other by productivity. The high

risk-cost assumption represents a decision maker who is

relatively risk averse in terms of negative safety impacts and

therefore places a higher cost value on transitions to and

time in accident or other unsafe states. The high outage-cost

assumption reflects a decision maker who is relatively risk

averse in terms of negative production effects and therefore

places relatively high costs on non-producing states.

Table 1

Objective function under alternative maintenance and system life policies

Maintenance cycle length System life (decommissioning horizon)

10 25 40 50 100 150

4 1071.8 1783.6 2011.2 2061.0 2085.9 2085.5

8 1350.5 2307.8 2642.4 2720.0 2763.0 2761.0

10 1389.1 2293.8 2707.5 2783.8 2824.2 2822.8

11 1393.4 2382.8 2716.6 2791.8* 2830.2** 2828.9*

12 1398.5 2385.6* 2717.0* 2789.8 2825.9 2824.8

13 1405.0* 2384.0 2710.3 2780.5 2814.2 2813.2

14 1402.4 2379.6 2698.1 2766.0 2797.1 2796.2

16 1389.3 2356.4 2664.4 2725.0 2751.6 2750.9

20 1377.8 2293.8 2567.8 2618.5 2636.1 2635.7

For each proposed system life (decommissioning horizon), a single asterisk indicates the preferred maintenance cycle length. The double asterisk marks the

overall best combination of system life and maintenance cycle for our example.
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These alternative perspectives are modeled by adjusting

elements of the f and g cost vectors.

Table 2 presents a summary of comparison of preferred

planned maintenance and system life policies under the

three cost assumptions. High risk-penalty and high outage-

penalty each reduce the optimal system life as discussed

earlier. The optimal maintenance cycle is reduced under

high risk-costs to avoid accidents, and is increased under

high outage-costs to avoid costly planned downtime.

The optimal policy is clearly dependent on cost assumptions

and, in particular, the relative costs of planned versus

unplanned outage time.

7.5. The decision to interrupt production

Next, the model is used to determine a decision rule for

‘tripping’ a reactor because of failures in ECCS. It is

assumed that the ECCS consists of three redundant

subsystems, at least one of which must be operational for

the backup cooling to function when needed. When one or

more of the three ECCS subsystems fails, managers

(or regulators) face the primary decision of whether to

continue operations while the failures are repaired

(‘hot repair’), or shut the plant down (‘cold repair’) [33].

The tradeoffs between productivity and safety in this case

are similar to those discussed in the warning systems

literature [34,35] and in Vaurio’s discussion of maintenance

decisions and temporary configurations [8].

In our base model, the state space was designed as if the

reactor tripped when 2 or more ECCS subsystems

failed. Therefore, we assumed continued operation under

Fig. 2. Illustrative effects of alternative maintenance cycle lengths and system lives on (a) the percentage of time spent in planned or unplanned outage states,

(b) the probability of severe core damage, and (c) the overall objective function value.

Table 2

Comparison of optimal maintenance and life policies under different cost

assumptions

Optimal

policy

Cost assumption

High risk-cost Base cost

assumption

High

outage-cost

System life

(years)

40 100 50

Maintenance

cycle (quarters)

7 11 13
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a compromised condition in which one of the backup system

had failed (state x35). To consider the effects of a more

conservative policy, we modify the state space to prohibit

continued operation if any of the ECCS subsystems fails.

Under this new policy, the state space is reduced because the

probability of transition into a number of states is now zero

(namely, states x5 – x8; x13 – x16; x24 – x29; and x36 – x40).

The probability of transition to an unplanned outage state

under the more conservative policy is computed as the

probability of one or more ECCS subsystem failures. It is

higher than under the original policy that resulted in

shutdown only after 2 or 3 subsystem ECCS failures.

The probability of a transition out of the unplanned outage

resulting from the ECCS policy is also increased because

the expected repair time is reduced as only one subsystem,

instead of 2 or 3 in our base model, needs repair.

7.5.1. Optimal reactor trip policy

Again, we evaluate the policy alternatives as a function

of maintenance cycle length under each of the three cost

assumptions: base-cost, high risk-cost and high outage-cost.

We assume here a 40-year plant life. Under each cost

assumption, the optimum maintenance cycle length has

been extended under the more conservative reactor trip

policy relative to the base policy. This implies that a more

prudent unplanned shutdown policy allows for extended

periods of operation between planned maintenance periods.

The disadvantages of increased deterioration effects for

extended cycles can thus be offset by more conservative

shutdown policies.

Table 3 summarizes the effects of the new policy on the

optimal maintenance cycle length for each of the three

different cost scenarios, and shows the optimum policy for

each cost assumption. In this example, the new policy is

preferred to the base policy in all cases, which, again, is

a result of the chosen cost functions rather than a general

finding.

8. Conclusions

Balancing productivity and safety is an essential

objective for the designers and managers of safety-critical

production systems. Without explicit recognition of the

potential tradeoffs and a structured framework for

evaluating the long-term effects of operations policies

(beyond existing safety regulations), the decision makers

can knowingly or inadvertently increase overall failure risks

for increases in short-term productivity.

The model presented in this paper provides a framework

for the evaluation of alternative risk management strategies

based on the predicted operating performance of a critical

system in terms of these two objectives. This model requires

an explicit statement of the value function of the decision

maker assumed here to be top management of the

organization. It can be applied to systems such as nuclear

power plants, offshore oil platforms, or simply a car.

Long-term system performance measures are computed and

used as inputs to the decision maker’s objective function to

determine the preferred risk management strategy.

By combining a risk analysis for the physical system,

the characteristics of strategic options, and the risk attitude

of the decision maker, this model can provide decision

support for the design of risk management strategies and,

for example, as shown in this paper, to set planned and

unplanned outage policies for a nuclear power plant.

In an effort to address with clarity a relatively broad and

complex management problem, we have applied a relatively

simple modeling approach, relying on Markov assumptions.

Along with the clarity afforded by using such an approach,

come potential limitations for modeling real critical

systems. We have in some cases avoided the potential

problems associated with the Markov assumption of

memoryless transitions by defining as unique states of

operation those from which future transitions depend on the

history. For example, the cause of an unplanned outage is

likely to determine the rate of return to an operating state.

Therefore, we define unique unplanned outage states for

each of the possible causes. Still, alternative or more

complex models, for example, genetic algorithms as used by

Yang et al. [30], might be a fruitful future extension.

A specific problem with the Markov approach is that it

cannot accurately handle standby systems that are period-

ically tested. The failure rate of such systems are not well

reflected in the exponential assumption of the Markov

model; they are in fact essentially uniformly distributed

Table 3

Comparison of reactor trip policies under different cost assumptions

Cost assumption

High risk-cost Base-cost trip policy High outage-cost

New Base New Base New Base

Optimal maintenance cycle (quarters) 9 7 13 12 14 13

Expected cost function at optimal point 1959* 1524 2957* 2717 2361* 2089

In the illustrative case, the new more conservative reactor trip policy is preferable to the base trip policy for each of the three cost assumptions. This

demonstrates a robust policy improvement under a range of decision-maker value preferences and risk attitudes. A 40-year reactor life is assumed here.
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over the test interval due to latent failures in such systems

that are not detected between tests. The use of Apostolakis

et al.’s [36] analytic unavailability equations for our standby

systems or Vaurio’s [37] related approach that evaluates the

impact of alternative maintenance policies on standby

system availability, might improve the result. Because this

situation is quite relevant to our illustrative nuclear plant

example, further study should be carried out to explore the

significance of this limitation.

A final challenge in applying our approach is that it

currently requires the subjective linking of alternative

operations and maintenance policies to our system.

Consequently, the results of the optimization model are

only as accurate as are the decision maker’s assumptions

about the impact of specific policy options on the

parameters of the models. In an industry that possesses an

extensive data base on operating experience that is clearly

linked to specific elements of different risk management

strategies, it might be possible over time to develop more

objective connections between policy choices and system

performance characteristics.
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[5] Baron MM, Paté-Cornell ME. Designing risk management strategies

for critical engineering systems. IEEE Trans Engng Mgmt 1999;

46(1):87–100.

[6] Rothwell G, Rust J. A dynamic programming model of US nuclear

power plant operations. Working paper; 1995.

[7] David PA, Maude-Griffin R, Rothwell GS. Learning by accident?

Reductions in the risk of unplanned outages in US nuclear power

plants after three mile island. J Risk Uncertainty 1996;13:175–98.

[8] Vaurio JK. Safety-related decision making at a nuclear power plant.

Nucl Engng Des 1998;185:335–45.

[9] Vesely WE. Quantifying maintenance effects on unavailability and

risk using Markov modeling. Reliab Engng Syst Safety 1993;41:

177–87.

[10] Martorell S, Munoz A, Serradell V. An approach to integrating

surveillance and maintenance tasks to prevent the dominant failure

causes of critical components. Reliab Engng Syst Safety 1995;50:

179–87.

[11] Siu N. Risk assessment for dynamic systems: an overview. Reliab

Engng Syst Safety 1994;43:43–73.

[12] Aldemir T, Siu NO, Mosleh A, Cacciabue PC, Göktepe BG, editors.

Reliability and safety assessment of dynamic process systems. NATO

ASI series, Berlin: Springer; 1994.

[13] Vaurio JK. Optimization of test and maintenance intervals based on

risk and cost. Reliab Engng Syst Safety 1995;49:23–36.

[14] Garrick BJ. Recent case studies and advancements in probabilistic risk

assessment. Risk Anal 1984;267–79.

[15] Mosleh A. Lessons learned from nine plant-specific external

flooding analysis. Presentation at the Severe Accident Policy

Implementation External Events Workshop Annapolis, Maryland;

August 4–5 1987.

[16] Budnitz RJ. Current status of methodologies for seismic

probabilistic safety assessment. Reliab Engng Syst Safety 1998;62:

71–88.

[17] Keeney RL, Raiffa H. Decisions with multiple objectives: preferences

and value tradeoffs. New York: Wiley; 1976.

[18] Howard RA. On making life and death decisions. In: Howard RA,

Matheson JE, editors. Reprinted in: readings on the principles and

applications of decision analysis, vol. 2. Matheson. Palo Alto:

Strategic Decisions Group; 1984.

[19] Bier VM. Issues in the estimation of ageing in event frequencies. In:

Proceedings of an International Symposium on the Use of

Probabilistic Safety Assessment for Operational Safety, International

Atomic Energy Agency, American Nuclear Society, European

Nuclear Society, and the Nuclear Energy Agency of the OECD.

Vienna; June 1991.

[20] Martorell S, Sanchez A, Serradell V. Age-dependent reliability model

considering effects of maintenance and working conditions. Reliab

Engng Syst Safety 1999;64:19–31.

[21] Paté-Cornell ME. In: Grigoriu M, editor. Discounting in risk analysis:

capital vs. human safety. Risk, structural engineering and human

error. University of Waterloo; 1984.

[22] EQE International, Soviet nuclear plant safety: Bulgaria’s challenge.

EQE Rev 1992;Fall.

[23] US Nuclear Regulatory Commission. Shutdown and low-power

operation at commercial nuclear power plants in the United States.

NUREG-1449; 1993.

[24] Denton HR. Reactor scrams in the US: a regulators point of view. In:

Proceedings of an NEA Symposium on Reducing the Frequency of

Nuclear Reactor Scrams, Tokyo: OECD; 1987. p. 66–74.

[25] US Nuclear Regulatory Commission. Reactor safety study:

an assessment of accident risks in US. Commercial nuclear power

plants. NUREG-75/014 (WASH-1400); 1975.

[26] Budnitz RJ, Davis PR. A scoping evaluation of severe accidents at the

Surry and Grand Gulf nuclear power plants resulting from earthquakes

during shutdown conditions. Report; August 1991.

[27] EPRI. Safety Assessment of Diablo Canyon risks during shutdown

operations. EPRI Outage Risk Assessment and Management Program,

Nuclear Safety Department, EPRI; 1992.

[28] US Nuclear Regulatory Commission. A process for risk-focused

maintenance. NUREG/CR-5695; 1991.

[29] US Nuclear Regulatory Commission. Handbook of methods for risk-

based analyses of technical specifications. NUREG/CR-6141; March

1995.

[30] Yang J-E, Sung T-Y, Jin Y. Optimization of the surveillance test

interval of the safety systems at the plant level. Nucl Technol 2000;

132:352–65.

[31] Harunuzzaman M, Aldemir T. Optimization of standby safety system

maintenance schedules in nuclear power plants. Nucl Technol 1996;

113:354–67.
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