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TAIL ASYMPTOTICS FOR THE MAXIMUM OF
PERTURBED RANDOM WALK

BY VICTOR F. ARAMAN AND PETER W. GLYNN

New York University and Stanford University

Consider a random walk S = (Sn :n ≥ 0) that is “perturbed” by a sta-
tionary sequence (ξn :n ≥ 0) to produce the process (Sn + ξn :n ≥ 0). This
paper is concerned with computing the distribution of the all-time maximum
M∞ = max{Sk + ξk :k ≥ 0} of perturbed random walk with a negative drift.
Such a maximum arises in several different applications settings, including
production systems, communications networks and insurance risk. Our main
results describe asymptotics for P(M∞ > x) as x → ∞. The tail asymp-
totics depend greatly on whether the ξn’s are light-tailed or heavy-tailed. In
the light-tailed setting, the tail asymptotic is closely related to the Cramér–
Lundberg asymptotic for standard random walk.

1. Introduction. Let S = (Sn :n ≥ 0) be a random walk sequence, so that
S0 = 0 and Sn = X1 + · · · + Xn for n ≥ 1, where X1,X2, . . . define an i.i.d. se-
quence of random variables. We set EX1 = µ. We shall generally assume that
the random walk has negative drift. Given a sequence (ξn :n ≥ 0) of “perturba-
tions,” we call the process (Sn + ξn :n ≥ 0) a “perturbed random walk.” This pa-
per is concerned with developing limit theorems and related approximations for
P(M∞ > x), where M∞ is the all-time maximum

M∞ = max{Sk + ξk :k ≥ 0}.
Perturbed random walks have been previously studied within the insurance risk

theory literature; see, for example, [7, 16, 17]. The existing literature typically
assumes that the perturbation sequence (ξn :n ≥ 0) is itself of random walk type.
However, in this paper, we shall instead assume that the perturbations (ξn :n ≥ 0)

form a stationary sequence, so that the large-time behavior of the sequence (Sn +
ξn :n ≥ 0) is basically inherited from that associated with S itself. Such perturbed
random walks (with stationary perturbations) arise naturally in several different
applications settings. In Section 2, we argue that M∞ describes the steady-state
order-to-delivery time in a make-to-order production system, in which delays are
incurred at the production facility due to supplier tardiness in component delivery.
The quantity M∞ also arises in the modeling of end-to-end delay of data packets
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in a telecommunications network, as well as in computing ruin probabilities for an
insurance firm in which delayed premium payment occurs; see, for instance, [1].

Perturbed random walks bear some resemblance to the process studied within
the nonlinear renewal theory literature; see [12, 13, 19] for a discussion of the main
results. However, nonlinear renewal theory presumes that the perturbations are uni-
formly continuous in probability, in the sense that max{|ξn+k − ξn| : 0 ≤ k ≤ nδ}
converges to zero in probability as n → ∞. This continuity condition is clearly
violated by the i.i.d. perturbations that are a central example in our theory. Addi-
tional related literature includes [10], in which first passage times for perturbed
random walk with positive drift are analyzed, as well as [8] and [9]. The latter two
references obtain approximations for the tail of M∞ when the ξn’s are constant af-
ter a finite number of steps (and hence satisfy the uniform continuity in probability
hypothesis).

The all-time maximum M∞ of our perturbed random walk inherits characteris-
tics related to the all-time maximum max{Sk :k ≥ 0} of ordinary random walk and
from the extreme value behavior of the perturbations (ξk :k ≥ 0). Thus, the theory
we develop here exhibits new features that are not present in the context of either
nonlinear renewal theory or the perturbed random walks previously considered in
the literature. In particular, it turns out that the tail behavior of the perturbations
interacts with the (unperturbed) random walk in a nontrivial way to produce the
tail behavior of M∞.

We establish the following results for the all-time maximum M∞:

1. We find an integral equation satisfied by the distribution of M∞ and character-
ize its solution (Proposition 3).

2. When the perturbations are light-tailed, we obtain exact asymptotics for
P(M∞ > x) as x → ∞, under conditions closely related to those of the
Cramér–Lundberg tail asymptotic for unperturbed random walk (Theorems
1 and 2).

3. For heavy-tailed perturbations, we obtain exact asymptotics for P(M∞ > x) as
x → ∞ (Theorems 3 and 4).

We should note that under some regularity conditions, the results of Proposi-
tions 1, 2 and 6, as well as Theorem 4, hold not only for a random walk with i.i.d.
increments, but also for a generalized random walk where the increments X form
a stationary sequence (see [1] for more details). Furthermore, in the presence of
light-tailed perturbations and under weak conditions on the underlying (general-
ized) random walk, we can also prove an asymptotic for log P(M∞ > x) as x → ∞
(we again refer the reader to [1] for more details).

Araman and Glynn [2] develop related results for the distribution of M∞ when
the random walk S has a negative drift close to zero, so that diffusion approxima-
tion techniques can be applied.

This paper is organized as follows. Section 2 focuses on a motivating example
and basic properties of perturbed random walk, while Section 3 is concerned with
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developing asymptotics for P(M∞ > x) when the ξn’s are light-tailed. Section 4 is
devoted to heavy-tailed perturbations.

2. A motivating example and basic properties. Several models exist in
which perturbed random walks arise naturally. We provide here a production model
and direct the reader to [1] for a discussion of telecommunications and insurance
risk examples.

EXAMPLE. Consider here a model of a so-called “make-to-order” production
facility, which incorporates possible delays in the arrival of supplier components.
Incorporating such delays is an important modeling issue and has been previously
addressed by many authors, such as Kaplan [11], Sahin [15], Zipkin [20] and many
others, using different modeling approaches than those we shall now describe.

For the purposes of our model, let Ãn be the time at which the nth order to the
production facility is placed, so that Ã = (Ãn :n ≥ 0) is nondecreasing. The facility
satisfies demand according to a “first-come, first-served” priority rule, so that the
nth order is processed to completion prior to initiating the (n+1)st order, for n ≥ 0.
As soon as an order is placed, the production facility contacts its supplier. The sup-
plier provides to the production facility the components necessary to produce the
nth finished item after a delay of duration ηn, so that the corresponding compo-

nents arrive to the production facility at time An
�= Ãn +ηn. Thus, we are modeling

a “just-in-time” facility in which delays may be a consequence of transportation
time, the time required to produce necessary components at the supplier facility, or
some combination of these factors. Note that the sequence A = (An :n ≥ 0) need
not be nondecreasing. Although the production facility satisfies customer demand
according to the original order sequence, component deliveries to the producer
may occur in an order that differs from this original ordering. This possibility
differentiates our model from previous work on supply delay issues. Most of the
references mentioned earlier model stochastic supply leadtimes as being either ex-
ogenous quantities (independent of the arrival process and the processing time)
or endogenous in the sense that they are determined by an embedded queueing
system. In both cases order-crossovers are not allowed.

As indicated above, customer demand is satisfied according to the original order
sequence. This assumption is realistic in settings where customer equity concerns
and total-order-to-delivery time issues predominate. Note, however, that, under
this assumption, the production facility is no longer a “work-conserving” system
(in the sense that the facility may be idle with orders present). If Dn is the time
at which the production facility completes work on the nth order, this assumption
guarantees that the production facility initiates processing on the (n + 1)st order
at the maximum of Dn and An+1. Let Vn+1 be the processing time required for
the (n + 1)st order, W̃n+1 the time that an order spends waiting in the production
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facility and Wn the total time spent in the system, so that Wn = W̃n + ηn. A simple
argument shows that

W̃n+1 = max(W̃n + An − An+1 + Vn,0).(2.1)

Thus, we recover the familiar Lindley recursion (2.1) (for single server queues),
even though we are not requiring here that A = (An :n ≥ 0) be nondecreasing. Let
Zn+1 = Ãn − Ãn+1 + Vn for n ≥ 0 and assume, for simplicity, that the production
facility is idle at time t = 0, and that the 0th order arrives at time Ã0 = 0. Then (as
is usual for the Lindley recursion), it is easily seen that

W̃n = max

{
n∑

j=k+1

Zj + ηk − ηn : 0 ≤ k ≤ n

}
.(2.2)

Proposition 1 depicts the steady-state behavior of Wn as n → ∞.

CONDITION A1. ((Zn, ηn−1) :n ≥ 1) is a sequence of i.i.d. random vectors.

Let ((Zn, ηn−1) :−∞ < n < +∞) be a two-sided version of ((Zn, ηn−1) :
n ≥ 1) and set Xn = Z−n, ξk = η−k−1 and Sn = X1 + X2 + · · · + Xn for n ≥ 1
with S0 = 0. It is then easy to see that

PROPOSITION 1. Under Condition A1, Wn ⇒ M∞ as n → +∞, where

M∞ = max{Sk + ξk :k ≥ 0}.
Because total order-to-delivery time is a key performance characteristic for a

production facility, it follows that computing the distribution of M∞ is important,
where

Mn = max{Sk + ξk : 0 ≤ k ≤ n}.
We list below some basic results for which we have omitted the proofs; for the
details, see [1]. Set ξ+

j = max(ξj ,0).

PROPOSITION 2. Suppose that (Xj : j ≥ 1) is a sequence of i.i.d. random
variables such that EX1 = µ, where −∞ < µ < 0.

(i) If (ξj : j ≥ 0) is an identically distributed sequence with Eξ+
j < ∞, then

M∞ < ∞ a.s.
(ii) If (ξj : j ≥ 0) is a sequence of i.i.d. random variables, then M∞ < ∞ a.s.

implies that Eξ+
j < ∞.

To compute the exact distribution of M∞, define, for g : R → R
+, the linear

operator T via

(T g)(x) =
∫

R

g(x − y)P(ξ0 ≤ x,X1 ∈ dy).
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Also, let T 0 be the identity operator and define T n inductively via T n+1 = T ◦ T n

for n ≥ 0.

PROPOSITION 3. Suppose that ((ξj ,Xj+1) : j ≥ 0) is a sequence of i.i.d. ran-
dom pairs.

(i) If u∗(x) = P(M∞ > x), then u∗ = (u∗(x) :x ∈ R) satisfies the linear inte-
gral equation

u = b + T u,

where b = (b(x) :x ≥ 0) is given by b(x) = P(ξ0 > x).
(ii) Furthermore, u∗ is given by

u∗ =
∞∑

n=0

T nb.(2.3)

The proof is similar in spirit to that for the unperturbed case discussed in [6].
There is one special case for which we have been able to derive a closed form
expression for u.

PROPOSITION 4. Suppose that (−Xj : j ≥ 1) is a sequence of i.i.d.
exponential(λ) random variables, independent of the i.i.d. perturbation sequence
(ξj : j ≥ 0). Then,

P(M∞ ≤ x) = P(ξ0 ≤ x) exp
(
−λ

∫ ∞
x

P(ξ0 > y)dy

)

for x ∈ R.

Because we are generally unable to solve for the distribution of M∞ =
max{Sn + ξn :n ≥ 0} exactly, we shall instead satisfy ourselves with obtaining ap-
proximations for the tail probability P(M∞ > x). In [2], we obtain heavy-traffic
diffusion approximations for this tail probability when the mean of the underlying
random walk is negative but close to zero. In the current paper, we focus on study-
ing the asymptotics of P(M∞ > x) for x large (when the mean of the random walk
need not be close to zero).

3. Tail asymptotics for light-tailed perturbations. In this section we shall
focus on the case in which the behavior of P(M∞ > x) for large x is primarily de-
termined by the distribution of the random walk (as opposed to the perturbations).
Specifically, we shall be interested in studying conditions on the perturbed random
walk under which the tail of M∞ satisfies a Cramér–Lundberg asymptotic of the
form

P(M∞ > x) ∼ c exp(−θ∗x)(3.1)
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as x → ∞, where the rate constant θ∗ agrees with that associated with the tail
of the maximum of the unperturbed random walk as described through the con-
ventional Cramér–Lundberg asymptotic; see, for example, [3] for a discussion of
the relevant theory for unperturbed random walk. We refer to this setting as the
“light-tailed” perturbation case.

Note that P(M∞ > x) ≥ P(ξ0 > x). Hence, if there exist positive constants
d and ν such that

P(ξj > x) ∼ d exp(−νx)(3.2)

as x → ∞, it follows that the validity of (3.1) requires that ν ≥ θ∗. It follows that if
the ξj ’s satisfy (3.2) with ν ≥ θ∗, then E exp(θξj ) < ∞ for θ < θ∗. In the remain-
der of this section, we make the (slightly) stronger hypothesis that E exp(θξj ) < ∞
for θ in a neighborhood of θ∗.

CONDITION A2. (Xj : j ≥ 1) is an i.i.d. sequence of random variables for
which there exist positive constants θ∗ and ε such that E exp(θX1) < ∞ for |θ −
θ∗| < ε and E exp(θ∗X1) = 1.

It is well known that if the Xi’s are nonlattice, then Condition A2 ensures that
the exact asymptotic

P

(
max
n≥0

Sn > x

)
∼ r exp(−θ∗x)(3.3)

as x → ∞ (for some positive r) holds for the maximum of the unperturbed random
walk; see, for example, [3]. This, of course, is precisely the Cramér–Lundberg
asymptotic for the (unperturbed) random walk (Sn :n ≥ 0).

A key idea in extending the exact asymptotic (3.3) to the context of perturbed
random walk is the use of “change-of-measure” techniques. In particular, let P

∗ be
the probability on the path space of the (Xj , ξj )’s under which the Xj ’s are i.i.d.
random variables with common distribution given by

P
∗(Xj ∈ dx) = exp(θ∗x)P(Xj ∈ dx).

If E
∗(·) is the expectation operator corresponding to P

∗, and following a similar
argument than in the unperturbed case (see [3]), we have that

exp(θ∗x)P(M∞ > x) = E
∗ exp

(−θ∗(
ST (x) − x

))
,(3.4)

where T = T (x)
�= inf{n ≥ 0 :Sn + ξn > x} < ∞ P

∗-a.s.
Exact asymptotics for P(M∞ > x) may therefore be deduced by studying the

distribution of ST (x) − x under P
∗ for large values of x. In contrast to the corre-

sponding analysis for unperturbed random walk, there is no guarantee here that
ST (x) − x will be positive or that T (x) will correspond to a ladder epoch of
(Sn :n ≥ 0). As a consequence, the analysis of ST (x) − x under P

∗ is more intri-
cate than in the setting of standard random walk. One approach to the analysis of
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ST (x) − x involves the use of renewal-theory ideas. For unperturbed random walk,
the process (ST (x) −x :x ≥ 0) is precisely the “current age” process corresponding
to a renewal process in which the increments are governed by the strictly ascending
ladder height of (Sn :n ≥ 0) under P

∗. However, in the setting of perturbed random
walk, (ST (x)−x :x ≥ 0) is not even a Markov process. Markov structure can be ob-
tained by adding a supplementary state variable such as max0≤j≤T (x)(Sj +ξj )−x.
This two-dimensional Markov structure complicates the application of renewal
theoretic ideas.

One setting in which one can directly apply such renewal-theoretic concepts is
when the Xj ’s are unbounded above while the ξj ’s are upper bounded.

THEOREM 1. Suppose that either:

(i) ((Xj+1, ξj ) : j ≥ 0) is a sequence of i.i.d. random vectors or
(ii) (Xj : j ≥ 1) is a sequence of i.i.d. random variables that is independent of

the stationary sequence (ξj : j ≥ 0).

Assume, in either case, that Condition A2 holds and that X1 has a nonlattice dis-
tribution. Suppose, in addition, that there exists c0 < ∞ such that P(X1 > c0) > 0
and P(ξ0 ≤ c0) = 1. Then, there exists a positive constant c such that

P(M∞ > x) ∼ c exp(−θ∗x)(3.5)

as x → ∞.

PROOF. Set τ+(0) = 0 and let τ+(n) = inf{j > τ+(n − 1) :Sj > Sτ+(n−1)}
be the nth strict ascending ladder height epoch of (Sk :k ≥ 0). In addition, set
ς(0) = 0 and let ς(n) = inf{j :Sj > Sk + c0; j > k ≥ ς(n − 1)} be the nth strict
ascending ladder epoch at which the ladder height increment is greater than c0.
Observe that ς(1) = τ+(η), where η = inf{j ≥ 1 :Sτ+(j) − Sτ+(j−1) > c0}. The
random variable η is geometric, with mass function

P
∗(η = l) = P

∗(
Sτ+(1) > c0

)
P

∗(
Sτ+(1) ≤ c0

)l−1
.

But,

P
∗(

Sτ+(1) > c0
) ≥ P

∗(
Sτ+(1) > c0, τ+(1) = 1

) = P
∗(X1 > c0) > 0,

and consequently E
∗η < ∞, so that ς(1) < ∞ a.s. The key characteristic of ς(1)

is that T (Sς(1)) ≥ ς(1). To see this, note that Sς(1) > Sj + c0 for 0 ≤ j < ς(1).
Hence, Sς(1) > Sj + ξj for 0 ≤ j < ς(1), so that T (y) ≥ ς(1) for y ≥ Sς(1). Put

u(x) = E
∗ exp

(−θ∗(
ST (x) − x

))
and

b(x) = E
∗ exp

(−θ∗(
ST (x) − x

))
I
(
Sς(1) > x

)
.
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Then,

u(x) = b(x) +
∫ x

0
E

∗ exp
(−θ∗(

ST (x) − x
))

I
(
Sς(1) ∈ dy

)

= b(x) +
∫ x

0
E

∗ exp

(
−θ∗

∞∑
j=ς(1)

(Sj − x)I (Sj + ξj > x,

Sk + ξk ≤ x, k < j)

)

× I
(
Sς(1) ∈ dy

)
= b(x) +

∫ x

0
E

∗ exp

(
−θ∗

∞∑
j=0

(
Sς(1)+j − Sς(1) − (x − y)

)

× I
(
Sς(1)+j − Sς(1) + ξς(1)+j > x − y,

Sς(1)+k + ξς(1)+k ≤ x, k < j
))

× I
(
Sς(1) ∈ dy

)
= b(x) +

∫ x

0
u(x − y)Fς(dy),

where Fς(dx) = P
∗(Sς(1) ≤ x). The fact that ς(1) ≤ T (x) on {Sς(1) ≤ x} was used

in the second equality above, whereas the independence between (ξn, ξn+1, . . .)

and Sn (together with the stationarity of the ξj ’s) provides the third equality.
[Note that the required independence and stationarity hold under either hypoth-
esis (i) or (ii) of the theorem.]

It remains only to apply Feller’s version of the renewal theorem to the above
renewal equation. First, observe that because X1 is nonlattice, P

∗(Sτ+(1) ∈ ·) is
nonlattice; see page 222 of [3]. For the integrability of b(·), we use the fact that
ST (x) + ξT (x) > x, so that −θ∗(ST (x) − x) = −θ∗(ST (x) + ξT (x) − x) + θ∗ξT (x) ≤
θ∗c0. Consequently, Wald’s identity implies that∫ ∞

0
b(x) dx ≤ eθ∗c0E

∗Sς(1)

= eθ∗c0E
∗ηE

∗Sτ+(1) < ∞.

The final step is to prove that b(·) is directly Riemann integrable. The sample
paths of (ST (x) − x :x ≥ 0) are right continuous with left limits everywhere. Be-
cause exp(−θ∗(ST (x) − x)) ≤ exp(θ∗c0), the bounded convergence theorem im-
plies that b(·) is also right continuous with left limits. It follows that b(·) has at
most countably many discontinuities; see page 116 of [5]. Owing to the bound
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b(x) ≤ exp(θ∗c0)P
∗(Sς(1) > x) and Proposition 5.4.1 of [3], we may therefore

conclude that b(·) is directly integrable, proving the theorem. �

Assumption (i) of Theorem 1 allows some dependency between the ran-
dom walk and the perturbation. However, the conclusion of Theorem 1 gener-
ally does not hold if we assume only that the perturbation is light-tailed with
E exp(θξj ) < ∞ for θ in a neighborhood of θ∗; additional regularity, as pre-
sumed in Theorem 1, is needed. To see this, suppose that Xi = Ri − R̃i for i ≥ 1,

where (Ri : i ≥ 1) and (R̃i : i ≥ 1) are independent sequences of i.i.d. exponentially
distributed random variables, with parameters λ1 and λ2, respectively. Choose
λ2 = λ1/4 and let θ∗ = λ1 − λ2 = 3λ1/4. Suppose that the ξi ’s are correlated
with the random walk. In particular, if ξi = Ri for i ≥ 1, then M∞ ≥ 2R1 − R̃1.
In this case 2R1 − R̃1 has an exponential right tail with parameter λ1/2. Conse-
quently, M∞ has a tail that can decrease no more quickly than exponentially with
rate constant λ1/2, which is heavier than that predicted by Theorem 1.

When the ξj ’s are independent of the unperturbed random walk [as in assump-
tion (ii) of Theorem 1], and the random walk has spread-out increments, we can
remove the boundedness assumption on the perturbations. To deal with the com-
plications that arise here, we use a proof based on coupling ideas. Before stating
the main result of this paper, we prove the following lemma related to the gen-
eral theory of unperturbed random walk (that we have been unable to find in the
existing literature):

LEMMA 1. Consider a random walk with an i.i.d. sequence of increments
(Xn :n ≥ 0), in which 0 < EX1 < ∞. The increment X1 of the random walk is
spread-out if and only if the increment of the ascending ladder height Sτ+(1) is
spread-out.

PROOF. Let F be the distribution of X1 and F+ the distribution of Sτ+(1). Let
N(x) = inf{n ≥ 0 :Sn > x}. Assume first that F is spread-out. Hence there exists
n > 0 such that the distribution of Sn admits a density component. For z > 0 and
ε > 0, form the random variables Y1 = S
z/ε�I (X1 ≤ −ε,X2 ≤ −ε, . . . ,X
z/ε� ≤
−ε) and Y2 = (Sn+
z/ε� − S
z/ε�)I (max0≤j≤n(Sj+
z/ε�
− S
z/ε�) ≤ z). For sufficiently large z, the random variable Y2

D= Sn ×
I (max0≤j≤n Sj ≤ z) admits a density component and, hence, the sum Y1 + Y2
does as well. Finally, by writing

P
(
Sτ+(1) ≤ b

) ≥
∫ 0

−∞
P(Y1 + Y2 ∈ dx)P

(
SN(−x) ≤ b

)
(3.6)

for all b > 0, we conclude that F+ admits a density component. For the converse,
suppose that F is not spread-out. Then, F ∗n+ is concentrated on a null Lebesgue
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set for all n. Since P(Sτ+(1) ∈ ·, τ+(1) = k) = P(Sk ∈ ·, τ+(1) = k) ≤ F ∗k(·), evi-
dently F+ is also concentrated on a null Lebesgue set. A similar argument estab-
lishes that F ∗n+ is also concentrated on a null Lebesgue set for all n. �

Our next theorem generalizes part (ii) of Theorem 1 [but not part (i)].

THEOREM 2. Assume that (Xj : j ≥ 1) satisfies Condition A2. Suppose that
(ξj : j ≥ 0) is a stationary sequence independent of (Xj : j ≥ 1), for which
E exp(θξj ) < ∞ for θ in a neighborhood of θ∗. If X1 is spread-out, then there
exists a positive constant c such that

P(M∞ > x) ∼ c exp(−θ∗x)

as x → ∞.

PROOF. In contrast to the proof of Theorem 1, our proof here proceeds via
a coupling construction (see, e.g., [20]). We construct a doubly-infinite stationary
version of (Sn :n ≥ 0), calling it (S∗

n :−∞ < n < ∞), and random times σ1 and σ2,
for which Sσ1+k = S∗

σ2+k for k ≥ 0. The process (S∗
n :−∞ < n < ∞) is stationary

in the sense that for each x ∈ R,(
S∗

N∗(x)+j − x :−∞ < j < ∞) D= (S∗
j :−∞ < j < ∞),(3.7)

where N∗(x) = inf{n ≥ 0 :S∗
n > x}. We then extend the stationary sequence

(ξj : j ≥ 0) to a doubly-infinite stationary sequence and set T ∗(x) = inf{n :S∗
n +

ξn > x}. The proof concludes by showing that T ∗(x) = T (x), for x sufficiently

large, and that S∗
T ∗(x) − x

D= S∗
T ∗(0). It follows that

ST (x) − x ⇒ S∗
T ∗(0)

as x → ∞. In the presence of uniform integrability of (exp(−θ∗(ST (x) − x)) :
x ≥ 0) under P

∗, we then obtain, recalling equation (3.4), the conclusions of the
theorem. Note that both N∗(·) and T ∗(·) depend on the indexing of the points
in the set (S∗

n :−∞ < n < ∞). It is therefore essential that our construction of
(S∗

n :−∞ < n < ∞) produces point indexing that respects the stationarity relation

(3.7) [rather than the weaker stationarity relation (S∗
n :−∞ < n < ∞)

D= (S∗
n +

x :−∞ < n < ∞)].
We start by using the conventional coupling for finite mean renewal processes

with spread-out increment distribution to couple the ascending ladder heights
(which is enabled by Lemma 1). Specifically, we couple (Sτ+(k) :k ≥ 0) to a
stationary version (U∗

k :−∞ < k < ∞) of the strictly ascending ladder height
sequence, thereby constructing a pair of random times η1 and η2 for which
Sτ+(η1+k) = U∗

η2+k for k ≥ 0; see, for example, [14]. Set S∗
0 = U∗

0 . Conditional
on (U∗

j :−∞ < j < η2), condition in the ladder height epochs (τ ∗+(j) : j ≤ η2)
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so that S∗
τ∗+(j)

= U∗
j for j ≤ η2. Finally, given (S∗

τ∗+(j)
, τ ∗+(j) : j ≤ η2), generate

(S∗
n :n ≤ τ ∗+(η2)) from the corresponding conditional distribution and set S∗

σ1+k =
Sσ2+k for k ≥ 0, where σ1 = τ+(η1) and σ2 = τ ∗+(η2). The above construction cou-
ples (Sn :n ≥ 0) to (S∗

n :−∞ < n < ∞) and yields a process (S∗
n :−∞ < n < ∞)

that is stationary in the sense of (3.7); see [1] for additional details. Turning
now to the analysis of T ∗(x), observe that T ∗(x) > −∞, since (S∗

n + ξ+
n )/n →

−E
∗X1 < 0 P

∗-a.s. as n → −∞, so that (at most) finitely many of the (S∗
j + ξ∗

j :
j < 0) can exceed x. Since S∗

n + ξ+
n → +∞ P

∗-a.s. as n → +∞, it follows that

T ∗(x) is finite-valued for all x. Furthermore, S∗
T ∗(x) − x

D= S∗
T ∗(0). To see this, note

that

S∗
T ∗(x) − x

=
∞∑

k=−∞
(S∗

k − x)I (S∗
k + ξk > x,S∗

j + ξj ≤ x, j < k)

=
∞∑

l=−∞

(
S∗

N∗(x)+l − x
)

× I
(
S∗

N∗(x)+l + ξN∗(x)+l > x,S∗
N∗(x)+j + ξN∗(x)+j ≤ x, j < l

)
D=

∞∑
l=−∞

(
S∗

N∗(x)+l − x
)
I
(
S∗

N∗(x)+l + ξl > x,S∗
N∗(x)+j + ξj ≤ x, j < l

)

D=
∞∑

l=−∞
S∗

l I (S∗
l + ξl > x,S∗

j + ξj ≤ x, j < l)

= S∗
T ∗(0).

To obtain the first distributional equality, we use the stationarity and independence
of the ξj ’s from the Sn’s and S∗

n’s. The second distributional equality is a conse-
quence of (3.7).

We now show that ST (x) − x = S∗
T ∗(x) − x for x sufficiently large. This fol-

lows easily from the fact that T (x) → +∞ and T ∗(x) → +∞ P
∗-a.s. as x → ∞.

This implies that ST (x) = S∗
T ∗(x) for sufficiently large x so that T (x) ≥ σ1 and

T ∗(x) ≥ σ2. Finally, the required uniform integrability follows from Proposition 6
below. �

We conclude this section with a couple of bounds for P(M∞ > x). We note
that both the lower bound and upper bound are multiples of exp(−θ∗x) and conse-
quently are within a constant factor of the correct value of P(M∞ > x) uniformly
in x.
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PROPOSITION 5. Suppose that (ξj : j ≥ 0) is a stationary sequence indepen-
dent of (Sn :n ≥ 0). Then,

P(M∞ > x) ≥
∫

R

P

(
max
n≥0

Sn > x − y

)
P(ξ0 ∈ dy).

If, in addition, (3.3) holds with E exp(θ∗ξ0) < ∞, then

lim inf
x→∞ eθ∗x

P(M∞ > x) ≥ rE exp(θ∗ξ0).

PROOF. Let J be the time at which the random walk attains its all-time
maximum and note that both J and SJ are independent of (ξn :n ≥ 0). Clearly,
M∞ ≥ SJ + ξJ , so

P(M∞ > x) ≥
∫ ∞

0
P(SJ + ξJ > x|SJ = y)P(SJ ∈ dy)

=
∫ ∞

0
P(ξ0 > x − y)P(SJ ∈ dy)

=
∫

R

P(SJ > x − y)P(ξ0 ∈ dy).

For the second conclusion, note that

eθ∗x
∫

R

P(SJ > x − y)P(ξ0 ∈ dy)

=
∫

R

eθ∗(x−y)
P

(
max
n≥0

Sn > x − y

)
eθ∗y

P(ξ0 ∈ dy).

Applying (3.3) [and noting that it implies that exp(θ∗(x − y))P(maxn≥0 Sn >

x − y) is uniformly bounded in x and y], the hypothesis E exp(θ∗ξ0) < ∞ per-
mits the dominated convergence theorem to be invoked, yielding the result. �

PROPOSITION 6. Assume Condition A2 and let κ ∈ (0, θ∗) satisfy ψ ′(κ) = 0.
Suppose that (ξj : j ≥ 0) is a stationary sequence, independent of (Sn :n ≥ 0), for
which E exp(θξ1) < ∞ in a neighborhood of θ∗. Then, for θ in a neighborhood
of θ∗,

lim sup
x→∞

E
∗ exp

(−θ
(
ST (x) − x

))

≤ 1

ψ ′(θ∗)
Eξ1 exp(θξ1) +

(
1 + E exp(θξ1)

1 − exp(ψ(κ))

)
.

PROOF. Set v(x) = E
∗ exp(−θ(ST (x) − x)) and note that

v(x) = E
∗ exp

(−θ
(
ST (x) − x

))
I
(
T (x) < τ+(1)

)
+ E

∗ exp
(−θ

(
ST (x) − x

))
I
(
Sτ+(1) > x,T (x) ≥ τ+(1)

)
(3.8)

+ E
∗ exp

(−θ
(
ST (x) − x

))
I
(
Sτ+(1) ≤ x,T (x) ≥ τ+(1)

)
.
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Set k(x) = k1(x) + k2(x), where

k1(x) = E
∗ exp

(−θ
(
ST (x) − x

))
I
(
T (x) < τ+(1)

)
k2(x) = E

∗ exp
(−θ

(
ST (x) − x

))
I
(
Sτ+(1) > x,T (x) ≥ τ+(1)

)
.

The third term on the right-hand side of (3.8) can be written as

E
∗

∞∑
n=0

exp
(−θ

(
Sn+τ+(1) − x

))

× I
(
Sj+τ+(1) + ξj+τ+(1) ≤ x,0 ≤ j < n,Sn+τ+(1) + ξn+τ+(1) > x

)
× I

(
T (x) ≥ τ+(1), Sτ+(1) ≤ x

)
≤

∞∑
n=0

∫
(0,x]

E
∗ exp

(−θ
(
Sn+τ+(1) − Sτ+(1) − (x − y)

))

× I
(
Sj+τ+(1) − Sτ+(1) + ξj+τ+(1) ≤ x − y,0 ≤ j < n,

Sn+τ+(1) − Sτ+(1) + ξn+τ+(1) > x − y
)

× I
(
Sτ+(1) ∈ dy

)
=

∫
(0,x]

v(x − y)P∗(
Sτ+(1) ∈ dy

)
,

where the independence and the stationarity of the perturbations and the random
walk was used for the equality. Hence,

v ≤ k + F+ ∗ v,(3.9)

where ∗ denotes convolution and F+(dx) = P
∗(Sτ+(1) ∈ dx) for x ≥ 0. Iterating

(3.9) n times, we find that

v ≤
n∑

j=0

F
(j)
+ ∗ k + F

(n+1)
+ ∗ v,(3.10)

where F
(j)
+ denotes the j -fold convolution of F+. But (F

(n)
+ ∗ v)(x) = E

∗v(x −
Sτ+(n)), and v(·) is bounded on [0, x]. To verify the boundedness, note that, for
β > 0,

E
∗ exp

(−θST (x)

)
≤

∞∑
n=0

E
∗ exp(−θSn)I (Sn + ξn > x)

=
∞∑

n=0

∫
R

E
∗[exp(−θSn);Sn > x − y]P(ξ1 ∈ dy)
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=
∞∑

n=0

∫
R

E
[
exp

(
(θ∗ − θ)Sn

);βSn > β(x − y)
]
P(ξ1 ∈ dy)

≤
∞∑

n=0

∫
R

E
[
exp

(
(θ∗ − θ + β)Sn

)]
exp(−βx + βy)P(ξ1 ∈ dy)

= exp(−βx)E exp(βξ1)

∞∑
n=0

(
E exp

(
(θ∗ − θ + β)X1

)n)
,

which can be made convergent by choosing θ > β > θ − θ∗. Given the bounded-
ness, it follows that (F (n) ∗ v)(x) → 0 as n → ∞ and, hence,

v ≤ U+ ∗ k,

where U+ = ∑∞
j=0 F

(j)
+ is the renewal kernel associated with the distribution F+.

To apply Smith’s version of the renewal theorem (see, e.g., page 187 of [3]) we now
need to verify that k1 and k2 are dominated by nonincreasing integrable functions.
For k1, observe that

k1(x) ≤ E
∗ exp

(−θ
(
ST (x) + ξT (x) − x

) + θξT (x)

)
I
(
T (x) < τ+(1)

)
≤ E

∗ exp
(
θξT (x)

)
I
(
T (x) < τ+(1)

)
≤ E

∗ exp
(
θ max

0≤j<τ+(1)
ξj

)
I

(
max

0≤j<τ+(1)
(Sj + ξj ) > x

)

≤ E
∗ exp

(
θ max

0≤j<τ+(1)
ξj

)
I

(
max

0≤j<τ+(1)
ξj > x

)
,

where the last inequality uses the fact that Sj ≤ 0 for j < τ+(1). Hence, k1 is
dominated by a nondecreasing function for which∫ ∞

0
E

∗ exp
(
θ max

0≤j<τ+(1)
ξj

)
I

(
max

0≤j<τ+(1)
ξj > x

)
dx

= E
∗ max

0≤j<τ+(1)
ξj exp(θξj )

≤ E
∗

τ+(1)−1∑
j=0

ξj exp(θξj )(3.11)

= E
∗τ+(1) · E

∗ξ1 exp(θξ1)

= E
∗τ+(1) · Eξ1 exp(θξ1) < ∞,

where the second last equality follows from Wald’s identity, and the final equality
utilizes the fact that the ξj ’s have the same distribution under P as under P

∗. As
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for the function k2, note that

k2(x) = E
∗ exp

(−θ
(
ST (x) − x

))
I
(
Sτ+(1) > x,T (x) ≥ τ+(1), ST (x) > x

)
+ E

∗ exp
(−θ

(
ST (x) − x

))
I
(
Sτ+(1) > x,T (x) ≥ τ+(1), ST (x) ≤ x

)
≤ P

∗(
Sτ+(1) > x,T (x) ≥ τ+(1), ST (x) > x

)
(3.12)

+ E
∗ exp

(
θξT (x)

)
I
(
Sτ+(1) > x,T (x) ≥ τ+(1), ST (x) ≤ x

)
≤ P

∗(
Sτ+(1) > x

)
+ E

∗ exp
(
θξT (x)

)
I
(
Sτ+(1) > x,T (x) ≥ τ+(1), ST (x) ≤ x

)
.

The second term on the right-hand side of (3.12) is dominated by
∞∑

n=0

E
∗ exp

(
θξτ+(1)+n

)
× I

(
Sτ+(1) > x,T (x) = τ+(1) + n,Sτ+(1)+n − Sτ+(1) ≤ 0

)
≤ E

∗ exp(θξ1)

∞∑
n=0

E
∗I

(
Sτ+(1) > x,T (x) = τ+(1) + n,

Sτ+(1)+n − Sτ+(1) ≤ 0
)

≤ E exp(θξ1)P
∗(

Sτ+(1) > x
) ∞∑
n=0

P
∗(Sn ≤ 0)

= E exp(θξ1)P
∗(

Sτ+(1) > x
) ∞∑
n=0

E exp(θ∗Sn)I (Sn ≤ 0)

≤ E exp(θξ1)P
∗(

Sτ+(1) > x
) ∞∑
n=0

E exp(κSn)

= E exp(θξ1)P
∗(

Sτ+(1) > x
)(

1 − exp(ψ(κ))
)−1

,

from which the result follows immediately via an invocation of Smith’s renewal
theorem. �

REMARK 1. If the ξj ’s satisfy the conditions of Proposition 6 and are, in addi-
tion, nonnegative, then T (x) = τ+(1) on {Sτ+(1) > x,T (x) ≥ τ+(1)}. It follows, in
this case, that k2(x) ≤ E

∗ exp(−θ(Sτ+(1) − x))I (Sτ+(1) > x), so the upper bound

lim sup
x→∞

E
∗ exp

(−θ
(
ST (x) − x

))

≤ 1

ψ ′(θ∗)
Eξ1 exp(θξ1)(3.13)

+ 1

E∗Sτ+(1)

E
∗
∫ Sτ+(1)

0
exp

(−θ
(
Sτ+(1) − x

))
dx
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holds.

When θ = θ∗, we note that the second term on the right-hand side of (3.13) is
then the Cramér–Lundberg constant r for the unperturbed random walk. Hence,
both our upper and lower bounds can be expressed directly in terms of r and θ∗.

4. Tail asymptotics for heavy-tailed perturbations. In this section we de-
velop a couple of tail asymptotics for M∞ in which the perturbations have a suffi-
ciently heavy right tail that they largely govern the behavior of M∞’s tail. We first
consider the setting in which the ξj ’s have an exponential-like right tail, for which
E exp(θ∗ξ1) = ∞.

THEOREM 3. Assume that (ξj : j ≥ 0) is a sequence of i.i.d. random variables
satisfying (3.2). Suppose also that (Xj : j ≥ 1) is a sequence of i.i.d. random vari-
ables, independent of (ξj : j ≥ 0), for which E exp(νX1) < 1. Then,

P(M∞ > x) ∼ d
(
1 − E exp(νX1)

)−1 exp(−νx)

as x → ∞.

PROOF. We start by observing that Sn → −∞ a.s. by the strong law of large
numbers. In addition, Markov’s inequality yields

P

(
max
n≥0

Sn > x

)
≤

∞∑
n=0

P(Sn ≥ x)

= e−νx
E

∞∑
n=0

exp(νSn)I (Sn > x).

But
∑∞

n=0 exp(νSn)I (Sn > x) → 0 a.s. as x → +∞, and
∑∞

n=0 exp(νSn) has
expectation (1 − E exp(νX1))

−1 < ∞. So, the dominated convergence theorem
proves that P(maxn≥0 Sn > x) = o(e−νx) as x → ∞.

By conditioning on (Sj : j ≥ 0), we find that

P(M∞ ≤ x) = E exp

( ∞∑
j=0

log
(
1 − F̄ξ (x − Sj )

))
.

Fix ε > 0 and choose � large enough so that

−(1 + ε)F̄ξ (x) ≤ log
(
1 − F̄ξ (x)

) ≤ −(1 − ε)F̄ξ (x)

for x ≥ �. Then, on {maxn≥0 Sn ≤ x − �}, x − Sj ≥ � for all j ≥ 0, so that

−(1 + ε)

∞∑
j=0

F̄ξ (x − Sj ) ≤
∞∑

j=0

log
(
1 − F̄ξ (x − Sj )

)
(4.1)

≤ −(1 − ε)

∞∑
j=0

F̄ξ (x − Sj ).
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Observe that, because F̄ξ (x) ≤ d0 exp(−νx) for x ≥ 0 (and some finite con-
stant d0),

∞∑
j=0

F̄ξ (x − Sj ) ≤ d0 exp(−νx)

∞∑
j=0

exp(νSj ).

But
∑∞

j=0 exp(νSj ) is integrable, so
∑∞

j=0 exp(νSj ) < ∞ a.s. Hence,∑∞
j=0 F̄ξ (x − Sj ) = O(e−νx) → 0 a.s. as x → ∞. As a consequence,

eνx

(
1 − exp

(
−(1 − ε)

∞∑
j=0

F̄ξ (x − Sj )

))

= eνx(1 − ε)

∞∑
j=0

F̄ξ (x − Sj ) + o(1) a.s.

→ (1 − ε)d

∞∑
j=0

exp(νSj ) a.s.

as x → ∞. A similar argument holds for the lower bound in (4.1). Since ε > 0 was
arbitrary, this proves that

eνx

(
1 − exp

( ∞∑
j=0

log
(
1 − F̄ξ (x − Sj )

)))
→ d

∞∑
j=0

exp(νSj ) a.s.

as x → ∞.
To complete the proof, we need to show that we can invoke the dominated con-

vergence theorem. This follows from

eνx

(
1 − exp

( ∞∑
j=0

log
(
1 − F̄ξ (x − Sj )

)))

≤ eνxI (M > x − �) + eνx

(
1 − exp

(
−(1 + ε)

∞∑
j=0

F̄ξ (x − Sj )

))

≤ eνx · e−ν(x−�)eνM + eνx(1 + ε)

∞∑
j=0

F̄ξ (x − Sj )

≤ eν�
∞∑

j=0

exp(νSj ) + (1 + ε)d0

∞∑
j=0

exp(νSj ),

which, as argued earlier, has finite expectation. [The elementary bound exp(−y) ≥
1 − y, for y ≥ 0, was used to obtain the second inequality above.] �
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Note that the constant (1−E exp(νX1))
−1 depends on the distribution of the in-

crements of the random walk through an exponential moment. Our second “heavy-
tailed perturbation” asymptotic shows that when the perturbations have a heavier
tail than that described in Theorem 6, the distribution of X1 affects the asymptotic
only through its (ordinary) mean.

CONDITION A3. (Xj : j ≥ 1) is an i.i.d. sequence of random variables for
which there exists ε > 0 such that E exp(ε|X1|) < ∞ and EX1 < 0.

In our next theorem, we assume that the perturbations have a hazard rate that
decreases to zero. This assumption is one way of describing “heavy tails.” In par-
ticular, all Pareto random variables, as well as all Weibulls random variables with
shape parameter strictly less than one, obey this hazard rate hypothesis.

THEOREM 4. Assume Condition A3. Suppose that (ξj : j ≥ 0) is a sequence,
independent of (Sj : j ≥ 0), of i.i.d. random variables having a continuous hazard
rate function h(·) such that h(x) → 0 as x → ∞. Then,

P(M∞ > x) ∼ 1

|EX1|
∫ ∞
x

P(ξ1 > y)dy

as x → ∞.

PROOF. Set R(x) = ∫ ∞
x F̄ξ (y) dy. Recalling that h(x) → 0 and

F̄ξ (x + y)

F̄ξ (x)
= exp

(
−

∫ y

0
h(x + u)du

)
→ 1(4.2)

as x → ∞, one can easily prove that

R(x)/R(x + y) → 1(4.3)

as x → ∞. Recall that Sn/n → µ a.s. as n → ∞ and observe that Condition A3
implies that, for ε > 0 and sufficiently small, there exists δ > 0 such that

P(|Sn − nµ| > εn) = O(e−δn);(4.4)

see page 18 of [4], for example. The Borel–Cantelli lemma therefore shows that
|Sn − nµ| > εn almost surely occurs only finitely often.

Fix ε > 0 and note that L(ε) = sup{n ≥ 0 : |Sn − nµ| > εn} is therefore finite-
valued. We may thus write

∞∑
j=0

F̄ξ (x − Sj ) =
L(ε)∑
j=0

F̄ξ (x − Sj ) +
∞∑

j=L(ε)+1

F̄ξ (x − Sj )

≤ (
L(ε) + 1

)
F̄ξ

(
x − max

n≥0
Sn

)
+

∞∑
j=L(ε)+1

F̄ξ (x − µj − εj)(4.5)
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≤ (
L(ε) + 1

)
F̄ξ

(
x − max

n≥0
Sn

)

+ 1

|µ + ε|
∞∑

j=L(ε)+1

∫ x−(µ+ε)j

x−(µ+ε)(j−1)
F̄ξ (y) dy

= (
L(ε) + 1

)
F̄ξ

(
x − max

n≥0
Sn

)
+ 1

|µ + ε|R
(
x − (µ + ε)L(ε)

)

= 1

|µ + ε|R(x) + o(R(x)) a.s.

as x → ∞, where (4.2) to (4.4) are exploited for the final equality above. Since

1

R(x)
P(M∞ > x) = E

1

R(x)

(
1 − exp

∞∑
j=0

ln
(
1 − F̄ξ (x − Sj )

))
,(4.6)

we focus on the random variable appearing on the right-hand side of (4.6). Equa-
tion (4.1) and (4.5) permit us to conclude that

lim sup
x→∞

1

R(x)

(
1 − exp

∞∑
j=0

ln
(
1 − F̄ξ (x − Sj )

)) ≤ 1

|µ + ε| a.s.

A similar lower bound for the limit infimum holds. Since ε > 0 can be chosen
arbitrarily small, we find that

1

R(x)

(
1 − exp

∞∑
j=0

ln
(
1 − F̄ξ (x − Sj )

)) → 1

|µ| a.s.(4.7)

as x → ∞.
To complete the proof, it remains only to show that the left-hand side of (4.7) is

uniformly integrable. Note that

1

R(x)

(
1 − exp

∞∑
j=0

ln
(
1 − F̄ξ (x − Sj )

)) = 1

R(x)

(
1 −

∞∏
j=0

(
1 − F̄ξ (x − Sj )

))
.

For 0 ≤ ai ≤ 1, i ≥ 0, an easy induction on n shows that 1 − ∏n
i=0(1 − ai) ≤∑n

i=0 ai and, hence, the left-hand side is dominated by

≤ 1

R(x)
I

(
max
n≥0

Sn > x/2
)

+ 1

R(x)

[(
L(ε0) + 1

)
F̄ξ

(
x − max

n≥0
Sn

)

+ R(x − (µ + ε0)L(ε0))

|µ + ε0|
]

· I
(

max
n≥0

Sn ≤ x/2
)

(4.8)
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≤ 1

R(x)
exp

(
−ε0x/2 + ε0 max

n≥0
Sn

)
I

(
max
n≥0

Sn > x/2
)

+ 1

R(x)

(
L(ε0) + 1

)
F̄ξ

(
x − max

n≥0
Sn

)
I

(
max
n≥0

Sn > x/2
)

+ 1/|µ + ε0|

≤ exp(−ε0x/2)

R(x)
exp

(
ε0 max

n≥0
Sn

)
+ 1/|µ + ε0|

+ (
L(ε0) + 1

)
exp

(∫ x

x−maxn≥0 Sn

h(u)du

)
· I

(
max
n≥0

Sn ≤ x/2
)

F̄ξ (x)

R(x)

≤ exp(−ε0x/2)

R(x)
exp

(
ε0 max

n≥0
Sn

)
+ 1/|µ + ε0|

+ (
L(ε0) + 1

)
exp

(
sup{h(y) :y ≥ x/2} · max

n≥0
Sn

)
· max

y≥0

F̄ξ (y)

R(y)
,

for ε0 > 0. But exp(−ε0x/2)/R(x) = exp(− ∫ x
0 (ε0/2−h(u)) du) → 0 as x → ∞.

It follows from (4.8) that the required uniform integrability of the left-hand side
of (4.7) is a consequence of the Cauchy–Schwarz inequality and that

E exp
(

2ε0 max
n≥0

Sn

)
< ∞ and EL(ε0)

4 < ∞(4.9)

for some ε0 > 0. But exp(2ε maxn≥0 Sn) ≤ ∑∞
n=0 exp(εSn). Since ψ ′(0) < 0, there

exists θ > 0 such that ψ(θ) < 0. Condition A3 then ensures that
E

∑∞
n=0 exp(θSn) < ∞. To deal with L(ε0), note that

L(ε)4 ≤
L(ε)∑
j=0

j4I (|Sj − µj | > εj) ≤
∞∑

j=0

j4I (|Sj − µj | > εj).

But (4.4) ensures that P(|Sj − µj | > εj) decays exponentially in n, proving the
finiteness of EL(ε)4. By choosing ε0 sufficiently small so that 0 < ε0 < θ and
EL(ε0)

4 < ∞, we obtain (4.9), completing the proof. �
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