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ABSTRACT

We study an initial transient deletion rule proposed by Glynn

and Iglehart. We argue that it has desirable properties both

from a theoretical and practical standpoint; we discuss its

bias reducing properties, and its use both in the single

replication setting and in the multiple replications / parallel

processing context.

1 INTRODUCTION

Let Y = (Y (t) : t ≥ 0) be a real-valued stochastic process,

in which Y (t) represents the output of a simulation at

(simulated) time t. Suppose that Y has a steady-state, in

the sense that there exists a (deterministic) constant α such

that

1

t

∫ t

0

Y (s)ds =⇒ α (1)

as t → ∞, where =⇒ denotes weak convergence. The

quantity α is known as the steady-state mean of Y , and

the problem of computing α via simulation is called the

steady-state simulation problem.

In view of the law of large numbers (1), the most natural

simulation-based estimator for α is the time-average, namely

α(t) ,
1

t

∫ t

0

Y (s)ds.

One of the challenges in steady-state simulation is dealing

with the fact that α(t) is typically a biased estimator of α .

The source of this bias lies in the initialization of Y at time

t = 0 using a distribution that is atypical of steady-state

behavior (e.g., initializing a queue in the empty state): this

atypical initialization makes the first portion of the simulated

path unrepresentative of the steady-state behavior (what is

often called the initial transient problem), which in turn

induces bias in α(t).
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The initial transient problem has been the focus of

much study in the simulation literature. One of the major

approaches to dealing with this problem is to discard the

initial portion of the simulation output, since those obser-

vations are viewed as being heavily “contaminated” by the

initial condition. An initial transient deletion rule specifies

the mechanism to choose how much of the path should be

discarded. (Other approaches to the initial transient problem

include perfect simulation and the use of low-bias estima-

tors.) In this paper we analyze an initial transient deletion

rule proposed by Glynn and Iglehart (1987) in the Markov

process setting, and argue that it has desirable properties

both from the theoretical and practical standpoints.

The initial transient was recognized as a problem early

on in the history of the simulation community, and a large

number of initial transient deletion rules have been developed

since then. Starting with simple heuristics like those of

Conway (1963), Fishman (1971), Welch (1983) and Roth

and Rutan (1985), the literature has steadily grown with the

addition of increasingly sophisticated deletion procedures;

see Wilson and Pritsker (1978b) for an early survey and

Pawlikowski (1990) for a more recent survey in the queueing

context; see also the list in Robinson (2002).

Various works have devised rules to test for the pres-

ence of an initial transient: examples are Schruben (1982),

Schruben, Singh, and Tierney (1983), and Vassilacopoulos

(1989); such tests can then be used to develop (rather sophis-

ticated) initial bias detection rules, as is done for example

in Jackway and de Silva (1992), Richet, Jacquet, and Bay

(2003), Pawlikowski (1990), and Robinson (2002). Many

other statistically-based deletion rules have been developed

in the Markov chain Monte Carlo (MCMC) literature, since

in that setting the initial transient is an even bigger problem

than in steady-state simulation (in MCMC the interest is

in sampling from the stationary distribution, rather than

computing the steady-state mean). See Cowles and Carlin

(1996) and Mengersen, Robert, and Guihenneuc-Jouyaux

(1999) for a survey, discussion, and comparison of existing

methods.
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It is safe to say that the search for better initial transient

deletion rules is open both in the steady-state simulation and

MCMC communities: empirical studies have shown that the

performance of most of the existing rules is typically not

robust; see Gafarain, Ancker, and Morisaku (1978), Wil-

son and Pritsker (1978a), Linton and Harmonosky (2002),

Cowles and Carlin (1996).

From a theoretical standpoint, the majority of the ex-

isting deletion rules are lacking rigorous support, in the

sense that there are no provable guarantees on their per-

formance over a sufficiently rich class of models. A major

exception is an avenue of research that has focused on

obtaining (computable) bounds on the rate of convergence

to stationarity of Markov processes, from which deletion

rules with provable performance guarantees can be devel-

oped; some noteworthy examples are Diaconis and Stroock

(1991), Aldous (1991), Rosenthal (1995a, 1995b), Diaconis

and Saloff-Coste (1993), Fill (1991), and Meyn and Tweedie

(1994). For some models, sharp thresholds for the length

of the warm-up period can be computed—see Aldous and

Diaconis (1986), Rosenthal (1996). This approach is partic-

ularly suited to study reversible Markov chains, context in

which most of its success has taken place. However, simula-

tion models encountered in practice are rarely—essentially

never—reversible. In the MCMC context this may not be a

critical problem, since the stationary distribution is known

up to a multiplicative scale factor, and one has the free-

dom to build a corresponding Markov chain that will have

easier convergence diagnostics (e.g., restricting oneself to

reversible dynamics). In contrast, in most steady-state sim-

ulation problems the model is given and (in principle) one

has no freedom to modify its dynamics. Also, computing

such bounds on convergence rates invariably requires de-

tailed knowledge and analysis of the transition kernel of the

Markov process (for example, in the discrete-time Markov

chain context one needs to bound the second largest eigen-

value of the one-step transition matrix; see, e.g., Brémaud

1999). Such analysis imposes an extra cost to the simula-

tionist, as most discrete-event simulations are implemented

without need to calculate an explicit expression for the

transition kernel.

Part of what makes the initial transient deletion rule of

Glynn and Iglehart (1987) appealing is that it only involves

analysis of the simulated output. The deletion period is a

measurable function of the simulation output that is used

universally across all positive recurrent irreducible discrete

state-space Markov chains, and is not permitted to depend

on the underlying transition kernel. This feature is of prac-

tical interest, since it allows the deletion rule to be fully

automated, and easily incorporated into general-purpose

simulation software. (One can say that this feature is what

defines a truly statistically-based deletion rule.) Addition-

ally, we argue here that there is rigorous support for this
18
deletion rule: it has provable bias-reducing properties, and

one can show it does not delete “too much” of the output.

In Section 2, we describe in detail the above mentioned

bias deletion rule, and a variant suited to the multiple repli-

cations setting. In Section 3, we describe the natural point

estimators associated with applying the rule, and discuss

their bias reducing properties. In Section 4, we discuss

the implications in terms of completion time in the paral-

lel simulation context. In Section 5, we discuss what are

the possible advantages of using such a rule in the single

replication context.

2 THE INITIAL BIAS DELETION RULE

The bias deletion rule of Glynn and Iglehart (1987) is

designed for the Markov process setting. Specifically, we

assume that Y = (Y (t) : t ≥ 0) has the representation Y (t) =
f (X(t)), where X = (X(t) : t ≥ 0) is a continuous-time

Markov chain living in discrete state space S. Further, we

assume X is irreducible and positive recurrent, and denote

by π = (π(x) : x ∈ S) the (unique) stationary law of X .

The bias deletion rule is inspired by the following

observation. Suppose one could generate a S-valued random

variable Z independent of X and having distribution π , that

is

P(Z = x) = π(x),

x ∈ S. Then, letting T , inf{s ≥ 0 : X(s) = Z}, the process

(X(T + s) : s ≥ 0) is a stationary version of X . Hence,

discarding all the observations prior to τ would completely

eliminate the initial transient. Of course, in practice one

cannot generate Z and T as above, since the distribution

π is unknown. One can, however, estimate π from the

simulation output; for example, a consistent estimate for π
is given by the occupation measure πt , where

πt(x) =
1

t

∫ t

0

I(X(s) = x)ds.

This estimate can then be used to generate Z and T as above.

Hence, in the single replication case the bias deletion rule

takes the following form:

i.) Simulate (X(s) : 0 ≤ s ≤ t).
ii.) Put Z , X(tU), where U is uniformly distributed

on (0, 1) and independent of X . (Note this implies

P(Z = x|X) = πt(x).)
iii.) Put T (t) , inf{s ≥ 0 : X(s) = Z}.

iv.) Discard all observations prior to T (t), keeping

(Y (s) : T (t) ≤ s ≤ t).

The rule can be easily adapted to the multiple replication

setting. In this context m i.i.d. replicates of X , {X i : 1≤ i ≤
m}, are simulated, and the rule takes the following form:
7
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i.) Simulate (X i(s) : 0 ≤ s ≤ t), i = 1, . . . , m.

ii.) Generate rv’s {U1, . . . , Um, R1, . . . , Rm}, mutually

independent and independent of {X i : 1 ≤ i ≤ m},

with Ui uniformly distributed on (0, 1) and Ri

uniformly distributed on {1, . . . , m}\{i}.

iii.) Put Zi ,
∑

j 6=i I(Ri = j)X j(tUi). (Note this

implies P(Zi = x|X1, . . . , Xm) = π−i
t (x) ,

1
m−1

∑
j 6=i

1
t

∫ t

0
I(X j(s) = x)ds.)

iv.) Put T i(t) , inf{s ≥ 0 : X i(s) = Zi}.

v.) Discard the observed path of X i prior to T i(t),
keeping (Y i(s) : t ∧T i(t) ≤ s ≤ t), i = 1, . . . , m.

Observe this construction makes Zi independent of X i,

which seems intuitively desirable.

One of the appealing features of this bias deletion rule

is that the amount of data deleted from each simulation run

typically does not grow unboundedly as the simulated time

horizon t grows. Specifically, one has the following.

Proposition 1 Suppose |S|<∞. Then (T (t) : t ≥ 0)
is bounded in probability. That is, for all ε > 0 there exists

c > 0 such that P(T (t) > c) < 1− ε , t ≥ 0.

The same result holds for (T i(t) : t ≥ 0) in the multiple

replication setting. In a future article, we will include the

proofs of this and the remaining results in this paper.

We point out that this bias deletion rule does not in-

volve unspecified parameters to be chosen or tuned by the

simulationist. This is a desirable feature from a practical

standpoint.

3 ASSOCIATED POINT ESTIMATORS

Once the bias deletion rule has been applied, perhaps the

most natural point estimator for the steady-state mean α is

the time-average over the remaining portion of the simulation

run, given by

α1(t) ,
1

t −T (t)

∫ t

T (t)

f (X(s))ds.

A minor concern when using this estimator is that the average

is taken over an interval of random length t −T (t), making

α1(t) a ratio of random variables; such ratio estimators are

sometimes not very robust for small to moderate values of

t. As an alternative, we consider an estimator that simulates

the path of X beyond time t, until a path of length t is

available for estimation (after applying the deletion rule):

α2(t) ,
1

t

∫ t+T(t)

T(t)

f (X(s))ds.

Of course, this comes at the price of extra computational time

to simulate X over the interval (t, t +T (t)); in particular, the

total simulation run-length is a random variable, which may
188
be a disadvantage if one wants completion time guarantees.

(Although, by virtue of Proposition 1, the extra simulation

time needed is typically small.)

We stress that the caveats just raised on the use of

these estimators are very minor; both α1(t) and α2(t) seem

very reasonable alternatives in practice. Furthermore, they

have good (and similar) theoretical properties, as we discuss

below.

In the multiple replications setting, the counterparts to

the above estimators are

αA
1 (t) ,

1

m

m∑
i=1

I(T i(t) < t)

t −T i(t)

∫ t

T i(t)

f (X(s))ds,

and

αA
2 (t) ,

1

m

m∑
i=1

1

t

∫ t+T i(t)

T i(t)

f (X(s))ds.

Our main result summarizes the bias reducing properties

of these estimators.

Theorem 1 Suppose |S|<∞. There exist constants

γ1,γ2,γ
A
1 ,γA

2 such that

Eαi(t)−α =
γi

t2
+o(t−2),

i = 1,2 and

EαA
i (t)−α =

γA
i

t2
+o(t−2),

i = 1,2.

The proof uses the regenerative structure of CTMCs.

Noting that the corresponding bias expansion for the

time average has the form

Eα(t)−α =
b

t
+o(t−1)

(see, e.g., Glynn 1984), we see that use of the bias deletion

rule leads to estimators with substantially smaller bias.

4 COMPLETION TIME GAINS IN THE PARALLEL

SIMULATION SETTING

The use of multiple replications estimators is particularly

suited to the parallel simulation setting, since each simulation

run can be performed in a different processor, speeding up

the completion time. In the presence of (massive) parallel

processing capability, the reduction in bias achieved by

applying the bias deletion rule can be exploited to attain

significant savings in completion time, as we show below.
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The time-average α(t) typically satisfies a central limit

theorem (CLT) of the form

√
t(α(t)−α) =⇒ σN(0,1), (2)

as t → ∞, where N(0,1) is a standard Gaussian rv and

σ2 is the so-called time-average variance constant (TAVC).

The corresponding multiple replications estimator (with no

bias deletion whatsoever) is given by

αA(t) ,
1

m

m∑
i=1

1

t

∫ t

0

f (X(s))ds.

It satisfies a CLT with the same TAVC, namely

√
mt(αA(t)−α) =⇒ σN(0,1), (3)

as m, t →∞, provided that the run length t increases fast

enough compared to the number of runs m; specifically, one

needs t/m →∞ for (3) to hold (Glynn and Heidelberger

1991).

Relation (3) is often used to compute asymptotic con-

fidence intervals for α , and the length of the confidence

interval is proportional to (mt)−1/2. Suppose one wants

the length of the confidence interval to be of the order

10−n . Then the requirement t/m →∞ implies that, as we

demand more precision (i.e., as n increases), the simulation

run length must increase slightly faster than 10n (e.g., put

t = 10n(1+ε) and m = 10n(1−ε), with ε > 0 small). The

situation is different when the bias deletion rule is used, as

the following result shows.

Theorem 2 Assume |S| < ∞. Then, for i = 1,2

√
mt(αA

i (t)−α) =⇒ σN(0,1), (4)

as m, t →∞, provided t3/m →∞.

Hence, when using αA
1 (t) or αA

2 (t), the simulation run

length need only increase slightly faster than 10n/2 (e.g.,

put t = 10n(1/2+ε) and m = 10n(3/2−ε), with ε > 0 small),

to make the length of the confidence interval decrease as

10−n.

When using αA(t) or α1(t) we can identify t with the

completion time for the (overall) experiment. When using

αA
2 (t) the completion time is Tcomp = max{t + T i(t) : 1 ≤

i ≤ m}, but it can be shown that if m and t are chosen

as above, then Tcomp/t =⇒ 1 as m, t →∞. Thus, we see

that use of the bias deletion rule allows the simulationist to

better exploit the availability of (massive) parallel processing

capability, achieving desired precision levels with smaller

completion time, by using a larger number of shorter runs.
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5 USE IN THE SINGLE REPLICATION SETTING

In the single replication setting, the bias reduction properties

of α1(t) and α2(t) presented in Theorem 1 are not, by

themselves, sufficient to claim that these estimators are

preferable to the time average α(t). A more appropriate

measure of an estimator performance in this setting is given

by the mean-square error (MSE). In great generality it can

be shown that MSE of the time-average estimator has an

expansion of the form

E(α(t)−α)2 =
σ2

t
+

η0

t2
+O(e−λ t),

for some constants λ > 0 and η0, where σ2 ,

2
∫ ∞

0
Eπ( f (X(0)) − α)( f (X(s)) − α)ds; see Awad and

Glynn (2006). When the initial transient deletion rule is

used, the resulting estimators enjoy similar MSE expansions:
Theorem 3 Suppose |S| < ∞. For i = 1,2

E(αi(t)−α)2 =
σ2

t
+

ηi

t2
+O(t−3),

as t →∞.

Explicit expressions can be derived for the constants

η1 and η2 using the regenerative structure of CTMC’s.

However, in general it is not apparent how η1 and η2

compare to η0. In a realistic situation the simulationist will

have no guarantee as to whether applying the initial transient

deletion rule will lead to a reduction in MSE, compared

to the time-average. In any case, the differences in MSE

are at most second-order effects: the first-order term in the

MSE expansions is the same for all three estimators.

In view of the above, one may be of the opinion that

there is no need (or no point) in applying such initial transient

deletion techniques in the single replication setting. In a

typical simulation experiment, their effect on the MSE is

negligible for large values of t, since the initial bias “dies

out” faster than the variance of the time-average.

On the other hand, for any given finite t, the simulationist

does not a priori know whether t is large enough to make

the bias negligible. These bias deletion rules can act as a

safeguard against situations in which the initial condition

is so drastically atypical of steady-state behavior that the

effects of the initial bias still have a significant effect on

the time-average at the chosen run-length. Also, use of the

bias deletion rule may serve as a way to assess whether

the chosen time-horizon is sufficiently long to dampen the

initial transient effects.

We illustrate the above discussion by considering an

M/M/1 queueing process started with an unusually large

queue length:
Proposition 2 Assume X represents the queue

length process of an M/M/1 queue with arrival rate λ
and service rate µ > λ , with the initial condition X(0) = x
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a.s. Suppose f (y) = y, y ≥ 0 (so that α is the steady state

mean queue length). If t = x1+ε , where 0 < ε < 1/3, then

x(1+ε)/2|α(t)−α| =⇒∞

as x →∞, whereas

x(1+ε)/2(αi(t)−α) =⇒ σN(0,1)

as x →∞, for i = 1,2. Also, if t = x1−ε , then

T (t)/t =⇒ 1

as x →∞.

In this example, the first busy cycle is completely

unrepresentative of steady state behavior, with unusually

large queue lengths. That first busy-cycle is only a small

portion of the run length when t = x1+ε , but its effect is

large enough that the time-average is far from α . The bias

deletion rule, however, will typically delete virtually all of

the first busy cycle, and the estimators will most likely not

be affected by it. On the other hand, when t = x1−ε the

run length is shorter than the time required to empty the

queue. In this case, the bias deletion rule deletes most of

the run length, which is a strong signal to the effect that

the chosen run length is too small to dampen the initial

transient effects.
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