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Abstract

We establish a link between certain Whittaker coefficients of the generalized
metaplectic theta functions, first studied by Kazhdan and Patterson [14], and
the coefficients of the stable Weyl group multiple Dirichlet series defined in
[3]. The generalized theta functions are the residues of Eisenstein series on a
metaplectic n-fold cover of the general linear group. For n sufficiently large,
we consider different Whittaker coefficients for such a theta function which lie
in the orbit of Hecke operators at a given prime p. These are shown to be equal
(up to an explicit constant) to the p-power supported coefficients of a Weyl
group multiple Dirichlet series (MDS). These MDS coefficients are described in
terms of the underlying root system; they have also recently been identified as
the values of a p-adic Whittaker function attached to an unramified principal
series representation on the metaplectic cover of the general linear group.

1 Introduction

This paper links the coefficients of two different Dirichlet series in several complex
variables that arise in the study of automorphic forms on the metaplectic group.
We begin with a brief discussion of the metaplectic group. Let F be a number field
containing the group µ2n of 2n-th roots of unity, and let Fv denote the completion
of F at a place v. Let G̃v denote the n-fold metaplectic cover of GLr+1(Fv). Recall

that G̃v is a central extension of GLr+1(Fv) by µn:

1 −→ µn −→ G̃v −→ GLr+1(Fv) −→ 1.
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This group is described by a 2-cocycle whose definition involves the n-th power

Hilbert symbol. See Matsumoto [16] or Kazhdan and Patterson [14] for this con-

struction. The group G̃v is generally not the Fv-points of an algebraic group. One
may then take a suitable restricted direct product to define a global metaplectic
cover G̃ over GLr+1(AF ), the adelic points of the group. (The assumption that F
contains µ2n rather than µn is not necessary, but greatly simplifies the description of
the cocycle and resulting formulas.)

Generalized theta series were introduced on the metaplectic covers of GL2 by
Kubota, and for GLn in the visionary paper of Kazhdan and Patterson [14]. These
remarkable automorphic forms are residues of the minimal parabolic Eisenstein series
on the global metaplectic cover. They generalize classical theta functions of Jacobi
and Siegel which were shown by Weil to live on the metaplectic double covers of GL2

and symplectic groups.
After Kubota introduced generalized theta series on the higher metaplectic cov-

ers of GL2, Patterson and Heath-Brown [18] exploited the fact that when n = 3
their Fourier (Whittaker) coefficients are Gauss sums in order to settle the Kummer
conjecture. Yet it was found by Suzuki [19] that one could not so readily determine
the coefficients of the theta function on the 4-fold cover of GL2. See Eckhardt and
Patterson [10] for further discussion of this case. The difficulty in determining these
coefficients is linked to the non-uniqueness of Whittaker models (cf. Deligne [9]).

Thus determining the Whittaker coefficients of generalized theta series was recog-
nized as a fundamental question. The non-degenerate Whittaker coefficients on the
n-fold cover of GLr+1 are non-zero only if n ≥ r + 1 ([14]). Due to non-uniqueness
of Whittaker models their complete description is unavailable. Though they are
thus mysterious, the partial information that is available is interesting indeed. They
satisfy a periodicity property modulo n-th powers, which is a generalization of the
periodicity of the coefficients of the classical Jacobi theta function modulo squares.
Moreover Kazhdan and Patterson found an action of the Weyl group on the coeffi-
cients modulo this periodicity in which each simple reflection adds or deletes a Gauss
sum. This is an elegant formulation of the information that is available from Hecke
theory. The non-uniqueness of Whittaker models when n > r+ 2 is a consequence of
the fact that there is more than one free orbit in this Weyl group action. We review
the definition of the generalized theta functions and expand on this discussion in
Section 3.

More recently, Brubaker, Bump and Friedberg [6] have given an explicit descrip-
tion of the Whittaker coefficients of Borel Eisenstein series on the n-fold metaplectic
cover of GLr+1. In particular, they showed that the first nondegenerate Whittaker
coefficient is a Dirichlet series in r complex variables (a “multiple Dirichlet series”)
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that is roughly of the form∑
c1,...,cr

H(c1, . . . , cr)|c1|−2s1 . . . |cr|−2sr . (1)

Here the sum runs over r-tuples of S-integers oS ⊂ F for a finite set of bad primes
S and the coefficients H are sums of products of Gauss sums built with n-th power
residue symbols. The general expression for the coefficients H is best given in the
language of crystal graphs, but this full description will not be needed here. Indeed,
we will restrict our attention to cases where the degree of the cover n is at least
r + 1 (which is “stable” in the vocabulary of [3]), in which case the description of
the coefficients simplifies considerably. In this situation, the coefficients supported
at powers of a given prime p are in one-to-one correspondence with the Weyl group
Sr+1 of GLr+1, and have a description in terms of the underlying root system [3].
Though we have described the series (1) in terms of global objects (Eisenstein series),
let us also mention that the p-power supported terms are known to match the p-adic
Whittaker function attached to the spherical vector for the associated principal series
representation used to construct the Eisenstein series. This follows from combining
the work of McNamara [17] with that of Brubaker, Bump and Friedberg [2, 6], or
by combining [2, 17] and an unfolding argument of Friedberg and McNamara [11].
The precise definition of the coefficients H in the “stable” case will be reviewed in
Section 2.

This paper establishes a link between some of the Whittaker coefficients of gener-
alized theta functions and the coefficients of a stable Weyl group multiple Dirichlet
series. Let us explain which coefficients are linked. We will show that, for n > r + 1
fixed, the coefficients at p determined by Hecke theory are in one-to-one correspon-
dence with the coefficients at p of the series (1). This is accomplished by comparing
the two Weyl group actions – one on the Whittaker coefficients of generalized theta
series found by Kazhdan and Patterson, and another on the permutahedron support-
ing the stable multiple Dirichlet series coefficients. We know of no a priori reason
for this link. On the one side, we have different Whittaker coefficients attached to a
residue of an Eisenstein series. On the other, we have multiple Dirichlet series coef-
ficients that contribute to the representation of a single Whittaker coefficient of the
Eisenstein series itself. (More precisely, these contribute to the first non-degenerate
coefficient.) For n = r + 1 there is also a link, but this time to a multiple Dirichlet
series coefficient attached to an Eisenstein series on the n-fold cover of GLr, rather
than on the n-fold cover of GLr+1. Both comparison theorems for n > r + 1 (Theo-
rem 2) and n = r + 1 (Theorem 3) are stated and proved in Section 4 of the paper.
These Theorems sharpen and extend the work of Kazhdan and Patterson (see [14],
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Theorems I.4.2 and II.2.3) on this connection.
This work was supported by NSF FRG grants DMS-0652529, DMS-0652817,

DMS-0652609, and DMS-0652312, and by NSA grant H98230-10-1-0183.

2 Weyl group multiple Dirichlet series

In [3], Brubaker, Bump, and Friedberg defined a Weyl group multiple Dirichlet se-
ries for any reduced root system and for n sufficiently large (depending on the root
system). The requirement that n be sufficiently large is called stability, as the co-
efficients of the Dirichlet series are uniformly described Lie-theoretically for all such
n. In this paper we will be concerned with root systems of type Ar and in this case,
the stability condition is satisfied if n ≥ r.

As above, let F be a number field containing the group µ2n of 2n-th roots of
unity. Let S be a finite set of places of F containing the archimedean ones and those
ramified over Q and that is large enough that the ring oS of S-integers in F is a
principal ideal domain.

The multiple Dirichlet series coefficients are built from Gauss sums gt, whose
definition we now give. Let ψ be an additive character of FS =

∏
v∈S Fv that is

trivial on oS but no larger fractional ideal. If m, c ∈ oS with c 6= 0 and if t ≥ 1 is a
rational integer, let

gt(m, c) =
∑

a mod× c

(a
c

)t
ψ
(am
c

)
, (2)

where
(
a
c

)
is the n-th power residue symbol and the sum is over a modulo c with

(a, c) = 1 in oS. For convenience, we let g(m, c) = g1(m, c). Let p be a fixed prime
element of oS, and q be the cardinality of oS/poS. For brevity, we may sometimes
write gt = gt(1, p).

The multiple Dirichlet series of type Ar defined in [3] has the form

ZΨ(s1, · · · , sr) =
∑

HΨ(c1, · · · , cr)Nc−2s1
1 · · ·Nc−2sr

r (3)

where the sum is over nonzero ideals ci of oS. Here H and Ψ are defined when ci
are nonzero elements of oS, but their product is well-defined over ideals, since H and
Ψ behave in a coordinated way when ci is multiplied by a unit. Thus the sum is
essentially over ideals cioS. However we will want to consider H independently of Ψ,
so for each prime p of oS we fix a generator p of p, and only consider ci which are
products of powers of these fixed p’s.

The function Ψ is chosen from a finite-dimensional vector space that is well-
understood and defined in [3] or [2], and we will not discuss it further here. The
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function H contains the key arithmetic information. It has a twisted multiplicativity,
so that while ZΨ is not an Euler product, the specification of its coefficients is reduced
to the case where the ci are powers of the same prime p. See [1], [3] or [4] for further
details.

To describe H(pk1 , . . . , pkr), let Φ be the roots of Ar with Φ+ (resp. Φ−) the
positive (resp. negative) roots. The Weyl group W acts on Φ. Let

Φ(w) = {α ∈ Φ+ | wα ∈ Φ−}.

Also, let ρ = 1
2

∑
α∈Φ+ α be the Weyl vector and let Σ = {α1, . . . , αr} denote the set

of simple roots. Then, as described in [3], we have:

• H(pk1 , . . . , pkr) 6= 0 if and only if ρ− wρ =
∑r

i=1 kiαi for some w ∈ W .

• If ρ− wρ =
∑r

i=1 kiαi, then

H(pk1 , . . . , pkr) =
∏

α∈Φ(w)

g(pd(α)−1, pd(α)) (4)

with d(
∑r

i=1 kiαi) =
∑r

i=1 ki.

Thus in the stable case the Weyl group multiple Dirichlet series of type Ar has
exactly (r + 1)! nonzero coefficients at each prime p. For motivation, more details,
and generalizations to the case of smaller n (where there are additional nonzero
coefficients), see [1]—[6].

3 Theta functions

As in the introduction, G̃ denotes the n-fold metaplectic cover of GLr+1(AF ). Let

θ
(n)
r denote the theta function on G̃. This function is the normalized K-fixed vector

in the space spanned by the residues at the rightmost poles of the minimal parabolic
Eisenstein series on G̃. Here K denotes a suitable compact open subgroup. We
will be concerned with the Whittaker coefficients of this vector, when they exist.
By Hecke theory, these are determined by the values of these coefficients at prime
power indices, or equivalently by the values of the local Whittaker functions for the
exceptional theta representations Θ

(n)
r , in the sense of Kazhdan and Patterson [14].

We now pass to a fixed completion of F at a good finite prime. In Section I.3 of [14],
these authors have shown:
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1. The representation Θ
(n)
r has a unique Whittaker model if and only if n = r+ 1

or n = r + 2.

2. The representation Θ
(n)
r does not have a Whittaker model if n ≤ r.

3. The representation Θ
(n)
r has a finite number of independent nonzero Whittaker

models if n > r + 2.

4. When the Whittaker model for Θ
(n)
r is nonzero, it is completely determined

by the values of the associated Whittaker function on diagonal matrices of the
form 

$f1

$f2

. . .
$fr+1


with 0 ≤ fi − fi+1 ≤ n− 1 for 1 ≤ i ≤ r.

The reason that this last holds is that the remaining values are determined by
Kazhdan and Patterson’s Periodicity Theorem. This states that shifting one of the
fi − fi+1 by a multiple of n multiplies the Whittaker value by a specific power of q.

Suppose n ≥ r + 1. Fix a prime element p of oS. Let τn,r(k1, . . . , kr) be the

(pk1 , . . . , pkr)-th Whittaker coefficient of θ
(n)
r . This coefficient is obtained by inte-

grating against the character

ψU(u) = ψ

(
r∑
i=1

pkiui,i+1

)

of the subgroup U of upper triangular unipotents of GLr+1, which is embedded in G̃
via the trivial section.

Kazhdan and Patterson observed that Hecke theory may be used to compute all
these Whittaker coefficients in the unique model case, and a subset of the coefficients
in general. (See also Bump and Hoffstein [8] and Hoffstein [12].) We shall now review
their description.

LetW denote the Weyl group for the root system Ar, isomorphic to the symmetric
group Sr+1. In Section I.3 of [14], Kazhdan and Patterson define an action of W on
the weight lattice (identified with Zr+1) by the formula

w[f ] = w(f − ρ) + ρ
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Element σ of S3 σ((0, 0))
e (0, 0)
σ1 (n− 2, 1)
σ2 (1, n− 2)
σ1σ2 (n− 3, 0)
σ2σ1 (0, n− 3)
σ1σ2σ1 (n− 2, n− 2)

Table 1: The orbit of (0, 0) under S3.

where f = (f1, . . . , fr+1), the Weyl vector ρ = (r, r − 1, . . . , 0), and

w(f) = (fw−1(1), . . . , fw−1(r+1)).

This action of W on Zr+1 may then be projected down to (Z/nZ)r+1.
Because we prefer to use coordinates on the root lattice, we will reformulate this

action in the language of the previous section. It suffices to define it for simple
reflections σi which generate W . Let Kr = {k = (k1, . . . , kr) | 0 ≤ kj < n for all j}.
Then the action of σi for any i = 1, . . . , r on multi-indices k ∈ Kr is given by
σi(k) = m with

mi−1 =

{
1 + ki + ki−1 if 1 + ki + ki−1 < n

1 + ki + ki−1 − n if 1 + ki + ki−1 ≥ n

mi =

{
n− 2− ki if ki < n− 1

2n− 2− ki if ki = n− 1

mi+1 =

{
1 + ki + ki+1 if 1 + ki + ki+1 < n

1 + ki + ki+1 − n if 1 + ki + ki+1 ≥ n

mj = kj if j 6= i− 1, i, i+ 1.

(5)

In these formulas, we take k0 = kr+1 = 0. It is a simple exercise to verify that this
matches the action on the weight lattice described above.

To illustrate, the orbit of the origin when r = 2 and n ≥ 3 is given in Table 1,
and the orbit of the origin when r = 3 and n ≥ 4 is given in Table 2. We shall also
show that the stabilizer of the origin is trivial for n > r + 1. However, this fails for
n = r + 1, as one sees immediately in these two examples.
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Element σ of S4 σ((0, 0, 0))
e (0, 0, 0)
σ1 (n− 2, 1, 0)
σ2 (1, n− 2, 1)
σ3 (0, 1, n− 2)
σ1σ2 (n− 3, 0, 1)
σ2σ1 (0, n− 3, 2)
σ1σ3 (n− 2, 2, n− 2)
σ2σ3 (2, n− 3, 0)
σ3σ2 (1, 0, n− 3)
σ1σ2σ1 (n− 2, n− 2, 2)
σ3σ2σ1 (0, 0, n− 4)
σ2σ3σ1 (1, n− 4, 1)

Element σ of S4 σ((0, 0, 0))
σ3σ1σ2 (n− 3, 2, n− 3)
σ2σ3σ2 (2, n− 2, n− 2)
σ1σ2σ3 (n− 4, 0, 0)
σ1σ3σ2σ1 (n− 2, 1, n− 4)
σ2σ3σ2σ1 (1, n− 2, n− 3)
σ1σ2σ3σ1 (n− 3, n− 2, 1)
σ2σ3σ1σ2 (0, n− 4, 0)
σ1σ2σ3σ2 (n− 4, 1, n− 2)
σ2σ1σ3σ2σ1 (0, n− 3, n− 2)
σ1σ2σ3σ2σ1 (n− 3, 0, n− 3)
σ1σ2σ3σ1σ2 (n− 2, n− 3, 0)
σ1σ2σ1σ3σ2σ1 (n− 2, n− 2, n− 2)

Table 2: The orbit of (0, 0, 0) under S4.

The action above is essentially that corresponding to the action of the Hecke
operators. Since θ

(n)
r is an eigenfunction of these operators, one can deduce the

following relation.

Theorem 1 Suppose that 0 ≤ kj < n for 1 ≤ j ≤ r, ki 6≡ −1 mod n, and σi(k) =
m. Then

τn,r(m) = qi−r/2−1+δ(i,r,k)g1+ki
τn,r(k),

where

δ(i, r,k) =

{
−(i− 1)(r − i+ 2)/2 if 1 + ki + ki−1 ≥ n

0 otherwise

+

{
(i+ 1)(r − i)/2 if 1 + ki + ki+1 < n

0 otherwise.

Here we have used the Gauss sum gt as defined in (2). The result follows from
Proposition 5.3 of [12] and the periodicity property of the Fourier coefficients τn,r,
given in Proposition 5.1 there. (Note that G1+ci(mi, p) in [12], Proposition 5.3, is
normalized to have absolute value 1, while g1+ki

has absolute value q1/2.) See also
[8], and Corollary I.3.4 of [14].
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4 A link between theta coefficients and Weyl group

multiple Dirichlet series

To give a link between the Whittaker coefficients of the generalized theta functions
that are determined by Hecke theory and the Weyl group multiple Dirichlet series,
we begin by linking the action of (5) to roots. Suppose that n ≥ r + 1.

Proposition 1 Let w ∈ W , and suppose that w((0, . . . , 0)) = k. Then 1 + ki ≡
d(w−1αi) mod n for each i, 1 ≤ i ≤ r.

Proof We prove the Proposition by induction on `(w), the length of w as a reduced
word composed of simple reflections σi. The case w = 1 is clear. Suppose that
w((0, . . . , 0)) = k and 1 +ki ≡ d(w−1αi) mod n for each i. Choose σj ∈ W such that
`(σjw) = `(w) + 1. If σjw((0, . . . , 0)) = m, then m = σj(k), so by (5)

mi ≡


−2− ki j = i

1 + ki + kj j = i+ 1 or j = i− 1

ki otherwise

(6)

modulo n. On the other hand, we have

(σjw)−1(αi) = w−1(σj(αi))

=


w−1(−αi) j = i

w−1(αi + αj) j = i+ 1 or j = i− 1

w−1(αi) otherwise.

Hence

d((σjw)−1(αi)) =


−d(w−1(αi)) j = i

d(w−1(αi)) + d(w−1(αj)) j = i+ 1 or j = i− 1

d(w−1(αi)) otherwise.

Using the inductive hypothesis, we see that modulo n

d((σjw)−1(αi)) ≡


−(1 + ki) j = i

2 + ki + kj j = i+ 1 or j = i− 1

1 + ki otherwise

=


1 + (−2− ki) j = i

1 + (1 + ki + kj) j = i+ 1 or j = i− 1

1 + ki otherwise.
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Comparing this to (6), we see that the Proposition holds. �

Corollary 1 Let w ∈ W , and suppose that w((0, . . . , 0)) = k. Then for all i,
1 ≤ i ≤ r, ki 6≡ −1 mod n.

Proof Since w−1αi is a root, we have d(w−1αi) 6= 0. Moreover, from the explicit
description of the roots of type Ar, for any root β ∈ Φ, we have −r ≤ d(β) ≤ r.
If ki ≡ −1 mod n, Proposition 1 would imply that d(w−1αi) ≡ 0 mod n, which is
impossible as n ≥ r + 1 and d(w−1αi) 6= 0. �

Corollary 2 Suppose that n > r+1. Then the stabilizer in W of (0, . . . , 0) is trivial.
Thus the orbit of the origin has cardinality (r+ 1)!, and every point in the orbit may
be described uniquely as w((0, . . . , 0)) for some w ∈ W .

Proof Let σ ∈ W and suppose that σ((0, . . . , 0)) = (0, . . . , 0). By Proposition 1,
d(σ−1αi) ≡ 1 mod n for all i, 1 ≤ i ≤ r. But as noted above, −r ≤ d(σ−1αi) ≤ r.
Since n > r + 1, the congruence can only hold if d(σ−1αi) = 1 for all i, 1 ≤ i ≤ r.
Thus σ−1(αi) ∈ Φ+ for all i. This implies that σ−1(Φ+) ⊂ Φ+, which is true only if
σ is the identity element. �

Note that Corollary 2 does not remain valid if n = r+ 1; it is possible that there
exists an i for which d(σ−1αi) is −r and not 1. This occurs, for example, when r = 2,
σ = σ1σ2, and i = 1. More generally, see Lemma 1 below.

We may now establish a link between the Whittaker coefficients of the generalized
theta function that are determined by Hecke theory and the Weyl group multiple
Dirichlet series.

Theorem 2 Suppose that n > r + 1. Let w ∈ W , and set w((0, . . . , 0)) = k,
ρ− wρ =

∑
fiαi. Then

τn,r(k) = qη(w,n,r,k) H(pf1 , . . . , pfr),

where the function η(w, n, r,k) is described in (9) below.

Remark 1 We should emphasize that in general ki 6= fi. For example, on A2 we
have σ1((0, 0)) = (n− 2, 1) while ρ− σ1(ρ) = α1, so (f1, f2) = (1, 0). Coincidentally,
on A2 with n = 4 (a unique model case), one obtains the same 6 integer lattice points
in terms of (k1, k2) and (f1, f2), but this phenomenon does not persist to higher rank.
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Proof We prove this by induction on the length of w. If w is the identity the result
is clear (with η(e, n, r,k) = 0). Suppose that the result is proved for w and that
`(σiw) = `(w) + 1. Let σi(k) = m. By Corollary 1, the hypothesis of Theorem 1 is
satisfied. Thus by this result, we have

τn,r(m) = qi−r/2−1+δ(i,r,k)g1+ki
τn,r(k).

By Proposition 1, g1+ki
= gd(w−1αi). Moreover, under the assumption that `(σiw) =

`(w) + 1, it follows that w−1αi ∈ Φ+, so d(w−1αi) > 0. (See, for example, Bump [7],
Propositions 21.2 and 21.10.). Thus by elementary properties of Gauss sums,

gd(w−1αi) = q1−d(w−1αi)g(pd(w−1αi)−1, pd(w−1αi)).

So we arrive at the formula

τn,r(m) = qi−r/2+δ(i,r,k)−d(w−1αi)g(pd(w−1αi)−1, pd(w−1αi))τn,r(k). (7)

On the other hand, it is well-known (see, for example, Bump [7], Proposition 21.10)
that

Φ(σiw) = Φ(w) ∪ {w−1αi}.

Thus (4) implies that

H(pm1 , . . . , pmr) = g(pd(w−1αi)−1, pd(w−1αi)H(pk1 , . . . , pkr). (8)

Comparing (7) and (8), the Theorem follows.
To give the precise power of q, suppose that w = σjcσjc−1 . . . σj1 is a reduced word

for w, so c = `(w). Let k(0) = (0, . . . , 0) and σji(k
(i−1)) = k(i), 1 ≤ i ≤ c. Also let

τ1 = 1 and τt = σjt−1σjt−2 . . . σj1 for 1 < t ≤ c. Then applying (7) repeatedly, we find
that

qη(w,n,r,k) = q−r`(w)/2

`(w)∏
t=1

qjt+δ(jt,r,k
(t−1))−d(τ−1

t αjt ). (9)

�

Next we turn to the case n = r+1. This equality implies that the Whittaker model
of the theta representation is unique (see Kazhdan-Patterson [14], Corollary I.3.6 for
the local uniqueness and Theorem II.2.5 for its global realization). To describe the
corresponding Whittaker coefficients in terms of multiple Dirichlet series, we first
describe the orbit of the origin under W . As noted above, the stabilizer of the origin
is non-trivial. Indeed, we have
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Lemma 1 Suppose n = r + 1. Then σ1σ2 · · ·σr((0, . . . , 0)) = (0, . . . , 0).

Proof The proof is a straightforward calculation, left to the reader. �

Since the stabilizer of the origin is nontrivial, let us restrict the action of W on
r-tuples to the subgroup generated by the transpositions σi, 1 ≤ i < r. We will
denote this group Sr; note that Sr is isomorphic to the symmetric group Sr, but
the action of Sr on r-tuples is not the standard permutation action.

Lemma 2 Suppose n = r + 1. Then the stabilizer in Sr of (0, . . . , 0) is trivial.

Proof In this proof (and in the proof of Theorem 3 below), we write Wr instead
of W for the Weyl group of type Ar. Wr acts on Kr by the action given in (5).
Observe that under the projection π from Kr to Kr−1 obtained by forgetting the last
coordinate, the action of Sr on Kr restricts to the action of the Weyl group Wr−1

on Kr−1. Indeed, this is true since the actions on the first r− 1 entries are the same;
note that changing the r-th entry of an element of Kr does not affect its image under
π ◦ σi for σi ∈ Sr. Then the Lemma follows at once from Corollary 2, which applies
as n > (r − 1) + 1. �

Combining these, we may describe the orbit of the origin.

Proposition 2 Suppose n = r+ 1. Then the stabilizer in W of the origin has order
r + 1 and is the group generated by the element σ1σ2 · · ·σr. The orbit of the origin
under W has order r!, and every point in the orbit may be described uniquely as
w((0, . . . , 0)) for some w ∈ Sr.

Proof Since σ1σ2 · · ·σr has order r + 1, the stabilizer W (0,...,0) of the origin in W
has order at least r + 1. Hence [W : W (0,...,0)] ≤ r!. But by Lemma 2, the image of
W has order at least r!. Since the cardinality of this image is exactly [W : W (0,...,0)],
equality must obtain, and the Proposition follows. �

Finally, we give the analogue of Theorem 2 when n = r + 1. The link is once
again between theta Whittaker coefficients and stable Weyl group multiple Dirichlet
series coefficients, but this time the latter are of type Ar−1 rather than type Ar.

Theorem 3 Suppose that n = r + 1. Let w ∈ Sr, and set w((0, . . . , 0)) = k,
ρ− wρ =

∑
fiαi. Then

τr+1,r(k) = qη(w,r+1,r,k) H(pf1 , . . . , pfr−1),

where the coefficient H is the coefficient of the type Ar−1 multiple Dirichlet series,
and the function η(w, r + 1, r,k) is given by (9) above.
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Remark 2 Note that since n > r − 1, the coefficients H are stable, and account
for the full set of nonzero Weyl group multiple Dirichlet series coefficients for Ar−1.
See [3]. Also, if w ∈ Sr and ρ − wρ =

∑r
i=1 fiαi, then necessarily fr = 0, so the

restriction to (r − 1)-tuples in the right-hand side of the Theorem is natural. In
addition, one can check that

η(σ1σ2 · · ·σr, r + 1, r, (0, . . . , 0)) = 0,

and that one can use any w ∈ W to reach k in the orbit of (0, · · · , 0) in order to
compute the coefficient τr+1,r(k). (Doing so one obtains each coefficient r+ 1 times.)

Proof The Weyl group of type Ar, Wr, acts on its root system Φ and on Kr. These
actions each restrict: the subgroup Sr acts on

Φr−1 = {α ∈ Φ | α =
r−1∑
i=1

miαi for some mi ∈ Z},

and, as noted in the proof of Lemma 2 above, it also acts on Kr−1. These actions
are each compatible with the isomorphism Sr

∼= Wr−1. Thus, we may follow the
argument given in the proof of Theorem 2. However, in that case we obtain the r!
stable coefficients of the type Ar−1 Weyl group multiple Dirichlet series. (Note that
these coefficients are a subset of the (r + 1)! stable coefficients of type Ar.) �

In concluding, we note that one can ask if theorems that are similar to Theorems 2
and 3 hold for metaplectic covers of the adelic points other reductive groups. The
theory of theta functions, that is, residues of Eisenstein series on metaplectic covers,
is not yet fully established when the underlying group in question is not a general
linear group. However, we do expect that it can be developed using methods similar
to those of [14], and that the link between the stable Weyl group multiple Dirichlet
series and the Whittaker coefficients determined by Hecke theory persists. Indeed,
Brubaker and Friedberg have carried out computations of Hecke operators on the
four and five-fold covers of GSp(4), following the approach of T. Goetze [13]. Under
reasonable hypotheses about the periodicity relation (which should vary depending
on root lengths for simple roots) for theta coefficients for those groups, such a link
once again holds in those cases.
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