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SUMMARY

Invasive breast cancer is commonly staged as local, regional or distant disease. We present a stochastic
model of the natural history of invasive breast cancer that quanti�es (1) the relative rate that the disease
transitions from the local, regional to distant stages, (2) the tumour volume at the stage transitions
and (3) the impact of symptom-prompted detection on the tumour size and stage of invasive breast
cancer in a population not screened by mammography. By symptom-prompted detection, we refer to
tumour detection that results when symptoms appear that prompt the patient to seek clinical care.
The model assumes exponential tumour growth and volume-dependent hazard functions for the times
to symptomatic detection and stage transitions. Maximum likelihood parameter estimates are obtained
based on SEER data on the tumour size and stage of invasive breast cancer from patients who were
symptomatically detected in the absence of screening mammography. Our results indicate that the rate
of symptom-prompted detection is similar to the rate of transition from the local to regional stage and an
order of magnitude larger than the rate of transition from the regional to distant stage. We demonstrate
that, in the even absence of screening mammography, symptom-prompted detection has a large e�ect
on reducing the occurrence of distant staged disease at initial diagnosis. Copyright ? 2006 John Wiley
& Sons, Ltd.
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582 S. K. PLEVRITIS ET AL.

1. INTRODUCTION

Invasive breast cancer is commonly staged as local, regional or distant disease [1]. Larger
tumours are more likely to be detected in advanced stages when compared to smaller tumours.
Because of this observation, it is generally believed that the majority of invasive breast cancer
begins in the local stage, and transitions from local to regional then to distant stages as the
primary tumour increases in size. However, the rate of stage progression is not known. The
primary tumour’s size at stage transitions is not known. Even the e�ect of symptom-prompted
detection on the observed stage distribution is not known. These quantities cannot be ethically
observed but are biologically and clinically meaningful since they would provide insight into
progression of the disease and the expected bene�ts attributable to cancer control programs in
early detection. We propose a parametric, stochastic model of the natural history of invasive
breast cancer that estimates: (1) the relative rates of stage transitions, (2) the primary tumour
volume at stage transitions and (3) the e�ect of symptom-prompted detection on the observed
stage distribution. By symptom-prompted detection, we refer to tumour detection that occurs
when symptoms prompt the patient to seek clinical care.
Numerous models of the natural history of breast cancer have been proposed. Here we

identify only those models that aim to better understand the rate that the disease progresses
through the local, regional and distant stages, or the primary tumour size at these stage tran-
sitions or both. Koscielny et al. estimate the tumour volume at which remote metastases �rst
occurs using survival data [2]. Kimmel et al. estimate the primary tumour size at transi-
tion from non-metastatic to metastatic states non-parametrically [3]. Atkinson et al. [4] and
Bartoszynski [5, 6] explore various models for metastatic shedding, including ones where shed-
ding is a function of tumour volume, with a systemic component. Shwartz [7, 8] proposes a
comprehensive model that estimates the e�ect of screening mammography on breast cancer
mortality and embedded in this model is a natural history submodel that estimates the tumour
size at nodal involvement. In Section 7, we will compare these approaches with our approach.
Du�y et al. [9] and their related publications [10, 11] estimate breast cancer stage transitions
with a Markov chain model where parameter estimation relies on screening trial data. This
approach is not directly comparable to ours. It estimates transitions between preclinical and
clinical states of the disease, where the preclinical states are de�ned based on the probability
of screen detection by mammography. In this work, we estimate the natural history of the
breast cancer in a population which is not screened by mammography.
This work extends the basic ideas presented in References [4–6, 12, 13], which were primar-

ily aimed at estimating functions of breast tumour growth and symptomatic detection, given
only information on the primary tumour size at symptomatic detection. Our work di�ers in
that we aim to elucidate the progression of the disease from local to regional stages and
from regional to distant stages and the impact of symptom-prompted detection on the stage
distribution in a population which is not undergoing mammographic screening.

2. MODEL ASSUMPTIONS

Our natural history model of invasive breast cancer is based on the �ve assumptions item-
ized below that describe the growth of the primary tumour, stage progression and symp-
tomatic detection in the absence of screening. Assumptions 1–3 were adopted from References
[4–6, 12, 13], but explored here together with Assumptions 4–5.
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Assumption 1
The tumour volume grows exponentially from volume c0. The volume at time t is represented
as V (t)= c0 expt=R where R is a random variable that represents the inverse growth rate. We
assume spheroidal tumours. We assume the initial tumour volume is c0 =�=6d30 with d0 is
the tumour diameter, with d0 = 2mm. We do not model the natural history of the tumour
prior to c0 and we do not consider an in situ stage of the disease. Note: R is proportional to
the tumour volume doubling time (DT), DT= ln(2)∗R.
Assumption 2
The inverse growth rate R is a random variable that is gamma distributed with parameters �
and �,

�R(�; �)=
��

�(�)
r�−1 exp(−�r)

Note: E(R)= �=�

Assumption 3
Tdet is a random variable that represents the time of symptomatic detection measured from the
moment the tumour volume is c0. The hazard function of Tdet is �V (t), that is, Pr(Tdet ∈ [t; t+
dt)|Tdet¿t)= �V (t) dt + o(dt). The larger the volume, the more likely it will be detected.
Assumption 4
The tumour at volume c0 is in the local stage. The transition from the local to the regional
stage is de�ned to occur at the moment nodal involvement �rst becomes detectable by usual
clinical care. Let Treg be a random variable representing the time at which the disease transi-
tions from the local to regional stage measured from the moment the tumour volume is c0.
The hazard function of Treg is �V (t), and expressed as

Pr(Treg ∈ [t; t + dt)|Treg¿t)= �V (t) dt + o(dt)
Assumption 5
The transition from the regional to distant stage is de�ned to occur at the moment distant
metastatic disease �rst becomes detectable by usual clinical care. Let Tdist be a random variable
representing the time of onset of the distant stage measured from the moment the tumour
volume is c0. The hazard function of Tdist is assumed to be zero until the onset of regional
disease and then !V (t), and expressed as

Pr(Tdist ∈ [t; t + dt)|Tdist¿t; Treg = treg)=
{
!V (t) dt + o(dt); t¿treg

0; t6treg

An implicit assumption made here is that all patients who are initially diagnosed in the distant
stage also have clinically detectable nodal involvement.

3. MODEL PROPERTIES

Using the model assumptions described above, we derive closed form expressions for:
(1) the tumour volume distribution at symptomatic detection, (2) the tumour volume
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584 S. K. PLEVRITIS ET AL.

distribution at the transition from local to regional stages and (3) the tumour volume
distribution at the transition from regional to distant stages.

3.1. Tumour volume distribution at symptomatic detection

Let D=V (Tdet) represent the tumour volume at symptomatic detection. The conditional
distribution of D − c0 is

Pr(D¡d|R= r)=Pr(V (Tdet)¡d|R= r)
=Pr(Tdet¡V−1(d)|R= r)

=1− exp
(

−
∫ V−1(d)

0
�V (t) dt

)

=1− exp(−�r(d− c0))

Given R= r, D is exponentially distributed with mean (�r)−1. A faster growing tumour is
more likely to be detected at a larger volume than a slower growing tumour. The unconditional
density function of D is

fD(d)= ����[�+ �(d− c0)]−(�+1); d¿c0

3.2. Tumour volume distribution at the transition from local to regional stage

Let N =V (Treg) represent the tumour volume at the transition from the local to regional stage.
Given R= r, N − c0 is exponentially distributed with mean (�r)−1, and expressed as

Pr(N¡n|R= r)=1− exp{−�r(n− c0)}
which is similar to the distribution of the D − c0, with � in place of �. Once metastatic
disease can be detected in the lymphnodes, a faster growing tumour is more likely to be
larger compared to a slower growing tumour. The unconditional density function of N is

fN (n)= ����[�+ �(n− c0)]−(�+1); n¿c0

3.3. Tumour volume distribution at the transition from regional to distant stage

Let M =V (Tdist) represent the tumour volume at the transition from the regional to distant
stage. The distribution of M , conditioned on R= r and V (Tdist)= n, is

Pr[V (Tdist)¡m|V (Treg)= n; R= r]
=Pr[Tdist¡V−1(m)|Treg =V−1(n); R= r]

= 1− exp
(

−
∫ V−1(m)

V−1(n)
!V (t) dt

)

=

{
1− exp(−!r(m− n)); n6m

0; n¿m
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The density of M , conditioned on R= r, is

fM |R(m|r) =
∫ m

c0
fM |N;R(m|n; r)fN |R(n|r) dn

=
(
�!
�+!

)
r[exp(−r!(m− c0))− exp(−r�(m− c0))]

The unconditional density of M is

fM (m)= ���
(
�!
�−!

)
[(�+!(m− c0))−(�+1) − (�+ �(m− c0))−(�+1)]

4. DATA

We estimate model parameters with data on the tumour size and stage of breast cancer
for patients who were symptomatically-detected with invasive disease and recorded by the
Surveillance, Epidemiology and End Results (SEER) program [14]. Our patient population was
selected from SEER using the following criterion: (1) female only, (2) invasive disease only,
(3) primary breast cancer diagnosed between the years 1975 and 1981, which corresponds
to a period of negligible levels of screening mammography [15], (4) age of initial diagnosis
between 40 years and 80 years; and (5) breast cancer as the �rst malignant primary. Special
permission was obtained from the NCI SEER program to access information on tumour sizes
before 1982 since this information is not reported in Public-Use �les due to coding changes.
Tumour sizes were recorded in 7 bins: ¡5mm, 5–9mm, 1–1.9 cm, 2–2.9 cm, 3.0–3.9 cm,
4.0–4.9 cm and 5:0+cm. We excluded records where the tumour size was recorded as 0 or
‘di�use’. SEER historic stage was used to de�ne local, regional and distant disease. A total
of 35 299 patient records were selected, as summarized in Table I.

Table I. The number of SEER breast cancer patients ages
40–80, diagnosed from 1975–1981, strati�ed by tumour size

and stage.

Stage

Tumour size Local Regional Distant

¡ 5mm 299 83 7
5–9mm 1140 291 26
1–1.9 cm 6264 3385 218
2–2.9 cm 5276 4466 334
3–3.9 cm 2590 3157 320
4–4.9 cm 1086 1740 224
5 cm+ 1021 2739 633
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5. ESTIMATION PROCEDURE

We express the likelihood function for the data in Table I assuming a multinomial distribution
where the observed outcome for an individual breast cancer patient is her tumour size and
stage at symptomatic detection. Let I be an indicator function de�ned as 0, 1 or 2 if the
patient is staged with local, regional or distant disease, respectively. The tumour size is
binned according to the SEER data and the kth tumour size bin belongs to tumours in the
range [dk;dk+1]. Let Qk represent the total number of symptomatically detected breast cancer
patients whose tumour falls in the kth bin. Let pk , qk and hence Qk−pk−qk be the number of
patients with local, regional and distant stage disease, respectively. The likelihood function is

L=
K∏
k=1
Pr(D∈ (dk; dk+1); I =0)pkPr(D∈ (dk; dk+1); I =1)qkPr(D∈ (dk; dk+1); I =2)Qk−pk−qk

where K is the total number of tumour size bins.
For simplicity in notation, we derive the joint density of {D; I} for continuous-valued

tumour sizes. The joint density for discrete tumour size bins is given in the Appendix.

5.1. Symptomatic detection in the local stage

A patient is staged with local disease if N¿d, meaning that the patient’s disease would
transition to the regional stage after symptomatic detection. The joint density of {D; I =0},
conditioned on R= r, is

fD; I |R(d; 0|r) =fD|R(d|r)×Pr(N¿d|R= r)

= �r exp{−(�+ �)r(d− c0)}

The unconditional joint density is

fD; I (d; 0)= ����(�+ (�+ �)(d− c0))−(�+1)

5.2. Symptomatic detection in the regional stage

A patient is staged with regional disease if N¡d¡M , meaning that the patient’s disease is
symptomatically detected after the transition to the regional stage but before the transition to
the distant stage. The joint density of {D; I =1}, conditioned on R= r, is

fD; I |R(d; 1|r) =fD|R(d|r)×
∫ d

c0
Pr(V (Tdist)¿d|R= r; N = n)fN |R(n|r) dn

=
��

(�−!)r[exp{−r((�+!)(d− c0))} − exp{−r((�+ �)(d− c0))}]

The unconditional joint density is

fD; I (d; 1)= ���
��

(�−!) [(�+ (�+!)(d− c0))−(�+1) − (�+ (�+ �)(d− c0))−(�+1)]
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5.3. Symptomatic detection in the distant stage

The joint density of {D; I =2} can be expressed as
fD; I (d; 2)=fD(d)− fD; I (d; 0)− fD; I (d; 1)

where fD(d) is given in Section 3.1.

5.4. Non-identifability of absolute rate parameters

The model consists of �ve parameters (�; �; !; �; �). Because the observed data (namely, the
tumour size and stage at symptomatic detection) does not contain temporal information, the
model cannot infer elements of time. Hence, the likelihood function does not change when
the rate-related parameters (�; �; !; �=�) are scaled by a constant. We maximize the likelihood
by constraining the expected value of R, such that �=� (or equivalently, E(R)=1), and
report on the relative rates of stage transitions. The tumour size distributions at symptomatic
detection and the stage transitions are not impacted since they involve the ratios of various
combinations of the parameters (�; �; !; �=�).

6. RESULTS

Optimization of the likelihood function for parameter estimation was performed in MAT-
LAB using the Nelder–Mead simplex (direct search) method [16]. Table II gives maximum
likelihood estimates, with asymptotic con�dence intervals, conditioned on �=�. The results
indicate that the rate of symptomatic detection is similar to the rate of transition from the
local to regional stage, and is an order of magnitude larger than the transition rate from the
regional to distant stage.
Figures 1(a)–(c) compare the model �t to the data, where the data is summarized as

21 pairwise frequencies describing the observed joint distribution of tumour size and stage. The
�t is close, but not exact. We found that it does not pass traditional quantitative measures for
the goodness of �t, such as the Chi-square test. Many models would not pass such measures
given the large amount of underlying data (35 299 observations are reported in Table I).

Table II. Maximum likelihood estimates for model parameters, with
asymptotic con�dence intervals conditioned on �=� or similarly
E(R)= �=�=1. Without knowledge of E(R), only the ratio of the
parameters �̂, �̂, �̂ and !̂ can be inferred. If E(R) were known, then
�̂= exp(−9:602)=E(R), �̂= exp(−9:636)=E(R); !̂= exp(−11:765)=

E(R); �̂= exp(−0:165)=E(R) and �̂= �̂×E(R).
Estimate 95% CI

ln(�̂) −9:602 [−9:624;−9:580]
ln(�̂) −9:636 [−9:661;−9:610]
ln(!̂) −11:765 [−11:816;−11:713]
ln(�̂) −0:165 [−0:187;−0:143]
�̂ �̂ —
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Figure 1. (a) Joint distribution of detected tumour size and local stage disease, com-
paring model and data; (b) Joint distribution of detected tumour size and regional
stage disease, comparing model and data; and (c) Joint distribution of detected tumour

size and distant stage disease, comparing model and data.

A linear regression of the 21 observed frequencies on those estimated yields an intercept of
0.00137 with bootstrap con�dence interval (0.00101, 0.00172) and a slope of 0.971, bootstrap
CI (0.964, 0.979). The correlation coe�cient between the observations and estimates is 0.985,
bootstrap CI (0.982, 0.987). Note that all of these CIs are conditioned on �=�.
Figures 2(a) and (b) provide an alternative representation of the model �t. Figure 2(a)

shows that the model produces a good �t to the tumour size distribution. Figure 2(b) shows
the model �t to the stage distribution conditioned on tumour size and demonstrates that the
model more closely reproduces the stage distribution for tumours above 1cm than below 1 cm.
Tumours below 1 cm (which are approximately 5 per cent of the data) are less likely to be
staged as local disease than predicted by the model; the model predicts that over 90 per cent
will be staged local, whereas just less than 80 per cent are staged as local in the data. Among
these small, advanced stage tumours, the model correctly predicts that the probability of distant
disease is at least an order of magnitude lower than the probability of regional disease. With
this understanding of the model �t, we proceed to analyse the model’s properties.
Figure 3(a) and Figures 4(a)–(c) are generated from the model using parameter estimates in

Table II, but with � set to zero, in order to evaluate the hypothetical scenario that assumes no
attention is given to breast cancer symptoms. Figure 3(a) shows the predicted stage distribution
conditioned on tumour size. As the tumour size increases, the proportion of local disease
decreases to zero and the proportion of distant disease increases to approximately 40 per cent
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Figure 2. (a) Distribution of detected tumour size, comparing model and data;
and (b) Distribution of detected stage (local, regional, distant) conditioned on

detected tumour size, comparing model and data.

Figure 3. (a) Estimated breast cancer stage distribution conditioned on tumour size assuming
no symptomatic detection mechanism, based on parameter estimates for �, !, �, and � in
Table II, with �=0; and (b) Estimated breast cancer stage distribution conditioned on the
clinically detected tumour size, using the estimates for �, �, !, �, and � in Table II.

when the tumour reaches 5 cm. The median tumour size at the transition from the local to
regional stage is 25.4mm, and the median tumour size at the transition from the regional to
distant stage is 55.2mm. The model may be overestimating the tumour size at stage transition
since it underestimates the proportion of advanced-staged tumours symptomatically detected
below 1cm.
If we hold the assumption that no attention is given to clinical symptoms (i.e. �=0),

Figure 4(a) shows the diameter of the primary tumour at time T , where T is measured from
the moment that the tumour is 2mm in diameter; Figure 4(b) shows the probability that
the disease had transitioned to nodal involvement by time T ; and Figure 4(c) shows the
probability that the disease has transitioned to the distant stage by time T . Figures 4(a)–(c)

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:581–595
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Figure 4. (a) Diameter of the primary tumour at time T ; (b) probability of regional staged disease
by time T ; and (c) probability of distant staged disease by time T . T = 0 corresponds to a 2mm
tumour. Numbers to right of curves represent mean tumour volume doubling time, in months.

are generated for a range of tumour volume doubling times. For a mean DT of 8 months, by
T =8 years, an 3.2 cm tumour would have 72 per cent chance of nodal involvement and a
60 per cent chance of distant involvement.
With symptom-prompted detection, the estimated stage distribution conditioned on tumour

size is shown in Figure 3(b) using the parameter estimates in Table II. Even though this
distribution is observable, expressing it in terms of the model parameters provides several
insights. These �ndings suggest that current practices of symptom-prompted detection are
preventing a signi�cant fraction of tumours from progressing to advanced stages, particularly
the distant stage. Due to symptomatic detection, the proportion of distant disease is roughly
10 per cent, compared to over 40 per cent as tumour continues grows to 5 cm and greater
in the absence of symptom-prompted detection. For the larger sized symptomatically detected
tumours, the proportion of local tumours converges to (�=� + �)(�+1) as the detected tumour
size approaches in�nity. The overall proportion of symptomatically detected local tumours is
Pr(I =0)= �=(�+ �). As � increases, the portion of local staged disease increases, as would
be expected by our modelling assumptions.

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:581–595
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Figure 5. (a) The stage distribution of clinically detected breast tumours versus the
symptomatic detection function scaling factor k; and (b) The median size of clinically

detected breast tumours versus the symptomatic detection function scaling factor k.

Consider a new hazard function for the time to symptomatic detection that is k�V (t) where
k¿0 is scaling factor. The impact of k on the overall stage distribution and the median tumour
size for symptomatically detected breast cancer is given in Figures 5(a) and (b), respectively.
Compared to k=1, for k=2 the median tumour size decreases from 2.5 to 2.0 cm (20 per
cent reduction) and the proportion of distant disease decreases from 5.1 to 1.8 per cent (65
per cent reduction). Assuming a mean tumour volume doubling time of 8 months, k=2 would
advance the median time of symptomatic detection by 5.3 months.

7. DISCUSSION

We proposed a natural history model of breast cancer that relies on three simple, but bio-
logically and clinically reasonable, assumptions: (1) the primary tumour grows exponentially
from 2 mm, (2) the disease progresses from local, regional to distant stages, and (3) the
hazard function of the times to stage progression and symptomatic detection are proportional
to the volume. We produced a trackable, closed form expression for the likelihood function
using data on the tumour size and stage of invasive breast cancer for patients who were
symptomatically detected during the period preceding the wide dissemination of screening
mammography.
The model gives a reasonable, but not exact �t, to the data. The model �t is some-what

better for symptom-detected tumours detected above 1 cm, than those below 1cm. For tumours
below 1 cm, which represent about 5 per cent of the population, the model overestimates the
proportion of local disease and underestimates the proportion of advanced stage disease. The
weaker �t for the smaller tumours (¡1 cm) suggests that there may be a small subset of tu-
mours that progress to advanced disease stages faster than the majority of the tumours. These
tumours may progress to advanced stages disease under a di�erent mechanism than the one
proposed here. Factors not considered in our model include the spatial location of the primary
tumour, which may have a role in determining its propensity to successfully metastasize to
the lymphnodes and beyond.

Copyright ? 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:581–595
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Since the model comes close to explaining the detected tumour size and stage for invasive
breast cancer, we use it to predict characteristics of disease that cannot be observed for
ethical reasons. The model indicates that the rate of symptom-prompted detection and the rate
of transition from local to regional stage are similar and an order of magnitude larger than the
rate of transition from regional to distant stage. This �nding may be of particular interest to
policy makers who are concerned with the value of educating women on how to identify early
clinical symptoms of breast cancer. Our �ndings imply that clinical attention to symptoms is
preventing a signi�cant fraction of patients from presenting with advanced stage disease at
initial diagnosis. We showed how hypothetically scaled versions of the symptomatic detection
function would further impact the tumour size and stage distribution, but this exercise does
not identify how to achieve such an improvement in the symptomatic detection.
Our �ndings for the median tumour volume at stage transitions are fairly consistent with

published results. The work by Kimmel et al., in Reference [3], reported ‘single nodal metas-
tases have a probability of 0.5 of developing from primary tumours by the time they reach
2 cm in diameter.’ Our work reports on the median tumour size at the transition from lo-
cal to regional at 2.5 cm. Even though we do not report on the �rst nodal involvement, by
de�nition, the onset of the regional stage can occur with at least one involved node that is
clinically detectable. The close but not exact agreement is likely to be due to di�erences in
modelling assumptions and data sets. Kimmel et al. made assumptions that the hazard for
stage transitions is a function of volume, as opposed to a function of time as in our model;
also, Kimmel et al. �t their model to a data set other than the SEER data.
Work by Koscielny et al., in Reference [2], report on the biological onset of remote metas-

tases, stating that ‘the volume at which 50 per cent of the tumours have remote metas-
tases, some that may be occult when the primary is detected is 23.6ml (diameter =3:56 cm).’
Our approach does not allow us to estimate the same quantity, but it is reassuring that this
estimated tumour volume at the biological onset of remote metastases is smaller than 5.5 cm
which we estimate as the median tumour size for the onset of clinically detectable metastatic
disease. The model assumptions and data underlying the work by Koscienly et al. di�er from
ours. Koscienly et al. relies on long-term survival data for patients who did not receive adju-
vant treatment and exploits a linear relationship observed between the logarithm of the tumour
volume and the probability of metastases.
Dr Shwartz, in References [7, 8], used a formalism for the assumption that stage transitions

are proportional to the volume that is more general than ours. He assumes that the hazard
rate for nodal involvement has three components: a constant, a term proportional to volume
and a term proportional to the �rst derivative of the volume. This generalization increases the
number of model parameters and does not allow a closed-form analytical expression for the
likelihood function. When we applied Dr Shwartz’s generalized model to our data, we found
that the constant term slightly improved the data �t at the smaller tumour sizes (¡1 cm) but
the impact of the derivative term was negligible.
Our model does not rely on data that is collected in the presence of screening. While

a model that includes a screened population could be more informative, it would be more
complex because it would require characterizing the detection function of the screening test
and screening compliance. It would also need to account for complex e�ects of leadtime,
lengthtime and overdiagnosis introduced by screening.
Stochastic modelling of the type that we present here is less explored than regression-based

analyses of breast cancer data, yet can provide insights into unobservable properties of the
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disease. Alternative stochastic models of the natural history of breast cancer may produce a
similar or better �t to the data, but yield di�erent predictions of unobservable events. Future
modelling e�orts should not only compare the data �t but also predictions of unobservable
events.

8. CONCLUSION

We present a stochastic model of the natural history of cancer to quantify the relative rates of
stage transitions, the tumour volume at stage transitions and the impact of the symptomatic
detection function on the observed tumour size and stage distribution in an unscreened popula-
tion. We computed maximum likelihood estimates of model parameters using data on tumour
size and stage from breast cancer patients who were not undergoing screening mammog-
raphy. Our results indicate that the rate of symptomatic detection is similar to the rate of
transition from the local to regional stage and an order of magnitude larger than the rate of
transition from the regional to distant stage. We demonstrate that, in the even absence of
screening mammography, symptom-prompted detection alone has a large e�ect on reducing
the occurrence of distant stage disease at initial diagnosis. Even though our analysis was
limited to breast cancer, the formalism presented here may be applicable to other solid
tumours where it is reasonable to assume that the disease progresses from local to regional
to distant stages and that the hazard function for the time to symptomatic detection and stage
transition is proportional to the tumour volume expressed as a function of time.

APPENDIX

The joint density of {D; I} for the likelihood function in Section 5 was expressed with a
continuous variable for tumour size. Here is it expressed with discrete tumour size bins. In
particular, the probability of a clinically detected tumour falling in the kth tumour size bin,
i.e. belonging to tumour sizes in the range [dk; dk+1]

Pr(D∈ (dk; dk+1); I = i)=
∫ dk+1

dk

Pr(D=d; I = i)dd

For symptomatic detection in the local stage

Pr(D∈ (dk; dk+1); I =0)= −�
�+ �

×
[(

�
�+ (�+ �)(d− c0)

)�]∣∣∣∣
dk+1

d=dk

For symptomatic detection in the regional stage

Pr(D∈ (dk; dk+1); I =1)

=
�

�−! ×
[
�

�+ �
×
(

�
�+ (�+ �)(d− c0)

)�
− �
�+!

×
(

�
�+ (�+!)(d− c0)

)�]∣∣∣∣
dk+1

d=dk
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For symptomatic detection in the distant stage

Pr(D∈ (dk; dk+1); I =2)

=
[(

�
�+ �(d− c0)

)�

+
�

�+ �
×
(

�
�+ (�+ �)(d− c0)

)�

− �
�−! ×

(
�

�+ �
×
(

�
�+ (�+ �)(d− c0)

)�

− �
�+!

×
(

�
�+ (�+!)(d− c0)

)�)]∣∣∣∣
dk+1

d=dk
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