NOTES ON REPRESENTATIONS
OF GL(r) OVER A FINITE FIELD

BY DANIEL BumP

1. Induced representations of finite groups. Let G be a finite group, and
H a subgroup. Let V be a finite-dimensional H-module. The induced module
V& is by definition the space of all functions F : G — V which have the prop-
erty that F'(hg) = h.F(g) for all h € H. This is a G-module, with group action
(gF)(¢') = F(g'g). On the other hand, if U is a G-module, let Uy denote the
H-module obtained by restricting the action of G on U to the subgroup H. Thus
the underlying space of Uy is the same as that of U. If V' is a G-module, we will
occasionally denote by my : G — GL(V) the representation of G associated with
V. Thus if g € G, v € V, g.v and 7y (g)(v) are synonymous.
The Frobenius reciprocity law amounts to a natural isomorphism

(1.1) Homeg (U, V) = Hompy (Ug, V).

This is the correspondence between ¢ € Homg (U, V%) and ¢' € Hompg(Ug, V),
where ¢'(w) = ¢(w)(1), and conversely, ¢(w)(g) = ¢'(gw). There is also a natural
isomorphism

(1.2) Homg(VG, U) = HOI’DH(V, UH)

This may be described as follows. Given an element ¢ € Hompg(V,Ug), we may
associate an element ¢’ € Homg (V¢ U), defined by

(= D vo(f(y7h).

v€G/H

Thus induction and restriction are adjoint functors between the categories of
H-modules and G-modules. It is also worth noting that they are ezact functors.

Another important property of induction is transitivity. Thus if H C K C G,
where H and K are subgroups of GG, and if V' is an H-module, then

(1.3) (VE)E =2 yC,

The isomorphism is as follows. Suppose that F € (VE)¢. Thus F : G — VE,
We associate with this the element f of V& defined by f(g) = F(g)(1). It is easily
checked that this F' — f is an isomorphism (V)¢ — V&,

The problem of classifying intertwining operators between induced representa-
tions was considered by Mackey [Mac] who proved the following Theorem.

Typeset by ApS-TEX
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Theorem 1.1. Suppose that G is a finite group, that Hy and Hy are subgroups of
G, and that Vi, Vy are Hi- and Hay-modules, respectively. Then Homg(VE, V)
is naturally isomorphic to the space of all functions A : G — Homg (Vy, Vo) which
satisfy

(1.4) A(hg g hy) = my, (ha) o A(g) o my, (hy).

We may exhibit the correspondence explicitly as follows. Firstly, let us define a
collection f, ,, of elements of V¢ indexed by g € G, v; € V;. Indeed, we define

g'g v ifg'g7! € Hy;
foor(d) = {

0 otherwise.

It is easily verified that if g, ¢' € G, hy € Hy, vy € Vi, then

fhlg,hlvl = fg,vla g/ fgg’,vl - fg,vla

and if F € VC,
F= > fyro:

YEH\G

From these relations, the existence of a correspondence as in the theorem is easily
deduced, where if L € Homg(V¥, Vi¥) corresponds to the function A : Vi — Va,
then

Ag) vi = (Lfg-1,,)(1),
and, for F' € VC,

(1.5) (LF)(g)= > A(y")F(yg).

YEH\G

This completes the proof of Theorem 1.1.

An intertwining operator L : V,¢ — V& therefore determines a function A on G.

We say that L is supported on a double coset Ho\g/H; if the function A vanishes
off this double coset. The situation is particularly simple if V; and V; are one
dimensional. If x is a character of a subgroup H of G, we will denote by x¢ the
representation V&, where V is a one-dimensional representation of H affording the
character x. Also, if g € G, we will denote by 9x the character 9x(h) = x(g~'hg)
of the group gHg™!.
Corollary 1.2. If x1 and x2 are characters of the subgroups Hy and Hs of G, the
dimension of Homg (x§, x§) is equal to the number of double cosets in Hy\g/H,
which support intertwining operators X§ — x§ . Moreover, a double coset Hy\g/H,
supports an intertwining operator if and only if the characters xo and 9x1 agree on
the group Hy N g~ 'Hyg. M

The composition of intertwining operators corresponds to the convolution of the
functions A satisfying (1.4). More precisely,
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Corollary 1.3. Let Vi, Vo and V3 be modules of the subgroups Hyi, Hs and Hs
respectively, and suppose that Ly € Homg(VE,VE) and Ly € Homg(VE, VE)
correspond by Theorem 1.1 to functions Ay : G — Homg(Vy, V2) and Ay : G —
Homcg (Va, V3). Then the composition LoLy corresponds to the convolution

(1.6) Alg)= Y Da(gy Hol(y).
YEH2\G

This is easily checked. I

An important special case:

Corollary 1.4. IfV is a module of the subgroup H of G, the endomorphism ring
Endg (V%) is isomorphic to the convolution algebra of functions A : G — Endc (V)
which satisfy A(hoghy) = wy (hs) o A(g) o wy (h1) for hy, ho € H. 1

2. The Bruhat Decomposition. Let ' = F, be a finite field with ¢ elements,
and let G = GL(r,F). By an ordered partition of r, we mean a sequence J =

{j1,--. .7k} of positive integers whose sum is r. If .J is such a ordered partition,
then P = Pj will denote the subgroup of elements of GG of the form
Gun G2 -+ G
0 Gaa -+ Go
0 - 0 Gk

where G, is a j, X J, block. The subgroups of the form Pj are called the standard
parabolic subgroups of G. More generally, a parabolic subgroup of G is any subgroup
conjugate to a standard parabolic subgroup. The term maximal parabolic subgroup
refers to a subgroup which is maximal among the proper parabolic subgroups of G.
Thus Py is maximal if the cardinality of J is two.

We have Py = M j; Nj where M = M is the subgroup characterized by G, = 0
if w # v, and N = N is the subgroup characterized by G, = I;, (the j, X j,
identity matrix). Evidently M = GL(j1,F) X - -- X GL(ji, F'). The subgroup M is
called the Levi factor of P, and the subgroup N is called the unipotent radical.

We wish to extend the definitions of parabolic subgroups to subgroups of groups
of the form G = G x - -- x Gy, where G; =2 GL(ji, F'). By a parabolic subgroup of
such a group G, we mean a subgroup of the form P = P; x --- x Py, where P; is
a parabolic subgroup of G;. We will call such a P a mazimal parabolic subgroup
if exactly one of the P; is a proper subgroup, and that subgroup is a maximal
parabolic subgroup. If M; and N; are the Levi factors and unipotent radicals of
the Pj, then M = My x --- x My and N = Ny x --- x N will be called the Levi
factor and unipotent radical respectively of P.

A permutation matriz is by definition a square matrix which has exactly one
nonzero entry in each row and column, each nonzero entry being equal to one. We
will also use the term subpermutation matrix to denote a matrix, not necessarily
square, which has at most one nonzero entry in each row and column, each nonzero
entry being equal to one. Thus a permutation matrix is a subpermutation matrix,
and each minor in a subpermutation matrix is equal to one. Let W be the subgroup
of G consisting of permutation matrices. If M is the Levi factor of a standard
parabolic subgroup, let Wy, = WNM. If M = M;, we will also denote Wy, = W .
If M is the Levi factor of P, then in fact Wy, = W N P.
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Proposition 2.1. Let M and M’ be the Levi factors of standard parabolic sub-
groups P and P', respectively, of G. The inclusion of W in G induces a bijection
between the double cosets Wy \W /Wy and P'\G/P.

First let us prove that the natural map W — P'\G/P is surjective. Indeed, we will
show that if g = (guy) € G, then there exists b’ € B such that b’g has the form wb,
for b € B. Since B C P, P’ this will show that w € P'\g/P. We will recursively
define a sequence of integers A(r), A(r — 1),--- ,A(1) as follows. A(r) is to be the
first positive integer such that g, x¢-y # 0. Assuming A(r), A(r — 1), , A(u + 1)
to be defined, we will let A(u) be the first positive integer such that the minor

Gu,\(r) Gu,\(r—1) e Gu,\(u)
Ju+1,\(r Ju+1A(r—1 0 Jut1 A (u

det . (r) (r—1) ‘ (u) 20,
Ir A(r) Gr \(r—1) e Gr \(u)

Now the columns of b’ are to be specified as follows. The last column of b’ is to be
determined by the requirement that the A(r)-th column of b'g is to have 1 in the
r, A(r) position, and zeros above. Assuming that the last u — 1 columns of ' have
been specified, we specify the u-th column from the right of ' by requiring that the
r —u, \(r — u) entry of b’g equal 1, while if v < r — u, then the v, \(r — u) entry of
b'g equals zero. Now let w be the permutation matrix with has ones in the u, A(u)
positions, zeros elsewhere. Then b = w~1b'g is upper triangular. This shows that
the natural map W — P'\G/P is surjective.

Now let us show that the induced map Wy \W /Wy — P'\G/P is injective.
Suppose that P = Py, P' = Py, J = {j1, -+ ,ji}, J' = {41,- -+, j/}. Suppose that
w, w' € W, p, p’ € P’ such that p’wp = w’. We must show that w and w’ lie in the
same double coset of Wy \W/Wy;. Let us write

Wi - Wi W1/1 W{k
w=|{ : w'= | ]
Wy - Wi, V[/l/1 Wl’k
P Py - Py P, P, - P
0 Py -+ Py . 0 Py -+ Py
p=1 . N S A
0 0o - Py 0 0 - P

where each matrix W, or W/ is a jI x j, block, P, is a j, X j, block, and P},
is a ji, x ji block. Let us also denote

Wi oo Wy Wi - WY,
Wi =1 Sl W= | 2
le e le Wl/u Wl/v
B Py - P N Py - P,
Ptla - . ) Pta - : :

0o --- P 0o --- P,
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Evidently W/, = P! W, P,, so W], and Wy, have the same rank. Now the rank of
a subpermutation matrix is simply equal to the number of nonzero entries, and so

rank(Wy,) = rank(Wy,) — rank(Wt_l,v) - rank(Wt,Hl) + rank(Wt_l,Hl).
Thus rank(Wy,) = rank(W/,). Since this is true for every u, v it is apparent

that we can find elements multiply w on the left by elements of wy; € Wy, and
wpr € Wy such that wywwyy =w’. 1

Corollary 2.2 (The Bruhat Decomposition). We have

G= |J BwB  (disjoint).
weW

This follows by taking P = 5. 1

3. Parabolic induction and the “Philosophy of Cusp forms”. Let J =
{j1,--. .7k} be an ordered partition of r, and let V,,, u = 1,--- | k be modules for
GL(ju, F). Then V=V, ®---® Vj is a module for M ;. We may extend the action
of My on V to all of P, by allowing Ny to act trivially. Then let Z(V) = Zpr,q(V)
denote the G-module obtained by inducing V' from P. The module Z(V') is be said
to be formed from V' by parabolic induction.

In order to have an analog of Frobenius reciprocity for parabolic induction, it
is necessary to define a functor from the category of G-modules to the category
of M-modules, the so-called “Jacquet functor.” Thus, let W be a G-module. We
define a module J (W) = Jg,m (W) to be the set of all elements u such that n.u = u
for all n € N. Since N is normalized by M, J(W) is an M-submodule of W. It is
called the Jacquet module. Other names for the Jacquet functor from the category
of G-modules to the category of M-modules which have occurred in the literature
are “localization functor,” “truncation,” and “functor of coinvariants.”

Lemma 3.1. Let U be a G-module, Uy the additive subgroup generated by all
elements of the form uw — nu with w € U, n € N. Then Uy is an M-submodule
of U and we have a direct sum decomposition

U=JU)eUU,.

Since M normalizes N, Uy is an M-submodule of U. We show first that J(U)NUy =
{0}. Indeed, suppose that ug =", (u; — n; u;) is an element of Uy. If this element
is also in J(U), then

1
0= g o=k 5[ - 3
|N| |N| % neN neN
On the other hand, to show U = J(U) + Uy, let uw € U. Then
|N| Z nu + Z u — nu)
nEN

where the first element on the right is in J(U), while the second is in Up. 1
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Proposition 3.2. Let U be a G-module, M and N the Levi factor and unipotent
radical, respectively, of a proper standard parabolic subgroup P of G. Then a nec-

essary and suffient condition for Ja m(U) # 0 is that there exists a nonzero linear
functional T on U such that T(nu) =T (u) for alln € N, u € U.

Indeed, a necessary and sufficient condition for a given linear functional 7' to have
the property that T'(nu) = T'(u) for all n € N, u € U is that its kernel contain the
submodule Uy of Lemma 3.1. Thus there will exist a nonzero such functional if and
only if Uy # U, i.e. if and only if J(U) #0. m

Proposition 3.3. Suppose that V is an M-module and U a G-module. We have
a natural isomorphism

(3.1) Homg (U, Z(V)) = Hompy (T (U), V).
Indeed, by Frobenius reciprocity (1.1), we have an isomorphism
Homg(U, I(V)) = HOIIlp(Up, V)

Recall that the action of M on V is extended by definition to an action of P by
allowing N to act trivially. Then it is clear that a given M-module homomor-
phism ¢ : U — V is a P-module homomorphism if and only if ¢(Up) = 0. Thus
Homp(Up, V) = Homps (Upr /Uy, V). By Lemma 3.1, Uy /Uy = J(U). M

Proposition 3.3 shows that the Jacquet construction and parabolic induction are
adjoint functors.
There is also a transitivity property of parabolic induction, analogous to (1.3).

Proposition 3.4. Let M 1is the Levi factor of a parabolic subgroup P of G, and let
Q be a parabolic subgroup of M with Levi factor My. Then there exists a parabolic
subgroup Py C P of G such that the Levi factor of Py is also My. Thus if V is an
My-module, then both Iy, p(V') and Iy, (V) are defined as M- and G-modules,
respectively. We have

(3.2) T Ty, (V) =2 Iyya(V).
We leave the proof to the reader.
It is also very easy to show that:
Proposition 3.5. The Jacquet and parabolic induction functors are exact. 1

An important strategy in classifying the irreducible representations of reductive
groups over finite or local fields consists in trying to build up the representations
from lower rank groups by parabolic induction. This strategy was called the Phi-
losophy of Cusp Forms by Harish-Chandra, who found motivation in the work of
Selberg and Langlands on the spectral theory of reductive groups. An irreducible
representation which does not occur in Zys,¢(V) for any representation V' of the
Levi factor of a proper parabolic subgroup is called cuspidal.

Proposition 3.6. Any irreducible representation of G occurs in the composition
series of some represention of the form Iyr.q(V'), where V is a cuspidal represen-
tation of the Levi factor M of a parabolic subgroup P.

Indeed, let P be minimal among the parabolic subgroups such that the given rep-
resentation of G occurs as a composition factor of Zys (V') for some representation
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V of the Levi factor M of P. (There always exist such parabolics P, since we
may take P to be G itself.) If V is not cuspidal, it occurs in the composition se-
ries of Zpz, ar (Vo) for some Levi factor M, of a proper parabolic subgroup of M.
Now in Proposition 3.3 the given representation of G also occurs in Zpz, ¢(Vo),
contradicting the assumed minimality of P. 1

According to the Philosophy of Cusp Forms, the cuspidal representations should
be regarded as the basic building blocks from which other representations are con-
structed by the process of parabolic induction. Proposition 3.6 shows that every
irreducible representation of G may be realized as a subrepresentation of Zps (V)
where V' is a cuspidal representation of the Levi component P of a parabolic sub-
group. Moreover, there is also a sense in which this realization is unique: although
P is not unique, its Levi factor M and the representation V are determined up to
isomorphism. More precisely, we have

Theorem 3.7. Let V and V' be cuspidal representations of the Levi factors M
and M' of standard parabolic subgroups P and P’ respectively of G. Then either
Tvuc(V) and Iy (V') have no composition factor in common, or there is a Weyl

group element w in G such that wMw~' = M', and a vector space isomorphism
¢V = V' such that

(3.3) p(mv) = wmw™! ¢(v) formeM,veV.

In the latter case, the modules s (V') and Ipr (V') have the same composition
factors.

REMARK. The significance of (3.3) is that if wMw~™' = M’, then M and M’ are
isomorphic, and so V' may be regarded as an M-module. Thus (3.3) shows that
¢ is an isomorphism of V and V' as M-modules. In other words, for the induced
representations to have a common composition factor, not only do M and M’ have
to be conjugate, but V and V' must be isomorphic as M-modules.

We will defer the proof of this Theorem until the next section. Of course the
complete reducibility of representations of a finite group G implies that two G-
modules have the same composition factors if and only if they are isomorphic. We
have stated the theorem this way because this is the correct formulation over a
local field. Over a local field, one encounters induced representations which may
have the same composition factors, but still fail to be isomorphic.

There are two problems to be solved according to the Philosophy of Cusp forms:
firstly, the construction of the cuspidal representations; and secondly, the decom-
position of the representations obtained by parabolic induction from the cuspidal
ones. We will examine the second problem in the following sections.

It follows from transitivity of induction that it is sufficient for a given irreducible
representation to be cuspidal that the representation does not occur in Zy (V)
for any mazimal parabolic subgroup P. Indeed, suppose that the representation is
not cuspidal. Then it occurs in Zys, (V') for some proper parabolic subgroup P,
of G, and some representation V of the Levi factor My of Py. If P is a maximal
parabolic subgroup containing Py, and if M is the Levi factor of P, then by (3.2) it
also occurs in Ty, (Za,, (V). Thus if an irreducible representation occurs in a
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representation induced from a proper parabolic subgroup, it may be assumed that
the parabolic is maximal.

It follows from Proposition 3.3 that a a necessary and sufficient condition for the
representation U to be cuspidal is that Jg v (U) = 0 for every Levi factor M of a
maximal parabolic subgroup.

4. Intertwining operators for induced representations. In this section we
shall analyze the intertwining operators between two induced representations. We
shall also prove Theorem 3.3. First let us establish

Proposition 4.1. Let J = {j1,--- ,jx}, J = {41, -, i} be two ordered partitions
of r, and let P = Py, P' = Py.. Let M =2 GL(j1,F) x --- X GL(j, F) and M' =
GL(j1,F) x --- x GL(j], F) be their respective Levi factors. Let V,, (resp. V) be
given cuspidal GL(j,, F)-modules (resp. GL(j!,, F)-modules). LetV = V1 ®---®@Vy,
Vi=V/®---®V, and let d = dimc Homg(Zpr,a(V), Iy .a(V')). Then d = 0
unless k =1, in which case, d is equal to the number of permutations o of {1,--- , k}
such that jyu)y = Jy, and such that Vo) =V, as GL(jy(u), F')-modules for each
u=1,--+,k.

To prove Proposition 4.1, assume first that we are given nonzero intertwining
operator in Homeg (Zar,c(V),Zar,c(V')), which is supported on a single double
coset of P'\G/P. We will associate with this intertwining operator a bijection
o:{1,---,k} = {1,--- 1} which has the required properties. Then we will show
that the correspondence between double cosets which support intertwining oper-
ators and such o is a bijection, and that no coset can support more than one
intertwining operator. This will show that the dimension d is equal to the number
of such o.

Given the intertwining operator, let A : G — Homg(V,V’) be the function
associated in Theorem 3.1. Thus

(4.1) A(p'gp).v=1p" A(g)p.v forpe P,p e PLveV.

Recall that we are assuming that A is supported on a single double coset P'wP,
where by the Bruhat decomposition we may take the representative w € W. Let
d=A(w):V =V

Now let us show that wMw=! = M’.

First we show that M’ C wMw~!. Suppose on the contrary that M’ Z wMw™?!.
Let Np be the unipotent radical of P. Then Q@ = M’ N wPw™! is a proper (not
necessarily standard) parabolic subgroup of M’, whose unipotent radical Ng =
M' N wNpw™! is contained in the unipotent radical of wPw™!. Now let v € V,
and n € Ng. Applying (4.1) with ¢ = w, p = w™'n" w, p’ = n, we see that
n.g(w=In"lw.v) = ¢(v). Now since w~tn~"tw is contained in the unipotent radical
of P, w™'n~lw.v = v, and so if n € Ng we have n.¢(v) = ¢(v). Thus ¢(v) =0,
since V' is cuspidal. This shows that ¢ is the zero map, which is a contradiction.
Therefore M’ C wMw™!. The proof of the opposite inequality M’ O wMw™! is
similar.

Now the isomorphism m — wmw ™! of M onto M’ makes V' into an M-module.
(4.1) implies that if m € M, v € V| then

(4.2) wmw ™" ¢(v) = p(mv).
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This implies that if V, V’ are regarded as M-modules, they are isomorphic, since
¢ is an isomorphism. By Schur’s Lemma, there can be only one isomorphism
(up to constant multiple) between irreducible M-modules, and since by (4.1) A is
determined by ¢, it follows that there can be at most one intertwining operator
supported on each double coset. On the other hand, if w is given such that M’ =
wMw~!, and if the induced M-module structure on V' makes V and V' isomorphic,
then denoting by ¢ such an isomorphism, so that (4.2) is satisfied, it is clear that
(4.1) is also satisfied, since the unipotent matrices in both P and P’ act trivially
on V and V'.

Thus by Proposition 2.1, the dimension d of the space Homeg (Zar,¢(V), Zyr (V7))
of intertwining operators is exactly equal to the number of w € Wy, \W /W), such
that wMw~' = M’, and such that the induced M-module structure on V'’ makes
V 2 V', Tt is clear that this is equal to the number of permutations o of {1,--- , k}
such that j,;) = j;, and such that V,; = V/ as GL(j,(), I')-modules for each
t=1,---,k. M

Corollary 4.2. Let P C G be the standard parabolic subgroup Pj; where J is the
ordered partition {j1,--- ,jx} of r. Let M =2 GL(j1,F)x---xGL(jk, F) be the Levi
factor of P, and let V,, be given cuspidal GL(j,, F')-modules. LetV =V ®---QVj.
Then Z(V') is reducible if and only there exist distinct u, v such that j, = j,, and
Vo 2V, as GL(jy, F)-modules.

This follows from Proposition 4.1 by taking P’ = P. 1

We now give the proof of Theorem 3.7. The only part which is not contained in
Proposition 4.1 is the final assertion that if there exists a Weyl group element w in
G such that wMw™1!, and ¢ such that (3.3) is satisfied, then the induced modules
have the same composition factors.

The problem may be stated as follows. Let J = {j1, -+ ,jx}tand J' = {4}, -+, ji.}
be two sets of positive integers whose sum is r, and assume that .J’ is obtained
from J by permuting the indices j;. Thus there exists a bijection o : {1,--- |k} —
{1,---,k} such that j,;) = j;. Let V; be a cuspidal GL(j;, F')-module for i =
1,"' ,k, and let V;;/ = Vo’(i)- Let P = PJ, P = PJI, M = MP, and M' = Mpl.
Then V =V1®---@Vi and V' = V/®---@V}/ are M- and M'-modules respectively.
What is to be shown is that Ty (V) and Zpr (V') have the same composition
factors. Clearly it is sufficient to show this when ¢ simply interchanges two adja-
cent components. Moreover in that case, by transitivity and exactness of parabolic
induction (Propositions 3.4 and 3.5) it is sufficient to show this when k£ = 2. Now
if V= V' this is obvious. On the other hand, if V' 2 V' then by Corollary 4.2,
Iy (V') is irreducible, and a nonzero intertwining map Zy (V) — Iy (V')
exists by Proposition 4.1. Consequently Zps ¢ (V) = Zar ¢ (V'). This completes the
proof of Theorem 3.7. 1

5. The Kirillov Representation. Let G = G, = GL(r, F) as before, and let
P, be the subspace consisting of elements having bottom row (0,...,0,1). Let
N = N, be the subgroup of unipotent upper triangular matrices, and let U, be the
subgroup consisting of matrices which have only zeros above the diagonal, except
for the entries in the last column. Thus U, = F"~1. If k < r, we will denote by G},
the subgroup of G, isomorphic to GL(k, F'), consisting of matrices of the form

* 0
0 Ir—k ’
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where ‘x’ denotes an arbitrary £ x k block, and I,_j denotes the r — k x r — k
identity matrix. Identifying GL(k, F') with this subgroup of G, the subgroups P,
Ny, and Uy, are then contained as subgroups of G,.. Thus P, = Gj_1.Uj, (semidirect
product).

Let ¢ = 9r be a fixed nontrivial character of the additive group of F'. For k < r,
let 0y : N — C* be the character of N defined by

1 ®o 13 -+ Tk
1 To3z -+ Io
0, 1 = p(T12+ Tag + o+ Tp—1,8)-
1

We will denote 6, as simply 6. Then let L = K. be the module of P, induced from
the character 6 of N,.. By definition K is a space of functions P, — C. However,
each function in K is determined by its value on G,_1, and it is most convenient
to regard K as a space of functions on G,_;. Specifically,

K={f:G.—1 — C|f(ng) =0,_1(ng) f(g) for n € N,._1},
and the group action is defined by

((h 1f>f> (9) = 0(gu) f(gh)  forg,he€ G, 1,ucl,, feK.

IC is called the Kurillov representation of the group P,.
Theorem 5.1. The Kirillov representation of P, is irreducible.

To prove this, it is sufficient to show that Homp (K, ) is one dimensional. Let
there be given a double coset in N,.\ P, /N, which supports an intertwining operator
K — K. Let A : P, — C be the function associated with the given intertwining
operator. We may take a coset representative h which lies in G,._1. We will prove
that h = I,._;. Theorem 5.1 will then follow from Corollary 1.2.

Suppose by induction that we have shown that h € G, where 1 < k <r—1. We
will show then that h € Gy_1. (If K = 1, this is to be interpreted as the assertion

that h = 1.) Let
(Ik—l ?1L> € Ui,

where u is a column vector in F¥~1, We have

-1

h B Ik—l hlu h Ir—l 111,
[r—k - [r—k ’

[r—k—i—l Ir—k+1
and the bi-invariance property (1.4) of A implies that

Ii._1 hu I._1 u
Ok 1 =0 1
[r—k [r—k

Since this is true for all u, it follows that h € Gi_;. 1
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6. Generic representations. Now let G be the representation of G induced from
the representation # of N which was introduced in Section 5. Our objective is to
prove the following famous theorem of Gelfand and Graev [GG]. The corresponding
theorems over local fields and adele groups are due to Shalika [Sh]. These results
are often referred to as “multiplicity one” theorems.

Theorem 6.1. The representation G of G is multiplicity-free.
Let

(6.1) wp = wo(r) =
1

be the “longest” element of the Weyl group. If J = {j1,---,jx} is a ordered
partition of r, we will also denote

wo(J1)
w(J) = :
wo (Jk)

where wy(j) is defined by (6.1).

We will need some elementary facts about the action of the Weyl group on the
root system. Let ® be the set of all roots of G relative to the Cartan subgroup A,
and let €2 be the set of all simple positive roots. If o € €2, s, € W will denote the
simple reflection such that s, («) = —a. If S is any subset of €2, there is a ordered
partition J = {ji,---,jx} of r such that the subgroup of W generated by the s,
such that o € S is Wy, where M = M ;. Thus there is a bijection between the set of
subsets of Q and the ordered partitions of 7. The root system Q(M) of M relative
to A (which is the disjoint union of the root systems for GL(j1), -+ ,GL(jk)) is
naturally included in .

Lemma 6.2. Let M be the Levi factor of a standard parabolic subgroup of G. If
a, B, -, P € Q such that « ¢ QM), B1,--- € QM), and if a+ 1+ ...+
s a root, then a+ B+ ...+ B > 0 if and only if « > 0. WA

Lemma 6.3. Let S be a subset of Q, and let J be the ordered partition of r such
that the subgroup of W generated by the s, such that o € S is Wy, where M = M.
Then if « € S, w(J)(a) <0, and —w(J)(a) € S. On the other hand, if « € Q but
a ¢ S, then w(J)(a) = a+ B, where B is the sum of roots in Q(M), and in this
case w(J)(a) >0. M

We omit the proofs of Lemmas 6.2 and 6.3, which are not hard to check.

Lemma 6.4. If w € W and a € A such that (n) = (wan (wa)~1) whenever n
and wan (wa)~! are both in N, then there exists a ordered partition J of r such
that w = wow(J), and a is in the center of M.

To prove this, we apply Lemma 6.3 with S be the set of a €  such that wa is
a positive root. Let us show first that if a € S, then wa is a simple root. Let
Zq : F'— G be the standard one-parameter subgroup of GG, so that ifa € A, £ € F,
then az,(¢)a™! = z4(a(a)é). Let X, be the image of . Let £ € F, and let
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n = 1,(£) € Xo. Then n and (wa)n (wa)~! are both in N, since (wa) n (wa)™! =
Twa(a(a)&). Since 0|x, is nontrivial, the hypothesis of the Lemma implies that
0|x,. is also nontrivial. Thus wa is a simple root.
Furthermore, the hypothesis of the Lemma implies that ¢ («(a) &) = (&), and
consequently a(a) =1 for all & € S. This implies that a is in the center of W;.
Let us show now that wMw™! is the Levi factor of a standard parabolic sub-
group. Indeed, M is generated by the set of one parameter subgroups

{Xu|a € @ is a linear combination of roots in S},
so wMw™! is generated by the set of one parameter subgroups
{X4|a € @ is a linear combination of roots in wS}.

As we have just shown that wS is a subset of €2, this wMw™! is the Levi factor of
a standard parabolic subgroup.

Now we show that if a € €, then (ww(J))(a) < 0. Firstly, if « ¢ S, then by
Lemma 6.3, (ww(J))(a) = w(a)+w(B), where 3 is the sum of roots in (M ). Now
we apply Lemma 6.2. Note that w(a) ¢ Q(wMw™!), while w(3) is the sum of roots
in Q(wMw™1), so by Lemma 6.2, (ww(J))(c) is negative since w(«) is negative by
the definition of S. On the other hand, if « € S, then by Lemma 6.2 —w(.J)(a) € S,
and so w(—w(J)(«)) > 0 by the definition of S. Thus (ww(J))(a) < 0 in this case
also.

Since ww(.J) takes every simple positive root to a negative root, ww(.J) = wo,
and so w = wow(J). This completes the proof of Lemma 6.2. 1

We turn now to the proof of Theorem 6.1. The strategy is to prove that the alge-
bra of endomorphisms of G is abelian. This implies that G is multiplicity free, since
if G contains k copies of some irreducible representation, then the endomorphism
ring of G contains a copy of the ring of k x k matrices over C.

The proof depends on the existence of the anti-automorphism ¢(g) = wo tg wg of
G. Evidently ¢(gg’) = t(g) t(g’). Furthermore, ¢ stabilizes N, and its character 6.

By Corollary 1.4, the endomorphism ring of G is isomorphic to the convolution
algebra of functions A satisfying

(6.2) A(nygng) = 0(n1) A(g) O(ns)

for ny1, no € N, g € G. Evidently ¢ induces an anti-involution on this ring. We will
argue that any such function A is stabilized by ¢. This will prove that the ring is
abelian, since then Ay x Ag = “(Aq % Ag) = "Ag x"Ay = Ag x Ay.

Let us therefore consider a function A satisfying (6.2), which is supported on
a single double coset in N\G/N. It follows from the Bruhat decomposition that
we may choose a coset representative in the form wa where w € W, a € A. Then
(6.2) amounts to the assertion that the hypotheses of Lemma 6.2 are satisfied. We
may therefore find J such that w = wpw(J), and a is in the center of M ;. Thus
v(wa) = wo (wow(J) a) wy = wpaw(J) wowy = wow(J)a = wa. This shows that
. stabilizes every double coset of N\G/N which supports a function A satisfying
(6.2). Therefore the convolution algebra is t-stable, as required. Wl
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Let V be an irreducible G-module. If there exists a nonzero G-homomorphism
V — G, then we call V' generic. In this case, the image of V in G is called the
Whittaker model of V. By Theorem 6.1, it is the unique space Wy of functions
f on G with the property that f(ng) = 6(n) f(g) for n € N, stable under right
translation by G such that the G-module action by right translation on Wy, affords
a representation isomorphic to V.

Let Cy denote a one-dimensional N-module affording the character 6, so that G =
Cg. By Frobenius reciprocity (1.1), the existence of a G-module homomorphism
V — @G is equivalent to the existence of an N-module homomorphism V — Cg.
Thus V is generic if and only if there exists a linear functional 7" on V' such that
T(n.v) = 0(n)T(v) for all n € N, and v € V. If such a functional exists, it is
unique up to scalar multiple, since by (1.1) and Theorem 6.1, the dimension of the
space of such functionals is

dim Homp (V, Cy) = dimHomg(V, G) < 1.

Let Cy denote a one-dimensional N-module affording the character #, so that
G = Cg. Whether or not V is irreducible, we will call a linear functional 7" on
V such that T'(n.v) = 0(n) T (v) for all n € N, and v € V' Whittaker functional.
Thus a Whittaker functional is essentially an N-module homomorphism G — Cy.
By Frobenius reciprocity, the existence of a G-module homomorphism V' — G is
equivalent to the existence of a Whittaker functional. Thus V admits a Whittaker
functional if and only if it has an irreducible component which is generic. If V' is
irreducible, then by (1.1) and Theorem 6.1, the dimension of such functionals is

dim Homy (V, Cy) = dim Homg(V, G) < 1.

7. Cuspidal representations are generic. We will prove

Proposition 7.1. Let V be a cuspidal G-module, Ty be a nonzero functional on
V. Then there exists a nonzero Whittaker functional T in the linear span of the
functionals v — To(pv) (p € P.). Moreover, if vg € V' such that Ty(vg) # 0, then
there erxists g € G._1 such that T(guvg) # 0.

We will follow the notations introduced in Section 5. Furthermore, if 1 < k < r, let
NF = Uk+1 Ugya ... U, so that N = Nj NP%. Let us assume by induction that

There exists a nonzero functional Ty, in the linear span of the functionals v — Ty (pv)
(p € P,) such that Ty(nv) = 0(n) Tx(v) for n € N"=F. Moreover, there exists
g € Gy such that Ty (gxvo) # 0.

Since N" is reduced to the identity, the induction hypothesis is satisfied when k& = 0.
We will show that if it is satisfied for & < r — 1, then it is satisfied for & + 1.

Let Sy, be the space of all linear functionals 7" in the linear span of the functionals
v Tg(pv) (p € Pr—g). Observe that if T € S, then T'(nv) = 0(n) T(v) for all
n € N"=% because if p € P,_ and n € N" =%, then pnp=* € N"=% and 0(pnp~?) =
O(n). Thus we have a (right) action of P._j on S, defined by T?(v) = T (pv).

The subgroup U, _j of P._j is abelian, and so its action on S may be decom-
posed into one-dimensional eigenspaces. Let T" be an nonzero element of Sj be such
that T'(nv) = x(n) T'(v) for n € U,_j, where x is a character of U,_j. Since T}, is
a linear combination of such eigenfunctions, we may assume that T'(grvo) # 0.
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Note that x cannot be the trivial character because V is cuspidal: for if J is
the ordered partition {r — k — 1,k + 1} of r, and if x is zero, then if y = 1 we
have T'(nv) = T'(v) for all n in the unipotent radical of Py, because such n can be
factored as ni ne where ny € U,_;, and ny € N"F, and ny satisfies f(ny) = 1. By
Proposition 3.2, this contradicts the cuspidality of V.

Now since y # 1, there exists ¢ € G,_j_1 such that 0(n) = x(gng™!) for all
n € U,_. Then Ty, = T9 satisfies T9(nv) = 0(n) T9(v) for all n € U,_g, and
indeed for all n € U" %=1 = U,_, U"*. Also, we may take gx+1 = g~ 'gx, so that
Ti+1(g9k+1v0) = T(gxvo) # 0. This completes the induction.

Now T;._1 is clearly a nonzero Whittaker functional, and T,_1(g,_1v0) # 0. I

Theorem 7.2. Cuspidal representations are generic.
This is an immediate consequence of Proposition 7.1. 1

Theorem 7.3. Let V' be a cuspidal G-module. Then as a P,.-module, V' is isomor-
phic to the Kirillov representation.

To see this, observe first by Theorems 6.1 and 7.2, Homg(V, G) is one-dimensional.
Thus Frobenius reciprocity (1.1),

dim Homp_ (Vp,,K) = dimHomg(V, G) = 1.

Thus there exists a unique nontrivial P.-homomorphism ¢ : V' — K, and by Theo-
rem 5.1, this is surjective. We must show that it is injective. Let Vj be the kernel
of ¢, which is a P.-module. Then K does not occur in Vj as a composition factor.
If V is not reduced to the identity, let vy be a nonzero vector. It follows from
Proposition 7.1 that there exists a Whittaker functional T"on V and g € G,._1 such
that T'(gvg) # 0. Since g € P,, and since Vj is a P.-module, gvy € Vj, and so the
restriction of T' to Vj is not identically zero. Thus if Cy denotes a one dimensional
N-module affording the character 6, dim Hompy (Vy, Cy) > 0. By Frobenius reci-
procity, this is equal to the dimension of Homp_ (Vj, ). This is a contradiction,
since V does have K as a composition factor. 1l

Thus a cuspidal representation V' has a unique P.-embedding in K, which is an
isomorphism. This realization of V as a space of functions on G,._; is called the
Kirillov model of V. Kirillov models were introduced on GL(2) by Kirillov [K], and
used extensively by Jacquet and Langlands [JL]. For r > 2, Kirillov models were
introduced by Gelfand and Kazhdan [GK].

Corollary 7.4. IfV is a cuspidal G-module, then
dim(V) = (¢" " = 1)(¢" > =1)-...- (¢ = 1.

Indeed, this is the dimension of . 1R

8. A further “Multiplicity One” Theorem. The theorem in this section
complements Theorem 6.1.

Theorem 8.1. Let P be a standard parabolic subgroup of G, and let Vi be a cuspidal
representation of the Levi factor M of G, and let V. = Iyr,q(Vo). Then V has a
unique Whittaker model.

Thus V has a unique generic composition factor, and if V' is irreducible, V is itself
generic.
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Let Cy denote the complex numbers given the structure of a one-dimensional /N-
module affording the character #. We must calculate the dimension of Homy (V, 0),
which by Frobenius reciprocity is the same as the dimension of Homg(V,G). By
Theorem 1.1, this equals the dimension of the space of functions A : G — Home (Vy, Cy)
which satisfy A(ngp) = ¢, (n) o A(g) o wy,(p) if n € N, p € P. Thus

(8.1) A(ngp).v = 0(n)A(g).p(v)

forn € N, p € P, v € V. We will show that the space of such functions is
one-dimensional.

We will use the notations of Section 6 for the root system.

Let NwP be a double coset on which A does not vanish. By Proposition 1.2, we
may choose w € W, and we may choose w modulo right multiplication by elements
of Wis. Let S be the set of all « € Q such that w™la € ®(M). Then w™lS is a
set of linearly independent roots in ®(M), and so there exists w; € W), such that
(wwi) ta < 0 for all & € S. Since NwP = Nww; P, we may replace w by wwy,
i.e. we may choose the coset representative w so that w=ta < 0 for all & € Q such
that w™la € ®(M).

We show now that this implies that w = wy. It is sufficient to show that
wla < 0 for all @ € Q. Since we already know this when w='a € ®(M), we may
assume w~la ¢ ®(M). Suppose on the contrary that w=la > 0. Let n € X, such
that 6(n) # 1. Such n exists since « is a simple root. Now w™tnw € X,,-1,. Since
w™la is a positive root which is not in ®(M), w™lnw lies in the unipotent radical
of P, and therefore w™lnw.v = v for all v € V. Now by (8.1),

A(w).w = Alwaw ™ 'nw).v = A(nw).v = 0(n) A(w).v,

so A(w) is simply the zero map. This contradiction shows that w = wy.

We have shown that the only double coset which could support an intertwining
operator is NwygP. Now let us show that this particular double coset supports
exactly one such intertwining operator. Let P = Py, and let w(.J) be as in Section 6.
Then wow(J) lies in the coset NwyP, and A is determined by the functional T =
A(wow(J)) of Vy, since we must have

(8.2) A(nwop) = 0(n) T o wy, (w(J)p).

We will show that there is, up to constant multiple, a unique functional 7" on Vj
such that we may define A by (8.2). Indeed, for this definition to be consistent, it
is necessary and sufficient that

(8.3) 0(n) T o my, (w(J)p) =T o my, (w(J))
whenever n € N, p € P such that nwop = wg. If nwop = wy, then p = wo_ln_lwo
is lower trianguler, hence is an element of w(J) 1Njw(J). Let us write p =
w(J) " tnyw(J), where ny € Nj. Note that 6(ny) = 6(n)~1, so (8.3) is equiva-
lent to

To URS (’I’I,l) = Q(nl)T

Thus T must be a Whittaker functional on Vj, and the space of such is one di-
mensional by Theorems 7.2 and 6.1. We see that the space Hompy (V,0) is one
dimensional. 1



