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Simulation-based parameter estimation for
complex models: a breast cancer natural history
modelling illustration
Yen Lin Chia, Peter Salzman Management Science and Engineering,
Terman Engineering Center, Stanford University, Stanford, CA, USA, Sylvia K Plevritis
Department of Radiology, Lucas Center for MR Spectroscopy and Imaging, Stanford, CA,
USA and Peter W Glynn Management Science and Engineering, Terman Engineering
Center, Stanford University, Stanford, CA, USA

Simulation-based parameter estimation offers a powerful means of estimating parameters in complex
stochastic models. We illustrate the application of these ideas in the setting of a natural history model for
breast cancer. Our model assumes that the tumor growth process follows a geometric Brownian motion;
parameters are estimated from the SEER registry. Our discussion focuses on the use of simulation for
computing the maximum likelihood estimator for this class of models. The analysis shows that simulation
provides a straightforward means of computing such estimators for models of substantial complexity.

1 Introduction

Most mathematical models involve unknown parameters that must be estimated from
observed data. As new models are created, estimation methods appropriate to those
models must be developed. Among the general approaches available for construction of
such estimators are the method of moments and the method of maximum likelihood.
Method of moments requires the ability to compute population moments of the
observables associated with the postulated model, whereas method of maximum
likelihood requires the ability to compute the likelihood of the observed data under
the given model. When the model is complex, such computations can prove challenging.

A powerful means of computing such model-based population moments or like-
lihoods is to use Monte Carlo simulation. For example, in the setting of the method of
moments, one essentially performs Monte Carlo simulation at various points in the
statistical parameter space and computes the population moments at these parameter
points via computer-based Monte Carlo sampling. The point in the parameter space
giving the best fit to the observed sample moments is then declared to be the moment
based estimator. This approach has proved very effective in computing parameter
estimators for complex stochastic models in a variety of applications areas; an
illustration in the econometrics setting is presented in Duffie and Singleton.1

Address for correspondence: Peter W Glynn, Management Science and Engineering, Terman Engineering
Center, Stanford University, Stanford, CA 94305-4026, USA. E-mail: glynn@stanford.edu

Statistical Methods in Medical Research 2004; 13: 507^524

# Arnold 2004 10.1191/0962280204sm380ra

 at Stanford University Libraries on July 19, 2010smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


This paper illustrates the use of simulation-based estimation methods in the context
of a natural history model for breast cancer. In Section 2, it is argued that this model is
of interest in its own right. It is perhaps the simplest possible model of tumor growth
based on simulation in which the growth process itself is modelled as a stochastic
process with random variation occurring over the lifetime of the affected woman.
Specifically, growth of the tumor is modelled as a geometric Brownian motion. This
process is a stochastic version of deterministic exponential growth. We fit the model
from data collected through the Surveillance, Epidemiology, and End Results (SEER)
registry of the National Cancer Institute.

We describe three simulation-based approaches to maximum likelihood estimation
for this model, starting from an easily implemented likelihood computation on a grid of
points and progressing to more sophisticated iterative algorithms. Specifically, Section 6
describes an iterative algorithm known as the Kiefer–Wolfowitz (KW) algorithm that is
based on simulating the likelihood itself, whereas the Robbins–Monro (RM) algorithm
of Section 7 is a more sophisticated iterative variant based on simulating the gradient of
the likelihood. In Section 8, it is found that via use of stochastic calculus, the likelihood
can be computed in closed form in terms of modified Bessel functions of the first
and second kind. Given the complexity of the likelihood and the mathematical back-
ground required to compute it, we view our geometric Brownian motion model as being
right on the boundary of the models that are amenable to closed-form analysis.

The paper therefore provides an illustration of the various levels at which the
estimation problem can be attacked, depending on the background and mathematical
sophistication of the modeler. In Section 9, we provide a numerical comparison of the
iterative methods of Sections 6 and 7, and study their convergence characteristics
relative to the ‘gold-standard’ of the closed-form maximum likelihood estimator of
Section 8. Concluding remarks are offered in Section 10.

2 Tumor growth model

A commonly proposed model for tumor growth assumes that the rate of growth
is proportional to the number of malignant cells.2 This is essentially equivalent to
assuming that the volume v(t) of the tumor at time t satisfies the differential equation

d

dt
v(t) ¼ rv(t) (1)

subject to the initial condition v(0) ¼ v0. Here, r is a positive (deterministic) constant,
v0 is the volume of a single malignant cell, and t ¼ 0 is the time at which tumor growth
is initiated.

Of course, there is individual variation in tumor growth across the population.
If one assumes that each individual’s tumor growth is controlled by their own
individually determined growth rate (possibly governed by that individual’s genetic
inheritance), then the volume v(t) of the tumor at time t satisfies

d

dt
v(t) ¼ Rv(t) (2)
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subject to v(0) ¼ v0, where R is an individually determined growth rate. To
model heterogeneity across the population, one can assume that R is selected
(randomly) from an appropriately chosen probability distribution. Note that once
R is selected, the entire volume trajectory (v(t): t� 0) is (conditionally on R) deter-
ministic.

A very different approach to capturing individual variation across the popu-
lation is to make the tumor growth process itself vary randomly across the
population (as a stochastic process). Rather than assuming that the tumor grows
predictably as a function of time [as in Equations (1) and (2)], we assume that for
any h > 0,

V((iþ 1)h)

V(ih)
: i� 0

� �

is a sequence of independent and identically distributed (iid) random variables.
This means that the proportion change in the tumor volume for a time interval of
duration h is independent of that observed in other periods and follows a common
probability distribution. If the volume process V ¼ (V(t): t� 0) is further assumed to be
continuous, then it can be shown that V must necessarily take the form

V(t) ¼ V(0) exp(mt þ sB(t)) (3)

for some (deterministic) constants m and s, where B ¼ (B(t): t�0) is a standard
Brownian motion process. A standard Brownian motion has stationary and indepen-
dent increments, continuous paths and satisfies B(t)¼

D
N(0, t) (where ¼

D
denotes equality

in distribution and N(m, s2) is a normally distributed random variable with mean m and
variance s2). This characterization of V relies on the fact that ( log V(t): t� 0) is, under
our assumptions, a continuous process with stationary increments, and hence must be a
Brownian motion with (possibly nonzero) drift; detailed in p. 29 of Øksendal.3 The
process V described by Equation (3) is called a ‘geometric Brownian motion’ with
parameters m and s2.

If one assumes that m and s2 are common parameters across the entire population,
then statistical characteristics of the growth are identical across the population at the
time of tumor initiation. The observed heterogeneity across the population can then be
attributed to individual stochastic variation encountered during the development of
the tumor. Roughly speaking, the model described by Equation (1) suggests that
population heterogeneity has a purely genetic origin, whereas the model (3) suggests
that such heterogeneity has an environmental explanation.

3 Intensity-based clinical detection model

Suppose that a woman develops a breast cancer tumor that is governed by the
geometric Brownian model (3). We now describe an intensity-based model that

Simulation-based parameter estimation for complex models 509

 at Stanford University Libraries on July 19, 2010smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


describes the time at which the tumor will be clinically detected. Specifically, if T is
the instant at which clinical detection occurs, we assume

P(T 2 [t, t þ h)jT > t, V) ¼ gV(t)hþ o(h) (4)

as h # 0, where o(h) denotes a function f (h) for which f (h)=h! 0 as h # 0 and g
denotes a positive (deterministic) constant. The model (4) asserts that the intensity of
clinical detection is proportional to the tumor volume. Such volume based intensity
models have been frequently suggested.4

Given Equations (3) and (4), we can (in principle) compute the probability distri-
bution of the tumor volume V(T) at the time of clinical detection, as a function of
the model parameters m, s2 and g. Thus, if we are given a data set consisting of such
tumor volumes, we can potentially estimate the parameter values of m, s2 and g that
best fit the data. Note, however, that the distribution of tumor volume at detection
depends on the assumed stochastic structure of the tumor growth process and its rate
relative to that at which detection occurs. Thus, whereas the relative rates play a key
role in determining the distribution of tumor volume, the absolute rates do not.
Consequently, the probability distribution of V(T) depends only on the relative
magnitudes of m, s2 and g. In particular, we may take s2 ¼ 1 if we so choose.

Proposition 1. Let Pm,s2,g( � ) be the probability distribution under which V and T
evolve according to the parameters m, s2 and g. Then,

Pm,s2,g(V(T) 2 �) ¼ Pm=s2,1,g=s2 (V(T) 2 �)

Proposition 1 is proved in Appendix A.

Henceforth, we can and will assume that the unit of time has been chosen so that
s2 ¼ 1. To estimate m and g observed values of V(T) are required. Such a data set is
available through the SEER Program of the National Cancer Institute. Note that breast
cancer screening was introduced in 1982. However, the SEER database does not record
whether a woman diagnosed with breast cancer subsequent to 1982 was screen detected
or clinically detected. As we are modelling only clinical detection, we therefore consider
only pre-1982 data. Furthermore, we shall limit our study to those patients aged 40–80
years old (at the time of detection) who suffered from invasive breast cancer associated
with only one primary tumor. The age restriction is enforced because it is widely
believed that the cancers exhibited by very young and very old women are substantially
different from those associated with the 40- to 80-year old cohort (e.g., the cancers
associated with younger women are largely associated with the BrCa gene and appear
to grow faster than those in the general population5,6). This leads to a data set of 35 504
women, for whom clinically detected tumor volumes are known.

For pre-1982 SEER data, the size (i.e., diameter) of the tumor is recorded by SEER as
falling into one of the eight categories: less than 0.5, 0.5–0.9, 1.0–1.9, 2.0–2.9, 3.0–3.9,
4.0–4.9, 5.0–9.9 cm and tumors of 10.0 cm or more. Because of the small bin counts
associated with the small and large size categories (and lack of reliability in tumor size
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measurements at the extremes of the range), we collapse the first two categories and last
two categories into single bins. The resulting SEER data set can be found in Table 1.

Recall that our model assumes observability of the tumor volume V(T) at clinical
detection. To convert size data into volume data, we assume that the tumor is spherical,
so that the volume V(T) is given by (p=6)S(T)3, where S(T) is the diameter (or size) at
detection.

4 Parameter estimation via the method of maximum likelihood

The method of maximum likelihood is known to exhibit many favorable statistical
properties, including statistical efficiency.7 Because of the binned nature of the observed
data, the likelihood takes the form

L(m, g) ¼
Y6

i¼1

Py(V(T) 2 [ai�1, ai))
Ni (5)

where y¼4 (m, g), [ai�1, ai) is the ith volume category, and Ni is the observed bin count
for [ai�1, ai) (specific values are presented in Table 1).

The method of maximum likelihood suggests estimating the true value of y under-
lying the population, call it y� ¼4 (m�, g�), via the maximizer ŷy¼4 (m̂m,ĝg) that maximizes
the likelihood L. The difficulty in applying maximum likelihood to this model is that
the probabilities Py(V(T) 2 [ai�1, ai)) are challenging to compute. One powerful means
of computing such probabilities for models of almost arbitrary complexity is to employ
Monte Carlo simulation.

Perhaps the most straightforward means of applying simulation in the current setting
is to select an appropriately dense grid of points y1, y2, . . . , ym from the parameter
space L ¼ {(m, g): m�0, g > 0}. At each selected point yi ¼ (mi, gi), one can then run
n independent simulations of the process V up to time T, thereby yielding
V1(T1), . . . , Vn(Tn). The likelihood can then be estimated via

L̂L1(yi) ¼
Y6

l¼1

P̂Pyi,n
(V(T) 2 [al�1, al))

Nl (6)

Table 1 Distribution of breast cancer tumor sizes in SEER database

Size, s (cm) Tumor size count

s<1 2587
1 � s< 2 8189
2 � s< 3 9287
3 � s< 4 7203
4 � s< 5 4439

s � 5 3790
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where

P̂Pyi,n
(V(T)) 2 [al�1, al)) ¼

1

n

Xn

j¼1

I(Vj(Tj) 2 [al�1, al))

The maximum likelihood estimator ŷy1 is then given by

ŷy1 ¼ arg max
yi

L̂L1(yi) (7)

Note that the simulated optimizer ŷy1, in general, differs from the maximizer ŷy.
However, as the sample size n and number of grid points m converge to infinity, one
can establish ŷy1 converges to ŷy. Some guidelines on how to choose m and n can be
found in Ensor and Glynn.8

5 Simulation of tumor volume at detection

In Section 4, we discussed one simple means of employing simulation as a compu-
tational device for calculating the maximum likelihood estimators for m and g.
Of course, any simulation-based algorithm requires the ability to efficiently generate
the required random variates. In our setting, we need an algorithm for simulating
the random variates V(T).

The process V can easily be generated at multiples of the time increment h via the
recursion

V((iþ 1)h) ¼ V(ih) exp(mhþ
ffiffiffi
h
p

Niþ1(0, 1))

subject to V(0) ¼ v0, where (Ni(0, 1): i�1) is a sequence of iid N(0, 1) random
variables.

To simulate the detection time T, several different alternatives exist. The most
straightforward approach to generating T is to simulate an exponential random variate
W with unit mean, independent of V, and select T so that

g
ðT

0

V(s) ds ¼W (8)

It can easily be checked that T has the appropriate distribution. Unfortunately, we
cannot simulate the exact value of the integral appearing in Equation (8) but only a
discrete approximation to it, based on (V(ih): i�0). In particular, let Th be defined as

Th ¼ h min n� 1: h
Xn

i¼1

V(ih)� g�1W

( )
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If h is chosen small enough, Th will be close to T. We assume throughout the remain-
der of this paper that the discretization error jT � Thj is small enough so as to be
negligible.

The key to finding the maximizer of L(y) is to accurately compute differences of
the form L(y0)� L(y); if the difference is positive, the maximizer is likely to be in the
direction of y0. Thus, accurate computation of differences in the likelihood surface is a
key to the successful computation of the maximizer ŷy of L( � ).

One means of efficiently computing differences in the Monte Carlo setting is to
employ the method of common random numbers. Note that we can avoid using
independent streams of random numbers in performing our simulations at the para-
meter points y0 ¼ (m0, g0) and y ¼ (m, g). The idea is to use a common stream of random
numbers to drive both sets of simulations, thereby (hopefully) inducing positive
correlation. Positive correlation can significantly reduce variance (relative to indepen-
dent simulations at y and y0) in the context of computing differences.9

In the setting of our geometric Brownian motion model, there is a particularly natural
means of implementing common random numbers. In particular, note that process
Vm ¼ {Vm(t): t�0} defined by

Vm(t) ¼ exp(mt þ B(t))

has precisely the distribution of V associated with the parameter point y ¼ (m, g). Thus,
if T(m, g) satisfies

ðT(m,g)

0

exp(msþ B(s)) ds ¼
W

g

the random variable exp(mT(m, g)þ B(T(m, g))) will have the distribution of V(T)
associated with the parameter point y ¼ (m, g). Hence, we can estimate L(y) via the
Monte Carlo method using

L̂L2(y) ¼
Y6

i¼1

1

n

Xn

j¼1

I( exp(mTj(m, g)þ Bj(Tj(m, g))) 2 [ai�1, ai))

 !Ni

where (B1, T1(m, g)), . . . , (Bn, Tn(m, g)) are n independently simulated replications of
(B, T(m, g)). The simulated likelihood surface L̂L2( � ) is then a good approximation
to the empirical likelihood L( � ) when n is large. Note that the standard Brownian
motion B and exponential variate W need only be generated n times in order to
compute the entire approximating surface L̂L2( � ) [as opposed to the mn simulations
that would be necessary if n independent simulations were performed independently at
each of m parameter points (y1, . . . , ym)]. Thus, the method of common random
numbers improves on use of independent streams both by inducing positive correla-
tion and by reducing the overall computer time necessary to simulate all the random
variates.

Simulation-based parameter estimation for complex models 513

 at Stanford University Libraries on July 19, 2010smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


Of course, the earlier discussion implicitly presumes that mT(m, g)þ B(T(m, g)) can be
exactly simulated. As noted earlier in Section 4, only a (very) close approximation to
mT(m, g)þ B(T(m, g)) can be generated (by setting h small enough so as to make the
error negligible).

To optimize the simulated surface, one simple approach would involve evaluation of
L̂L2( � ) at the grid points y1, . . . , ym. A simulation-based estimator is then given by

ŷy2 ¼ arg min
yi

L̂L2(yi)

Note that ŷy2 differs from ŷy1 in its use of common random numbers rather than
independent streams of random variables. A more sophisticated alternative is to
optimize the simulated surface via an iterative numerical algorithm. Because L̂L2( � ) is
not smooth in y (due to the presence of the indicator variables), a nonsmooth iterative
optimization scheme (such as the Nelder–Mead algorithm10) must be used. Use of such
an iterative procedure permits the global maximizer

ŷy3 ¼ arg max
y2L

L̂L2(y)

to be computed.

6 Kiefer^Wolfowitz algorithm

One problem with the simulation-based estimators ŷy2 and ŷy3 is that the surface L̂L2( � )
must be reoptimized every time additional simulations are added to the sample.
In particular, recomputing ŷy3 can involve significant effort, even if the previously
computed estimator is used as a starting point for the iterative reoptimization. This
creates difficulties if one needs to increase the simulated sample size n in order to reduce
the Monte Carlo error to an acceptable level.

The KW algorithm offers a fundamentally different means of computing the
maximizer ŷy of L( � ) via simulation. Note that we expect the likelihood function L(y)
to be ‘smooth’ in y, in the sense that we expect it to be at least twice continuously
differentiable (in fact, we establish this smoothness in Section 8). In the presence of such
smoothness, ŷy will be a root of

HL(ŷy) ¼ 0 (9)

where HL(y) represents the gradient of L( � ) evaluated at y. The idea is now to develop a
simulation-based algorithm for iteratively computing the solution ŷy to Equation (9).

Suppose that at each y 2 L, we are able to simulate an unbiased estimator of the
gradient of L. In particular, we demand that

E[Z(y)] ¼ HL(y) (10)
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Starting at an initial guess y0, we can then define y1, y2, . . . , via the iteration

ynþ1 ¼ yn � anþ1Znþ1(yn) (11)

where Znþ1(yn) is independently generated at time nþ 1 so that it has the distribution of
the random vector Z(y) evaluated at y ¼ yn. The sequence {an: n�1} appearing in
Equation (11) must be chosen so that an� 0,

X1
n¼1

an ¼ 1

X1
n¼1

a2
n <1

The standard choice for (an: n�1) is an ¼ a=n for some value of a > 0. With
this choice of (an: n� 1), general conditions can be established under which
yn ! ŷy with probability one as n!1. Furthermore, n1=2(yn � ŷy) has an approxi-
mate (multivariate) normal distribution for n large; relevant theory is presented in
Pflug.11

The KW algorithm is the special case in which Z(y) is defined via a finite-difference
approximation to the gradient. Specifically, if the finite-difference increments d1 and d2
are chosen small enough, then

Z1(m, g) ¼4
L̂L2(mþ d1, g)� L̂L2(m� d1, g)

2d1

Z2(m, g) ¼4
L̂L2(m, gþ d2)� L̂L2(m, g� d2)

2d2

produces a pair ~ZZ(m, g) ¼4 (Z1(m, g), Z2(m, g)) such that

E[ ~ZZ(m, g)] � HL(m, g)

As discussed in Section 5, the n simulations at each of the four parameters points
(mþ d1, g), (m� d1, g), (m, gþ d2) and (m, g� d2) can be done either independently
(in which case a total of 4n simulations of B and W per iteration are needed) or via
the common random numbers idea described there (leading to n simulations of B and
W per iteration). Because the finite-difference approximation is defined in terms of a
difference in the likelihood, use of common random numbers is strongly recommended
in this KW setting.

This finite-difference approximation to the gradient induces a bias in the estimator
~ZZ(m, g) [as the estimator of HL(m, g)]. This can be controlled by choosing d1 and d2
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sufficiently small. In the current setting, an additional (and more subtle) source of bias
is also present. In particular, the estimator L̂L2(y) is biased as an estimator of L(y), in the
sense that

E[L̂L2(y)] 6¼ L(y)

The bias E[L̂L2(y)� L(y)] can be reduced by making the number n of simulated
replicates per iteration large.

Because of the persistent bias due to the presence of the finite differences, the KW
algorithm does not enjoy the n�1=2 convergence rate described earlier. Nevertheless, the
associated simulation-based estimator ŷy4 for ŷy can still yield practically useful estimates
of ŷy. (The asymptotic theory for the KW algorithm shows that the estimator’s
asymptotic behaviour can be enhanced by letting the difference increments d1 and d2
shrink to zero as the iteration count n tends to infinity.12)

We implemented ŷy4 for our model and SEER data set. The results are reported in
Section 9.

7 Robbins^Monro algorithm

In Section 6, finite-difference approximations to the gradient are used to drive the
iterative algorithm (11). Naturally, we expect improved algorithmic convergence
when the gradient can be estimated directly (without resort to finite differences).
Such algorithms require the ability to simulate an unbiased estimator Z(y) of the
gradient, so that E[Z(y)] ¼ HL(y). In contrast, the algorithms of Section 6 require only
the ability to simulate unbiased (or almost unbiased) estimators of L(y).

If ~LL(y) is an unbiased (or almost unbiased) estimator of the likelihood L(y), one might
hope to put Z(y) ¼ H ~LL(y), in the belief that

E[Z(y)] ¼ E[H ~LL(y)] ¼ HE[ ~LL(y)] ¼ HL(y)

Such an approach presumes that the gradient operator can universally be interchanged
with the expectation. Though such an interchange is frequently valid, it is not
universally so. In particular, in our setting, we noted earlier that L̂L2(y) is not smooth
in y due to the presence of indicator random variables in its definition. Hence, HL̂L2(y) is
not even well defined in our setting.

Observe that

HL(y) ¼
X6

i¼1

NiPy(V(T) 2 [ai�1, ai))
Ni�1HPy(V(T) 2 [ai�1, ai))

Y
j 6¼i

Py(V(T) 2 [aj�1, aj))
Nj

As Py(V(T) 2 [ai�1, ai)) can be estimated easily via the proportion of simulations on
which V(T) 2 [ai�1, ai), our focus is on HPy(V(T) 2 [ai�1, ai)).
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If W(g) is an exponential random variable with mean 1=g and g is any nonnegative
function,

E[g(mhþ
ffiffiffi
h
p

N1(0, 1), . . . ,mhþ
ffiffiffi
h
p

Nn(0, 1), W(g))]

¼

ð1
�1

� � �

ð1
�1

ð1
0

g(x1, . . . , xn, y)ge�gy dy
Yn

i¼1

1ffiffiffiffiffiffiffiffi
2ph
p exp �

(xi � mh)2

2h

 !
dxi

¼

ð1
�1

� � �

ð1
�1

ð1
0

g(x1, . . . , xn, y)
g
g0

� �
e�(g�g0)y

Yn

i¼1

1ffiffiffiffiffiffiffiffi
2ph
p exp (m� m0)xi �

(m2 � m2
0)h

2

� �

� g0e�g0y dy
Yn

i¼1

1ffiffiffiffiffiffiffiffi
2ph
p exp �

(xi � m0)2

2h

 !
dxi

¼ E[g(m0hþ
ffiffiffi
h
p

N1(0, 1), . . . ,m0hþ
ffiffiffi
h
p

Nn(0, 1), W(g0)) � Lnh(m, g; m0, g0)]

where

Lt(m, g; m0, g0) ¼ exp (m� m0)(m0t þ B(t))�
(m2 � m2

0)t

2

� �
�

g
g0

� �
exp(� (g� g0)W(g0))

Recognizing an indicator random variable as a special type of nonnegative function,
we find that

Py(V(Th) 2 (ai�1 ai]) ¼ Ey0
[I(V(Th) 2 (ai�1, ai])LTh

(m, g; m0, g0)]

This idea permits the dependence on y to be moved out of the nonsmooth indicator
variable into the (smooth) function Lt( � ). Differentiation is now possible:

q
qm

Py(V(Th) 2 (ai�1, ai])

����
y¼y0

¼ Ey0
[I(V(Th) 2 (ai�1, ai])B(Th)]

q
qg

Py(V(Th) 2 (ai�1, ai])

����
y¼y0

¼ Ey0
I(V(Th) 2 (ai�1, ai])

1

g0

�W(g0)

� �� �

This method yields unbiased estimators for the gradient of Py(V(Th) 2 (ai�1, ai])
(thereby yielding gradient estimators for the likelihood). This approach to constructing
simulation-based gradient estimators is called the likelihood ratio gradient estimators;
Detailed in Glynn.13

When such unbiased gradient estimators are used with algorithm (11), we obtain
what is known as the RM algorithm.14 Note that in our setting, a small bias is incurred
when multiplying the estimator of Py(V(Th) 2 (ai�1, ai]) with that of HPy(V(Th) 2
(ai�1, ai]). (The product of two correlated unbiased estimators is biased.) This bias
can be made arbitrarily small by letting the number of independent simulations per
iteration of the RM algorithm to be large.
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With regard to our tumor growth model, we implemented the RM algorithm both
with the earlier (slightly biased) gradient estimator y5 and with a recently developed
unbiased variant y5 (found in Glynn PW, Salzman P, personal communication;
manuscript available from author). Our results are reported in Section 9.

8 Closed form for the likelihood

As discussed in Section 1, the geometric Brownian motion tumor growth model is a
model that lies right at the boundary of what can be computed explicitly in ‘closed-
form’. In particular, through the use of stochastic calculus, one can establish that for
each y 2 L, the function

u(x) ¼
4

Py(V(T) > vjV(0) ¼ x) (12)

satisfies an ordinary differential equation, with a solution that can be expressed as a
(infinite series) special function. Because the likelihood Py(V(T) 2 (ai�1, ai]) can be
expressed as the difference of two such solutions [one involving Equation (12) with
v ¼ ai�1 and the other involving v ¼ ai], this allows us to compute the likelihood for this
model in closed-form.

Theorem 1. The function defined by Equation (12) satisfies the ordinary differential
equation

1

2
x2 d

2

dx2
u(x)þ mþ

1

2

� �
x

d

dx
u(x)� gxu(x) ¼ �gx for x > v (13)

1

2
x2 d

2

dx2
u(x)þ mþ

1

2

� �
x

d

dx
u(x)� gxu(x) ¼ 0 for 0 < x� v (14)

subject to limx!1 u(x) ¼ 1, 0� u(x)� 1 for x > 0, and continuity of u( � ) and u0( � ).
The unique solution is

u(x) ¼

2
ffiffiffiffiffi
2g
p

K2mþ1(2
ffiffiffiffiffiffiffiffi
2gv
p

)vmþ(1=2)I2m(2
ffiffiffiffiffiffiffiffi
2gx
p

)x�m if x� v

2
ffiffiffiffiffiffiffiffi
2gx
p

(I2m(2
ffiffiffiffiffiffiffiffi
2gx
p

)K2mþ1(2
ffiffiffiffiffiffiffiffi
2gx
p

)þ K2m(2
ffiffiffiffiffiffiffiffi
2gx
p

)I2mþ1(2
ffiffiffiffiffiffiffiffi
2gx
p

))

�2
ffiffiffiffiffi
2g
p

x�mK2m(2
ffiffiffiffiffiffiffiffi
2gx
p

)I2mþ1(2
ffiffiffiffiffiffiffiffi
2gv
p

)vmþ(1=2) if x > v

8>><
>>:

where In( � ) is the modified Bessel function of the first kind,

In(x) ¼
X1
n¼0

1

n!G(1þ nþ n)

x

2

� �2nþn
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and Kn( � ) is the modified Bessel function of the second kind,

Kn(x) ¼
p
2

In(x)� I�n(x)

sin (np)

With this closed form, we can now analytically compute the (exact) likelihood L(y).
The (exact) likelihood surface can now be numerically optimized to compute the
(exact) maximum likelihood estimator ŷy. Our choice of numerical optimizer was the
Nelder–Mead Simplex package in Matlab.

9 Numerical comparison

As discussed in Section 8, the likelihood surface L(y) can actually be computed in
closed form for this model; Figure 1 shows a graph of the likelihood surface. The
likelihood surface is quite flat in the m-direction, suggesting both that the maximum
likelihood estimator m̂m will exhibit significant variability in estimating the true value m�

Figure 1. Likelihood surface plot obtained from the analytic solution.
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and that numerical optimization in this variable will be challenging. The numerical
optimization algorithm yielded maximum likelihood estimators

m̂m ¼ 0:0154

ĝg ¼ 1:95� 10�5

We used the bootstrap to compute a confidence region for the (true) parameter values
m� and g�. We did this by simulating 1000 synthetic SEER data sets (each having
sample size of 35 504 women), each independently simulated under the geometric
Brownian motion model with parameters m̂m and ĝg. For each of the 1000 synthetic data
sets, we computed the corresponding maximum likelihood estimators (m̂mboot

i , ĝgboot
i )

described in Section 8. The bootstrap of (m̂mboot
i � m̂m: 1� i� 1000) and ( log ĝgboot

i � log ĝg:
1� i�1000) are discussed further in Efron and Tibshirani.15 These histograms (Figure 2)
describe the sampling variability of m̂m and log ĝg. The large probability mass in the
histogram of m̂mboot

i � m̂m is due to the nonnegativity constraint on m.
The 95% confidence intervals for m� and log g� are [0.00079, 0.02950] and

[�10:89, �10:81], respectively. The estimated standard errors for m̂m and log ĝg are
0.007 and 0.02, respectively. As expected, the statistical sampling error in m̂m as an
estimator of m� is relatively larger than that for log ĝg.

We turn next to a discussion of our three simulation-based estimators ŷy4, ŷy5 and ŷy6.
To provide a fair comparison of the convergence characteristic of the three estimators,
we stopped each of the three iterative algorithms after a total of 40 million women
had been simulated (per algorithm). For the KW estimator, each iteration requires
simulation at four different points in the parameter space L; 2000 women are simulated
at each such parameter point (using the common random numbers approach described
in Section 6). With 8000 women simulated per iteration, a total of 5000 iterations
could be computed (under our ‘budget constraint’ of 40 million women in total). For
the biased and unbiased RM estimators ŷy5 and ŷy6, we also allocated 8000 women per
iteration, yielding 5000 iterations for each of these algorithms.

For all three algorithms, each iteration was started at the ‘initial guess’ for (m̂m, log ĝg)
of (0:1, �10). As described in Section 6, the KW algorithm was run with d1 ¼ 0:05 and
d2 ¼ 0:1, respectively. The gain constants, a1 and a2, are 2:857� 10�4 and 0.02857,

Figure 2. Histogram for m̂mboot
i � m̂m and log ĝgboot

i � log ĝg.
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respectively, for both biased and unbiased RM algorithms, and 5:633� 10�6 and
2:817� 10�4 for KW algorithm.

To evaluate the simulation error, we independently ran each algorithm five times
from the same initial guess. This enables us to compute confidence regions for m̂m and ĝg
that are intended to capture the Monte Carlo variability of our three simulation-based
estimators; The construction of confidence regions for stochastic approximations are
discussed in Hsieh and Glynn.16 The three confidence regions are displayed in Figure 3.
Note that for 5000 iterations, the confidence region for the KW estimator does not
cover (m̂m, log ĝg); the algorithm has not yet converged to the optimizer (although it is
reasonably close).

10 Concluding remarks

We have described how simulation-based algorithms can be used to compute parameter
estimators in the setting of a natural history model for breast cancer. All three

Figure 3. The confidence regions for the estimators from different simulation algorithms. RM unbiased –
solid line, RM biased – dotted line, KW – dashed line, the analytical optimum solution – (0.0154, 1.95E-5).
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implemented simulation methods give solutions that are close to the analytically
computed maximum likelihood estimator. In future work, we intend to study the
‘goodness of fit’ of our geometric Brownian motion model relative to the deterministic
growth model described in Section 2. This should shed some light on the question of
environmental explanations for breast cancer versus genetic explanation for tumor
growth.
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Appendix A: Proof of Proposition 1

Let Em,s2,g( � ) be the expectation operator associated with Pm,s2,g( � ). Note that the
distribution of V under Pm,s2,g( � ) depends only on m and s2; call it Pm,s2 ( � ) and its
corresponding expectation Em,s2 ( � ).

Observe that

Pm,s2,g(T > tjV) ¼ exp �g
ðt

0

V(s) ds

� �

It follows that for any nonnegative function g,

Em,s2,g[g(V(T))] ¼ g
ð1

0

Em,s2,g g(V(t))V(t) exp �g
ðt

0

V(s) ds

� �� �
dt

¼ g
ð1

0

Em,s2 g(V(t))V(t) exp �g
ðt

0

V(s) ds

� �� �
dt

Substituting u ¼ ts2 and r ¼ ss2, we find that

Em,s2,g[g(V(T))] ¼
g
s2

ð1
0

Em,s2 g V
u

s2

� �� �
V

u

s2

� �
exp �

g
s2

ðu

0

V
r

s2

� �
dr

� �� �
du

Let e(t) ¼ t for t� 0. For any set C, the scaling properties of Brownian motion imply
that

Pm,s2 log V
�

s2

� �
2 C

� �
¼ P

m
s2

e( � )þ sC
�

s2

� �
2 C

� �

¼ P
m
s2

e( � )þ C( � ) 2 C
� �

¼ P(m=s2),1( log V( � ) 2 C)

Consequently,

Em,s2,g[g(V(T))] ¼
g
s2

ð1
0

E(m=s2),1 g(V(u))V(u) exp �g
ðu

0

V(s) ds

� �� �
du

¼ E(m=s2),1,(g=s2)[g(V(T))]

proving the result. j
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Appendix B: Proof of Theorem 1

Standard properties of Bessel functions guarantee that the function u( � ) defined in
terms of the modified Bessel functions of the first and second kinds satisfies the stated
ordinary differential equation subject to the given boundary conditions; basic properties
of Bessel functions are presented in Relton.17 It therefore remains only to show that this
function u(x) is indeed the probability P(V(T) > vjV(0) ¼ x).

Let Px( � )¼
D

P( � jV(0) ¼ x) and Ex( � ) be the associated expectation operator. Put

w(t) ¼ u(V(t)) exp �g
ðt

0

V(s) ds

� �

Because u0( � ) is continuous at v, Itô’s formula applies (see p. 111 of Steele18), yielding

dw(t) ¼ [u0(V(t))V(t) mþ
1

2

� �
� u(V(t))gV(t)þ

1

2
u00(V(t))] exp �g

ðt

0

V(s) ds

� �
dt

þ u0(V(t))V(t) exp �g
ðt

0

V(s) ds

� �
dB(t)

The function u satisfies the stated differential equation, so

dw(t) ¼ �gI(V(t) > v)V(t) exp �g
ðt

0

V(s) ds

� �
dt þ u0(V(t))V(t) exp �g

ðt

0

V(s) ds

� �
dB(t)

Because it can be verified that u0( � ) is bounded. It follows that

ðt

0

u0(V(s))V(s) exp �g
ðs

0

V(u) du

� �
dB(s)

is a square-integrable martingale. Consequently,

Ex[w(t)]� Ex[w(0)] ¼ �gEx

ðt

0

I(V(s) > v)V(s) exp �g
ðs

0

V(u) du

� �
ds

� �

By monotone convergence, the right hand side converges to

�gEx

ð1
0

I(V(s) > v)V(s) exp �g
ðs

0

V(u) du

� �
ds

� �

as t!1. But the proof of Proposition 1 establishes that this expectation is precisely
the quantity �Px(V(T) > v).

On the other hand, w(t)! 0 almost surely as t!1. As jw(t)j is bounded by one,
the Bounded Convergence Theorem proves that Ex[w(t)]! 0 as t!1. Observing that
Ex[w(0)] ¼ u(x) completes the proof. j
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