
6

Asymptotic Robustness of Estimators
in Rare-Event Simulation

PIERRE L’ECUYER
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The asymptotic robustness of estimators as a function of a rarity parameter, in the context of

rare-event simulation, is often qualified by properties such as bounded relative error (BRE) and

logarithmic efficiency (LE), also called asymptotic optimality. However, these properties do not

suffice to ensure that moments of order higher than one are well estimated. For example, they

do not guarantee that the variance of the empirical variance remains under control as a function

of the rarity parameter. We study generalizations of the BRE and LE properties that take care

of this limitation. They are named bounded relative moment of order k (BRM-k) and logarithmic

efficiency of order k (LE-k), where k ≥ 1 is an arbitrary real number. We also introduce and examine

a stronger notion called vanishing relative centered moment of order k, and exhibit examples where

it holds. These properties are of interest for various estimators, including the empirical mean and

the empirical variance. We develop (sufficient) Lyapunov-type conditions for these properties in
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a setting where state-dependent importance sampling (IS) is used to estimate first-passage time

probabilities. We show how these conditions can guide us in the design of good IS schemes, that enjoy

convenient asymptotic robustness properties, in the context of random walks with light-tailed and

heavy-tailed increments. As another illustration, we study the hierarchy between these robustness

properties (and a few others) for a model of highly reliable Markovian system (HRMS) where the

goal is to estimate the failure probability of the system. In this setting, for a popular class of IS

schemes, we show that BRM-k and LE-k are equivalent and that these properties become strictly

stronger when k increases. We also obtain a necessary and sufficient condition for BRM-k in terms

of quantities that can be readily computed from the parameters of the model.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-

tics—Probabilistic algorithms (including Monte Carlo); I.6.1 [Simulation and Modeling]: Simu-

lation Theory

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Rare-event simulation, robustness, bounded relative error,
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1. INTRODUCTION

Rare-event simulation refers to the situation where a set of events that occur
very rarely in a simulation model are important and must be taken into account
because their occurrence have high consequences. It is a key tool for decision
making in several areas such as reliability, telecommunications, finance, insur-
ance, and computational chemistry and physics, among others [Bolhuis et al.
2002; Bucklew 2004; Heidelberger 1995; Juneja and Shahabuddin 2006; Kalos
and Whitlock 1986]. The important rare events may correspond, for example,
to huge financial losses, or environmental disasters, or loss of lives, or other
types of accidents. Before we decide on how much money we want to spend (or
what additional measures we want to take) to avoid these rare events, we need
to have an idea of their probability of occurrence and of the effect of additional
spending on this probability.

In typical rare-event settings, the Monte Carlo method is not viable unless
special “acceleration” techniques are used to make the important rare events
occur frequently enough for moderate sample sizes. The two main families
of techniques for doing this are splitting [Ermakov and Melas 1995; Glasser-
man et al. 1998; L’Ecuyer et al. 2007; Villén-Altamirano and Villén-Altamirano
2006] and importance sampling (IS) [Bucklew 2004; Glynn and Iglehart 1989;
Heidelberger 1995; Juneja and Shahabuddin 2006].

Suppose we want to estimate a positive quantity γ = γ (ε) that depends on a
rarity parameter ε > 0. We assume that limε→0+ γ (ε) = 0. We have a family of
estimators Y = Y (ε) taking their values in [0, ∞), such that E[Y (ε)] = γ (ε) > 0
for each ε > 0. In applications, γ (ε) can be a performance measure defined as
a mathematical expectation, and some model parameters are defined as func-
tions of ε in a convenient way. Note that this parameterization by ε is introduced
only for the asymptotic analysis of estimators. Different parameterizations may
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correspond to different asymptotic regimes. For example, in a queuing system
for which we are interested in the probability that the queue length exceeds a
given (large) threshold B, we may take ε = 1/B to study what happens when
B gets larger and larger. If we are interested in the behavior of the queue for a
large number s of servers, we may take ε = 1/s. In other settings, the service
time and interarrival time distributions might depend on ε. In Markovian re-
liability models, the failure rates and repair rates might be functions of ε. For
example, when studying a highly reliable system where the failure rates are
very small, the failure rates are often taken as polynomial functions of ε for the
purpose of asymptotic analysis [Nakayama 1996; Shahabuddin 1994].

The convergence speed of γ (ε) toward 0 may depend on how the model is
parameterized, but the robustness properties introduced in this article do not
depend on this speed; they depend only on the magnitude of certain moments
of Y (ε) relative to the corresponding powers of γ (ε).

A special case of this setting arises when Y (ε) is an indicator function:
Y (ε) = 1 with probability γ (ε) and Y (ε) = 0 with probability 1 − γ (ε). In this
case, Var[Y (ε)] = γ (ε)(1 − γ (ε)) ≈ γ (ε), so the squared relative error (or rel-
ative variance) Var[Y (ε)]/γ 2(ε) ≈ 1/γ (ε) grows without bound when ε → 0.
If we estimate γ (ε) by the average of n = n(ε) independent copies of Y (ε), we
have an estimator with relative variance 1/(n(ε)γ (ε)). This estimator does not
have bounded relative error (BRE) unless the sample size n(ε) grows at least at
the same rate as 1/γ (ε) when ε → 0 [Heidelberger 1995], which means that the
computing budget would have to increase without bound. Viewed from another
angle, if we fix the computing budget to a constant, so n(ε) is not allowed to
grow indefinitely when ε → 0, then the relative error is unbounded.

In this type of situation, splitting and IS are often used to design better es-
timators, which may have the BRE property with a fixed computing budget.
There are many cases (e.g., in queueing and finance) where the best available
estimators do not have the BRE property, but enjoy the slightly weaker prop-
erty of logarithmic efficiency (LE), also called asymptotic optimality. This often
happens when the estimators are constructed by exploiting the theory of large
deviations [Asmussen 2002; Glasserman 2004; Heidelberger 1995; Juneja and
Shahabuddin 2006; Siegmund 1976]. LE has the intuitive interpretation that
when γ 2(ε) → 0 exponentially fast in 1/ε, Var[Y (ε)] → 0 at the same exponen-
tial rate.

To see why the BRE or LE properties are often not sufficient, suppose we want
to compute a confidence interval on γ (ε) based again on independent replicates
of Y (ε). To do this via the classical central limit theorem (CLT), we need reliable
estimators for both the mean γ (ε) and the variance σ 2(ε) = E[(Y (ε) − γ (ε))2].
We want these estimators to remain robust in the sense that their relative
error remains bounded (or grows only very slowly) when ε → 0. Under the
assumption that one uses a confidence interval with a half-width proportional
to the exact (theoretical) variance, the relative half-width remains bounded
if the estimator has BRE [Heidelberger 1995]. But to realistically implement
such a confidence interval procedure, one needs to estimate the variance
from the simulated independent and identically distributed (i.i.d.) runs of the
model. To obtain such a confidence interval, in which the relative half-width is
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estimated properly, one typically needs an estimator of σ 2(ε) that is accurate
to order γ 2(ε) × o(1) as n → ∞, uniformly in ε. Obtaining a variance estimator
with such a level of relative accuracy (relative to γ 2(ε)) requires control over the
(2 + δ)th moment of Y (ε) for some δ > 0. In rare-event settings, reliable (rela-
tive) mean and variance estimators are typically difficult to obtain. In fact, the
relative variance is often more difficult to estimate than the mean (relative to
the mean).

A similar problem arises in empirically comparing the efficiencies of two
different estimators for the quantity γ (ε), as ε → 0. In particular, the efficiency
is typically assessed by comparing the variances of the associated estimators.
Since the exact (theoretical) variances are not available analytically, they must
be computed from the sample variance, as obtained from the simulation runs
used to estimate γ (ε). Even if all the estimators to be compared enjoy the BRE
property, a potentially huge number of simulation runs may be required to
compute the ratio of efficiencies between the available estimators, unless the
fourth moment of the estimator scales in proportion to γ 4(ε).

This motivates our introduction, in this article, of asymptotic characteriza-
tions that generalize BRE and LE, namely bounded relative moment of order
k (BRM-k) and logarithmic efficiency of order k (LE-k), where k ∈ [1, ∞). The
relative moment of order k is the expectation of [Y (ε)/γ (ε)]k . An estimator has
the BRM-k property if its relative moment of order k remains bounded when
ε → 0. The LE-k property roughly means that when γ k(ε) → 0 at an expo-
nential rate, the kth moment converges to zero at the same exponential rate.
BRE-2 and LE-2 are equivalent to BRE and LE, respectively. We also introduce
and discuss a much stronger property than BRM-k, named vanishing relative
centered moment of order k (VRCM-k), which means that the relative centered
moment of order k converges to 0 when ε → 0. As it turns out, this property im-
plies that the sampling scheme converges to a zero-variance sampling scheme
when ε → 0. We give examples where this property holds.

These concepts apply to any estimator that depends on some rarity parame-
ter ε; it does not have to involve splitting or IS. This includes, for instance, the
empirical variance and higher empirical moments taken as estimators of the
exact variance and of higher moments of the estimator of interest. For exam-
ple, saying that the empirical variance has the BRM-2 property means that
the variance of the empirical variance, divided by the squared variance, is
bounded when ε → 0. This is bounded relative error of the empirical variance (as
a variance estimator). Saying that the empirical mean has the BRM-4 property,
on the other hand, means that its fourth moment divided by the fourth power
of the mean is bounded. These two properties are not equivalent in general.

Lesser-known asymptotic robustness properties than BRE and LE have also
been studied in the literature. For instance, Sadowsky [1993] examines a gen-
eralization of LE for central empirical moments of high order, in a specific
large-deviations context where the goal is to estimate the probability that the
average of n = �1/ε	 i.i.d. random variables exceeds a given constant. Boots
and Shahabuddin [2000] define a weaker criterion than LE, motivated by the
observation that the large variance sometimes comes from a set of events with
“small” probability relative to the probability of the rare event itself, uniformly
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in ε. If the restriction of the estimator to the large set (defined as the complement
of this set of small probability) is LE, they say that the estimator has large set
asymptotic optimality. Other properties include bounded normal approxima-
tion (BNA), and asymptotic good estimation of the mean (AGEM) and of the
variance (AGEV) (also called probability and variance well-estimation) [Tuffin
1999; Tuffin 2004]. BNA, as defined in Tuffin [1999], implies that if we ap-
proximate the distribution of the average of n i.i.d. copies of Y by the normal
distribution (e.g., to compute a confidence interval), the approximation is accu-
rate to order O(n−1/2) uniformly in ε when ε → 0. AGEM and AGEV have been
defined in the context of estimating a probability in a highly reliable Markovian
system (HRMS), and basically mean that the sample paths that contribute the
most to the estimator and its second moment, respectively, are not rare under
the sampling scheme that is examined.

It is important to underline that all notions mentioned so far completely
disregard the computational work (CPU time) required to obtain the estima-
tor. In general, this computational cost can be random, and its mean or higher
moments, which often depend on ε, can be unbounded when ε → 0. This moti-
vates the need for work-normalized versions of the BRM-k, LE-k, and VRCM-k
properties. For k = 2, the standard practice for taking the work into account
when comparing estimators is to multiply the variance by the expected compu-
tational cost [Hammersley and Handscomb 1964; Glynn and Whitt 1992], based
on the idea that doubling the computing budget typically permits one (roughly)
to halve the variance. This has motivated the introduction of concepts such as
bounded work-normalized relative error (also called bounded relative efficiency)
in Cancela et al. [2005] and work-normalized logarithmic efficiency (or asymp-
totic optimality) in Boots and Shahabuddin [2000] and Glasserman et al. [1999],
simply by multiplying the variance by the expected computing time in the def-
initions of BRE and LE. One could think of straightforward generalizations
to any k ≥ 1: just multiply the centered moments by the expected computing
time. But this normalization is not necessarily appropriate, for a number of
reasons. For example, if we have an estimator defined as an average over n
independent replications, doubling the number of replications does not divide
the kth centered moment by 2 in general, for k 
= 2. Even for k = 2, a concept
that considers only the expected computing time would not guarantee that we
can compute a reliable confidence interval for γ (ε) uniformly over ε, for a given
large computing budget that does not depend on ε. If the (random) computing
time has unbounded moments of order larger than 1 when ε → 0, then for any
fixed computing budget c, the probability of completing at least one replication
within the budget limit may go to zero when ε → 0, for example. Thus, just
multiplying by the expected computing time does not necessarily provide the
desired notion of boundedness; it could even be misleading to some extent. For
these reasons, we end our discussion of work-normalization here and leave this
important topic for another article.

It is important to recognize that estimators with a higher level of robust-
ness do not necessarily require a larger computational effort. A well-designed
IS scheme often reduces the simulation time by pushing the system faster to-
ward the rare event, while decreasing higher moments at the same time, so we
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may win on both fronts: smaller moments and a smaller computing time. For
instance, as we shall discuss in Section 4.1, importance sampling estimators
designed to have either the LE-2 or the BRE property often satisfy the corre-
sponding improved measures of robustness such as LE-k and BRM-k for k > 2
as well. In Section 5, we observe that the more robust estimators are not really
more expensive to compute either.

After defining and discussing the robustness properties, we examine some
specific rare-event settings in which we study the relationships between these
properties and provide easily verifiable conditions for these properties to hold.

Our basic setting is a discrete-time Markov chain (DTMC) model for which
we want to estimate the probability γ (x, ε) of reaching B before A in finite time,
where A and B are two disjoint subsets of the state space, and the chain starts
in state x 
∈ A∪ B. Either B, or the transition kernel of the DTMC, or both, may
depend on ε. We focus on a general class of state-dependent IS schemes that
attempt to approximate the zero-variance IS scheme for this model. The zero-
variance IS scheme simply multiplies the transition probability (or density)
from a state x to another state y by the product γ ( y , ε)/γ (x, ε). In practice, the
function γ (·) is unknown (otherwise there would be no need to simulate in the
first place), but if we replace its use in the construction of the zero-variance IS
scheme by an approximation of good quality as ε → 0, a significant accuracy
improvement can often be achieved. The chain is simulated under the modified
probability laws obtained from the approximation, and the original estimator
is multiplied (as usual) by an appropriate weight called the likelihood ratio, to
counter-balance the bias caused by the change of measure. This type of state-
dependent IS has been the focus of substantial research in both heavy-tailed
and light-tailed settings during recent years (see, for instance, Dupuis and
Wang [2004, 2005] and Blanchet and Glynn [2008]). The approximation of γ (·)
is usually obtained via large deviations theory or heavy-tailed approximation.
One has to be careful, though: even with a good approximation in most of the
state space, the likelihood ratio may sometimes exhibit a poor behavior due to
the contributions corresponding to areas where the asymptotic description is
not good enough.

In our DTMC setting, we establish general sufficient conditions for the BRM-
k, LE-k, and VRCM-k properties. These conditions can be verified in terms of
a simple Lyapunov inequality that involves the approximation of γ (·) together
with some appropriate Lyapunov function. We apply these conditions for the
design of IS estimators that exhibit BRM-k or LE-k, for random walks with
both light-tailed and heavy-tailed increments. We also make the connection
with other results found in the literature, for example, by Sadowsky [1993] and
Dupuis and Wang [2004], and we extend the results of the latter authors.

We then examine the robustness properties for an HRMS model studied
by several authors [Cancela et al. 2002; Goyal et al. 1992; Heidelberger 1995;
Lewis and Böhm 1984; Nakayama 1996; Shahabuddin 1994; Tuffin 1999, 2004]
and used for reliability analysis of computer and telecommunication systems.
In this model, a smaller value of the rarity parameter ε implies a smaller failure
rate for the system’s components, and we want to estimate the probability that
the system reaches a “failed” state before it returns to a state where all the
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components are operational. This probability converges to 0 when ε → 0. The
model fits the DTMC setting mentioned earlier. For this HRMS model, specific
conditions on the model parameters and on the IS probabilities have been
obtained for the BRE property [Nakayama 1996], for BNA [Tuffin 1999, 2004],
and for AGEM and AGEV [Tuffin 2004]. It is also shown by Tuffin [2004] that
BNA implies AGEV, which implies BRE, which implies AGEM, which implies
BRE, and that for each implication the converse is not true. In this article we
extend this hierarchy to incorporate BRM-k and LE-k, showing that for these
models, these properties are all equivalent for any given k. We also obtain a
necessary and sufficient condition on the model parameters for these properties
to hold, for a given class of IS measures that covers all interesting IS schemes
developed in the literature for these HRMS models. These conditions turn out
to be of strictly increasing strength as a function of k. That is, if they hold for
k +1 then they hold for k, but the converse is false for all k. We do this not only
for the mean estimator, but for the estimators of all higher moments as well.

The remainder of the article is organized as follows. In Section 2, we give for-
mal definitions of the asymptotic characterizations discussed so far, along with
simple examples. The main results of that section are Propositions 2.19 and
2.21; they prove the equivalence between two definitions of VRCM-k and the fact
that VRCM-k implies convergence toward a zero-variance sampling scheme.

In Section 3, we define the Markov chain setting in which we want to estimate
the probability of reaching B before A. We discuss the zero-variance approxi-
mation, we prove an upper bound on the kth moment under an IS scheme based
on this approximation and assuming a Lyapunov condition (Proposition 3.1),
and we use this bound to derive sufficient conditions for BRM-k and for LE-k
in this setting (Theorem 3.2). In Section 4, we use these conditions to study
state-dependent IS estimators in random walks with light- and heavy-tailed
increments. Sections 4.1 and 4.2 introduce the model and recall what is known
for state-independent IS when estimating the probability that the average of
n = �1/ε	 i.i.d. light-tailed random variables exceeds a given threshold. One
can obtain LE-k but not BRM-k. In Section 4.3, we define a state-dependent
IS scheme and prove in Proposition 4.5 that it has the BRM-k property. In
Section 4.4, Theorem 4.6 extends a result of Dupuis and Wang [2004] and pro-
vides a sufficient condition for LE-k in the context of multidimensional random
walks. In Section 4.5, we develop an IS scheme for the case of heavy-tailed distri-
butions and show in Theorem 4.8 that it has the BRM-k property. In Section 5,
we describe the HRMS model and we study the asymptotic robustness prop-
erties for a class of IS estimators applied to this model. For a large class of IS
schemes, Theorem 5.2 gives necessary and sufficient conditions for BRM-k for
the empirical moment of any order g ≥ 1, and Proposition 5.6 shows the equiva-
lence between LE-k and BRM-k. Proposition 5.5 also shows that this class of IS
schemes cannot provide VRCM-k estimators. For a slightly different class of IS
estimators, we prove in Proposition 5.7 that BRM-2 for the empirical variance
implies BNA, then we provide a counterexample showing that the converse is
not true.

We use the following notation. For a function f : (0, ∞) → R, we say that
f (ε) = o(εd ) if f (ε)/εd → 0 as ε → 0; f (ε) = O(εd ) if | f (ε)| ≤ c1ε

d for some
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constant c1 > 0 for all ε sufficiently small; f (ε) = O(εd ) if | f (ε)| ≥ c2ε
d for some

constant c2 > 0 for all ε sufficiently small; and f (ε) = �(εd ) if f (ε) = O(εd )
and f (ε) = O(εd ). We use the shorthand notation Y (ε) to refer to the family of
estimators {Y (ε), ε > 0}. We also write “→ 0” to mean “→ 0+.”

2. ASYMPTOTIC ROBUSTNESS PROPERTIES

This section collects all the definitions, together with simple examples and
counterexamples. The main novel results are in Section 2.6.

2.1 Bounded Relative Moments

Definition 2.1. For k ∈ [1, ∞), the relative moment of order k of the estima-
tor Y (ε) is defined as

mk(ε) = E[Y k(ε)]/γ k(ε). (1)

The variance is

σ 2(ε) = Var[Y (ε)] = E[(Y (ε) − γ (ε))2],

the relative variance is σ 2(ε)/γ 2(ε), and the relative error is σ (ε)/γ (ε).

Definition 2.2. The estimator Y (ε) has a bounded relative moment of order
k (BRM-k) if

lim sup
ε→0

mk(ε) < ∞. (2)

It has bounded relative variance, or equivalently bounded relative error (BRE)
[Heidelberger 1995], if

lim sup
ε→0

σ (ε)/γ (ε) < ∞. (3)

Example 2.3. Suppose Y (ε) has a Pareto distribution with density f ( y) =
a(ε)/ ya(ε)+1 for y > 1, and a(ε) = k0 − ε for some integer k0 ≥ 2. In this case,
for k < k0 − ε, E[Y k(ε)] = a(ε)/(a(ε) − k). Then, if k < k0 and ε is small enough,

E[Y k(ε)]

γ k(ε)
= (k0 − 1 − ε)k

(k0 − k − ε)(k0 − ε)k−1
,

so Y (ε) is BRM-k.

Example 2.4. It is shown in Bourin and Bondon [1998] that if Y j = X j /μ j

where μ j = E[X j ], j is a positive integer, and X is a nonnegative random
variable, then the variance of Y j is nondecreasing in j . This implies that if
Y j (ε) = X j (ε)/μ j (ε) has the BRM-2 property, then Y j ′ (ε) also has it for all
j ′ < j .

When computing a confidence interval on γ (ε) based on the average of n i.i.d.
replications of Y (ε) and the (classical) central-limit theorem, for a fixed confi-
dence level, the width of the confidence interval is (approximately) proportional
to the standard deviation σ (ε) divided by

√
n. Usually, the confidence interval

has the form (Y (ε) ± z1−α/2σ̂ (ε)n−1/2), where 1 − α is the confidence level, z1−α/2
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is the (1 − α/2)-quantile of the standard normal distribution, and σ̂ (ε) is the
square root of the empirical variance of Y (ε). The BRE property means that
this width decreases at least as fast as γ (ε) when ε → 0.

It would perhaps seem natural to replace “lim supε→0” in this definition by
“sup0<ε≤1” for example. The definition would then be a bit stronger, so VRCM-k
would no longer imply BRM-k, for example. We think that the difference is just
a technicality that is not important in typical applications.

PROPOSITION 2.5. BRE is equivalent to BRM-2.

PROOF. This follows from the fact that m2(ε) = E[Y 2(ε)]/γ 2(ε) = 1 +
σ 2(ε)/γ 2(ε).

More generally, an equivalent definition of BRM-k is obtained if we replace
mk(ε) in (2) by the relative centered moment ck(ε), defined by

ck(ε) = E[|Y (ε) − γ (ε)|k]

γ k(ε)
= E

[∣∣∣∣Y (ε)

γ (ε)
− 1

∣∣∣∣
k
]

. (4)

The equivalence follows from the following proposition.

PROPOSITION 2.6. For any k ≥ 1,

lim sup
ε→0

ck(ε) < ∞ if and only if lim sup
ε→0

mk(ε) < ∞. (5)

PROOF. We have

|Y (ε) − γ (ε)|k ≤ [max(Y (ε), γ (ε))]k ≤ Y k(ε) + γ k(ε)

and

Y k(ε) ≤ [2 max(|Y (ε) − γ (ε)|, γ (ε))]k ≤ 2k[|Y (ε) − γ (ε)|k + γ k(ε)],

from which

|Y (ε) − γ (ε)|k ≥ 2−kY k(ε) − γ k(ε).

Combining these inequalities, we obtain that

2−kmk(ε) − 1 ≤ ck(ε) ≤ mk(ε) + 1

and the result follows.

PROPOSITION 2.7. For any fixed ε and k ≥ 1, mk(ε) is nondecreasing in k.

PROOF. Since Y (ε) ≥ 0, this follows from Jensen’s inequality: if 1 ≤ k′ < k,
then

mk′ (ε) = E[Y k′
(ε)]

γ k′
(ε)

≤ (E[(Y k(ε))])k′/k

γ k′
(ε)

= E[Y k(ε)]

γ k(ε)

γ k−k′
(ε)

(E[(Y k(ε))])(k−k′)/k
≤ mk(ε).

COROLLARY 2.8. BRM-k implies BRM-k′ for 1 ≤ k′ < k.

Note that Proposition 2.7 would not hold if BRM-k was defined using the
centered moment E[(Y (ε) − γ (ε))k] instead of the noncentered moment E[Y k(ε)]
or the absolute centered moment E[|Y (ε) − γ (ε)|k]. This is illustrated by the
following example.
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Example 2.9. Suppose Y (ε) has the normal distribution with mean and
variance γ (ε) = σ 2(ε) = ε. Then, E[(Y (ε) − γ (ε))2]/γ 2(ε) = σ 2(ε)/γ 2(ε) = 1/ε,
whereas E[(Y (ε) − γ (ε))3]/γ 3(ε) = 0.

The following property is sometimes useful.

PROPOSITION 2.10. For any positive real numbers k, 	, m, and any nonnega-
tive random variable X (ε), if Y (ε) = X 	(ε) is BRM-mk, then Y ′(ε) = X m	(ε) is
BRM-k.

PROOF. From Jensen’s inequality, (E[X 	(ε)])mk ≤ (E[X m	(ε)])k . Then,

E[(X m	(ε))k]

(E[X m	(ε)])k
≤ E[X mk	(ε)]

(E[X 	(ε)])mk
= E[(X 	(ε))mk]

(E[X 	(ε)])mk
. (6)

2.2 Logarithmic Efficiency

There are several rare-event applications where practical BRE estimators are
not readily available (e.g., in queueing and finance), but where estimators with
the (weaker) LE property have been constructed by exploiting the theory of large
deviations [Asmussen 2002; Glasserman 2004; Heidelberger 1995; Juneja and
Shahabuddin 2006; Siegmund 1976]. Often, these estimators turn out to have
the following LE-k property for all k.

Definition 2.11. The estimator Y (ε) is LE-k if

lim
ε→0

ln E[Y k(ε)]

k ln γ (ε)
= 1. (7)

LE-k means that when γ k(ε) converges to zero exponentially fast, E[Y k(ε)]
also converges exponentially fast and at the same exponential rate. This is the
best possible rate; it cannot converge at a faster rate because from Jensen’s
inequality, we always have E[Y k(ε)] − γ k(ε) ≥ 0. LE-2 is the usual definition of
LE, also known under the names of asymptotic efficiency and asymptotic opti-
mality. In general, LE-k is weaker than BRM-k. But there are situations where
the two are equivalent; this will happen in our HRMS setup in Section 5. The
following examples illustrate the two possibilities. They correspond to the two
types of parameterizations most often used in rare-event asymptotic analysis:
The probability of the rare event decreases exponentially with ε in one case and
polynomially in the other case. The exponential case typically occurs in situa-
tions where γ (ε) satisfies a large deviations principle. The polynomial case is
standard in HRMS models, for example, where the γ (ε) → 0 because the tran-
sitions leading to the rare event have probabilities that decrease polynomially
when ε → 0, while their number remains fixed. We will return to this type of
situation in Example 2.23 and in Section 5.

Example 2.12. Suppose that γ (ε) = q(ε) exp[−η/ε] for some polynomial
function q and some constant η > 0, and that our estimator has σ 2(ε) =
exp[−2η/ε]. Then, the LE property is easily verified, whereas BRE does not hold
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because m2(ε) = 1/q(ε) + 1 → ∞ when ε → 0. We will see concrete examples of
this situation in Section 4.

Example 2.13. Suppose that γ k(ε) = q1(ε) = εt1 + o(εt1 ) and E[Y k(ε)] =
q2(ε) = εt2 + o(εt2 ). That is, both converge to 0 as a polynomial in ε. Clearly,
t2 ≤ t1, because E[Y k(ε)]−γ k(ε) ≥ 0. We have BRM-k if and only if (iff) q2(ε)/q1(ε)
remains bounded when ε → 0, iff t2 = t1. On the other hand, − ln q1(ε) =
− ln(εt1 (1 + o(1))) = −t1 ln(ε) − ln(1 + o(1)) and similarly for q2(ε) and t2. Then,

lim
ε→0

ln E[Y k(ε)]

k ln γ (ε)
= lim

ε→0

t2 ln ε

t1 ln ε
= t2

t1

.

Thus, LE-k holds iff t2 = t1, which means that BRM-k and LE-k are equivalent
in this case.

2.3 Bounded Normal Approximation

We mentioned earlier the computation of a confidence interval on γ (ε) based
on the central-limit theorem. This type of confidence interval is reliable if the
sample average has approximately the normal distribution, so it is relevant
to examine the quality of this normal approximation when ε → 0. An error
bound for this approximation is provided by the following generalization of the
Berry-Esseen inequality [Bentkus and Götze 1996], first proved by Katz [1963].

THEOREM 2.14 (BERRY-ESSEEN). Let Y1, . . . , Yn be i.i.d. random variables
with mean 0, variance σ 2, and third absolute moment β3 = E[|Y1|3]. Let Ȳn

and S2
n be the empirical mean and variance of Y1, . . . , Yn, and let Fn denote the

distribution function of the standardized sum (or Student statistic)

S∗
n = √

nȲn/Sn.

Then, there is an absolute constant a < ∞ such that for all x ∈ R and all n ≥ 2,

|Fn(x) − �(x)| ≤ aβ3

σ 3
√

n
,

where � is the standard normal distribution function.

Note that the classical result usually has σ in place of Sn in the definition
of S∗

n [Feller 1971]. Theorem 2.14 motivated the introduction by Tuffin [1999]
of the BNA property, which requires that the Berry-Esseen bound remains
O(n−1/2) when ε → 0.

Definition 2.15. The estimator Y (ε) has the bounded normal approxima-
tion (BNA) property if

lim sup
ε→0

E
[|Y (ε) − γ (ε)|3]

σ 3(ε)
< ∞. (8)

This BNA property implies that
√

n|Fn(x) − �(x)| remains bounded as a
function of ε, that is, that the approximation of Fn by the normal distribution
remains accurate up to order O(n−1/2), uniformly in ε. The reverse is not nec-
essarily true, however. It may seem more natural to define the BNA property
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as meaning that
√

n|Fn(x) − �(x)| remains bounded, but Definition 2.15 has
already been adopted in other papers mainly because it is often easier to obtain
necessary and sufficient conditions for BNA with this definition.

If a confidence interval of level 1 − α is obtained using the normal distri-
bution while the true distribution is Fn, the error of coverage of the computed
confidence interval does not exceed 2 supx∈R

|Fn(x) − �(x)|. If that confidence
interval is computed from an i.i.d. sample Y1(ε), . . . , Yn(ε) of Y (ε), BNA implies
that the coverage error remains in O(n−1/2) when ε → 0, with a hidden constant
that does not depend on ε.

BNA is not equivalent to BRM-3, because we divide by σ 3(ε) in the definition
of BNA and by γ 3(ε) for BRM-3. One can have BNA and not BRM-3 (or BRM-
3 and not BNA) if γ (ε) converges to zero faster than σ (ε) (or the opposite). If
σ (ε) = �(γ (ε)), then the two properties are equivalent.

Note that there are more general versions of the Berry-Esseen inequality
that require only a bounded moment of order 2 + δ for any δ ∈ (0, 1] instead of
the third moment β3; see Petrov [1995, Theorem 5.7]. However, the bound on
|Fn(x) − �(x)| in that case converges only as O(n−δ/2) instead of O(n−1/2).

2.4 Asymptotic Good Estimation of the Mean and of the Variance

AGEM and AGEV are two additional robustness properties introduced by
Tuffin [2004], under the name of “well estimated mean and variance,” in the
context of the application of IS to an HRMS model. Here we provide more
general definitions of these properties. We assume that Y (ε) is a discrete ran-
dom variable, which takes value y with probability p(ε, y) = P[Y (ε) = y], for
y ∈ R. We also assume that its mean and variance are polynomial functions of
ε: γ (ε) = �(εt1 ) and σ 2(ε) = �(εt2 ) for some constants t1 ≥ 0 and t2 ≥ 0. AGEM
and AGEV state that the sample paths that contribute to the highest-order
terms in these polynomial functions are not rare.

Definition 2.16 (AGEM and AGEV). The estimator Y (ε) has the AGEM
property if yp(ε, y) = �(εt1 ) implies that p(ε, y) = �(1) (or equivalently, that
y = �(εt1 )). It has the AGEV property if [ y − γ (ε)]2 p(ε, y) = �(εt2 ) implies that
p(ε, y) = �(1) (or equivalently, that [ y − γ (ε)]2 = �(εt2 )).

These properties mean that for the realizations y of Y that provide the
leading contributions to the estimator, the contributions decrease only because
of decreasing values of y , and not because of decreasing probabilities. In a
setting where IS is applied and Y is the product of an indicator function by a
likelihood ratio (this will be the case in Sections 5.2 and 5.3), this means that
the value of the likelihood ratio when yp(ε, y) contributes to the leading term
must converge at the same rate at this leading term when ε → 0.

2.5 Robustness of the Empirical Variance

An important special case that we now examine is the stability of the empirical
variance as an estimator of the true variance σ 2(ε). Let X 1(ε), . . . , X n(ε) be an
i.i.d. sample of X (ε), where n ≥ 2. The empirical mean and empirical variance
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are X̄ n(ε) = (X 1(ε) + · · · + X n(ε))/n and

S2
n(ε) = 1

n − 1

n∑
i=1

(X i(ε) − X̄ n(ε))2.

If we take Y (ε) = S2
n(ε) in our framework of the previous subsections, we

obtain definitions of the robustness properties for S2
n(ε) as an estimator of σ 2(ε).

Let γ (ε) = E[X (ε)] (not E[Y (ε)] for now).

PROPOSITION 2.17. If σ 2(ε) = �(γ 2(ε)), then BRM-2k for X (ε) implies BRM-k
for S2

n(ε), for any k ≥ 1.

PROOF. Under the given assumption,

E[S2k
n (ε)]

σ 2k(ε)
≤ E[X 2k(ε)]

σ 2k(ε)
= �

(
E[X 2k(ε)]

γ 2k(ε)

)
.

The BRM-4 property for a given estimator X (ε) and the BRE property for its
corresponding empirical variance S2

n(ε) are both linked to its fourth moment,
so we might think that they are equivalent. In fact, we know (e.g., Wilks [1962,
page 200] or Kendall and Stuart [1977, Exercise 10.13]) that

Var[S2
n(ε)] = 1

n

(
E[(Y (ε) − E[Y (ε)])4] − n − 3

n − 1
σ 4(ε)

)
. (9)

Therefore,

Var[S2
n(ε)]

σ 4(ε)
= �

(
E[(X (ε) − γ (ε))4]

σ 4(ε)

)

which differs in general from

�

(
E[X 4(ε)]

γ 4(ε)

)
.

Thus, BRM-4 for X (ε) and BRE for S2
n(ε); they are not equivalent in general.

For example, σ 2(ε) may converge to zero either at a faster rate or at a slower
rate than γ 2(ε). If σ 2(ε) = �(γ 2(ε)) and E[(Y (ε) − γ (ε))4] = �(E[Y 4(ε)]), then
they are equivalent. A similar observation applies to the equivalence between
LE-4 for X (ε) and LE for S2

n(ε) are not equivalent in general.

2.6 Vanishing Relative Centered Moments

There are situations where not only the relative moment of order k is bounded,
but its centered version also converges to zero when ε → 0. We will give ex-
amples of this. It turns out that when this happens for any moment of order
larger than 1, we are sampling asymptotically (as ε → 0) from a zero-variance
distribution.

Definition 2.18. The estimator Y (ε) has vanishing relative centered
moment of order k (VRCM-k) if

lim sup
ε→0

ck(ε) = 0. (10)
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It has vanishing relative variance, or equivalently vanishing relative error
(VRE), if

lim sup
ε→0

σ (ε)

γ (ε)
= 0. (11)

Obviously, VRCM-k implies VRCM-k′ for 1 ≤ k′ ≤ k, and similarly for the work-
normalized versions. The following gives an equivalent definition of VRCM-k.

PROPOSITION 2.19. For any k ≥ 1,

lim sup
ε→0

mk(ε) = 1 if and only if lim sup
ε→0

ck(ε) = 0. (12)

To prove this result we will use the following lemma.

LEMMA 2.20. For any k > 1 and δ ∈ (0, k − 1), there is a constant A(δ) > 0
such that for all x ≥ 0,

δ
∣∣x − 1

∣∣ ≤ xk − kx + (k − 1) + A (δ) . (13)

Moreover, A(δ) can be chosen so that A(δ) = �(δ2) as δ → 0.

PROOF. Fix δ > 0 and suppose first that x ≥ 1. Consider the function

f+(x) = xk − (k + δ)x + (k − 1) + δ.

Note that f ′
+(x+(δ)) = 0 implies x+(δ) = ((k+δ)/k)1/(k−1) > 0. Since f+ is strictly

convex, we conclude that f+(x+(δ)) < 0 is the global minimum of f+. Therefore,
we conclude that for all x ≥ 1

δ(x − 1) ≤ xk − kx + (k − 1) − f+(x+(δ)).

Now, observe that

f+ (x+ (δ)) =
(

1 + δ

k

)k/(k−1)
− (k + δ)

(
1 + δ

k

)1/(k−1)
+ (k − 1) + δ

= 1 + δ

(k − 1)
+ �(δ2) − (k + δ)

(
1 + δ

k
(
k − 1

)
)

+ (k − 1) + δ

= �(δ2)

as δ → 0. A completely analogous strategy can be applied to the function

f− (x) = xk − (k − δ) x + (k − 1) − δ

for x ∈ [0, 1), in which case we have that the minimizer is x−(δ) = ((k −
δ)/k)1/(k−1) with �(δ2) = f−(x−(δ)) < 0. We can then conclude that (13) holds
with A(δ) = −[ f−(x−(δ)) + f+(x+(δ))] = �(δ2).

PROOF OF PROPOSITION 2.19. First we show that lim supε→0 mk(ε) = 1 must
imply that lim supε→0 ck(ε) = 0. Applying Lemma 2.20 with x = Y (ε)/γ (ε),
taking expectations and ε → 0, we find that

lim sup
ε→0

E
[∣∣Y (ε) /γ (ε) − 1

∣∣] ≤ A (δ) /δ.
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Then we let δ → 0 and conclude that Y (ε)/γ (ε) → 1 in the L1 norm and, in par-
ticular, in probability. Since, the random variables Y k(ε)/γ k(ε) are nonnegative
and their expectation converges to unity as ε → 0, then we must have uniform
integrability and therefore convergence of Y (ε)/γ (ε) in the Lk norm as ε → 0
[Durrett 1996, page 260]. For the converse implication, the assumption that
lim supε→0 ck(ε) = 0 for k > 1 implies both convergence in probability to unity
and uniform integrability of the random variables Y k(ε)/γ k(ε). This implies in
turn that lim supε→0 mk(ε) = 1.

Suppose we want to estimate

γ (ε) = EPε
[Y (ε)] =

∫



Y (ε, ω)d Pε(ω)

for some probability measure Pε that depends on ε and some nonnegative ran-
dom variable Y (ε), where 
 is the sample space. We may think of Pε as the
probability law that we are using to simulate our model. It could be the law
of a Markov chain, for example, and it may include some variance reduction
strategies such as importance sampling, splitting, and so on. In this context, we
have a zero-variance change of measure with the new measure Q∗

ε defined by

dQ∗
ε

dPε

(ω) = Y (ε, ω)

γ (ε)
.

Recall that the total variation distance between two measures P and Q is
defined by |P − Q |∞ = supA |P (A)− Q(A)|, where the sup is over all measurable
sets.

PROPOSITION 2.21. If Y (ε) is VRCM-(1+ δ) for some δ > 0, then |Pε − Q∗
ε |∞ =

o(1).

PROOF. Assuming that A runs over all measurable subsets of 
, we have

sup
A

|Pε(A) − Q∗
ε(A)| ≤ sup

A

∣∣EPε

[(
dQ∗

ε/dPε

)
I(A)

] − EPε
[I(A)]

∣∣
≤ EPε

∣∣dQ∗
ε/dPε − 1

∣∣
≤ E

1/(1+δ)
Pε

[∣∣dQ∗
ε/d Pε − 1

∣∣(1+δ)
]

≤ E
1/(1+δ)
Pε

[∣∣Y (ε)/γ (ε) − 1
∣∣(1+δ)

]
= o(1). �

In Proposition 2.21, we may have that only Pε is a function of ε and not Y ,
or only Y and not Pε ≡ P , or both are functions of ε. This proposition indicates
that a VRCM-k estimator (with k > 1) based on importance sampling induces
a distribution that is close (in total variation) to the zero-variance sampler,
and even converges to it when ε → 0. This might suggest that the design
of such an estimator in situations of practical interest is hopeless. However,
simulation schemes have recently been shown to achieve VRCM-k for k > 1
in some situations where a zero-variance IS scheme is used in which the exact
function γ is replaced by an approximation v that converges to γ uniformly
when ε → 0 L’Ecuyer and Tuffin [2008a, 2008b]. This happens, for instance,
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Table I. Transition Probabilities for Example 2.22

(0,0) (0,1) (1,0) (1,1) B
(0,0) ε12 1 − ε12

ε12 1 − ε12

(0,1) 1 − ε2 − ε4 ε4 ε2

0 ε2 1 − ε2

(1,0) 1 − ε6 − ε8 ε8 ε6

0 ε2 1 − ε2

(1,1) 1/2 − ε4 1/2 − ε4 2ε4

1/4 1/4 1/2

The entry in row x and column y gives the original transition prob-

ability p(x, y , ε) from state x to state y (top) and the modified prob-

ability q(x, y , ε) (bottom).

in the general Markov chain model examined in Example 2.23 that follows,
which can be encountered in various situations, including reliability settings
such as the HRMS models discussed in Section 5 and in L’Ecuyer and Tuffin
[2008b]. The class of sampling schemes examined in Section 5 do not satisfy
conditions (14) and (15), but it is possible to design a sampling scheme that does
satisfy these conditions, along the lines of Example 2.23, and the corresponding
estimator will then be VRCM-k. Other examples where a VRCM-k property
holds in queueing and insurance problems can be found in Blanchet and Glynn
[2008] and Juneja [2007].

Note that in a Markov chain setting, the probability of reaching a given set of
states B (where the rare event occurs) can be small either because reaching B
requires a large number of “upstream” transitions (and that number increases
when ε → 0), or because all sample paths leading to B have transitions whose
probabilities are very small (and converge to 0 when ε → 0) while the number
of transitions may remain bounded. The following two examples illustrate how
VRCM-k can be achieved (or not) in this second case. We start with a small
concrete illustration; then we show in Example 2.23 how the results can be
extended to a general class of Markov chain models.

Example 2.22. This small example gives a concrete illustration where a
simple change of the transition probabilities can provide VRCM-k. Consider
a system with two types of components and two components of each type. It
evolves as a DTMC {X j , j ≥ 0} whose state X j = (X (1)

j , X (2)
j ) at step j gives

the number of failed components of each type. The system is down (in failure
state) when the two components of any given type are down, that is, when
its state belongs to the set B = {(0, 2), (1, 2), (2, 2), (2, 1), (2, 0)}. We want to
estimate the probability γ (ε) that a system starting in state x0 = (0, 0) reaches
B before it returns to state x0. For this, we simulate this chain using IS by
replacing the transition probabilities p(x, y , ε) = P[X j = y | X j−1 = x] by new
probabilities q(x, y , ε). The probabilities p(x, y , ε) and q(x, y , ε) are given in
Table I, in which the five states of B are aggregated in a single state called B.

Let �B be the set of sample paths π = (x0, x1, . . . , xτ ) going from x0 to
B, where τ = min{ j : x j ∈ B}. Each path π has probability p(π, ε) =∏τ

j=1 p(x j−1, x j , ε). The most likely path leading to B is π1 = ((0, 0), (1, 0), B)
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Table II. Values of b(π ), c(π ), and δ(k, π ) (for k = 2, 3, 4), for Each

Acyclic Path in �B

Path π b(π ) c(π ) δ(2, π ) δ(3, π ) δ(4, π )

((0, 0), (0, 1), B) 14 12 4 0 −4

((0, 0), (0, 1), (1, 1), B) 20 14 14 14 14

((0, 0), (0, 1), (1, 1), (1, 0), B) 20 14 14 14 14

((0, 0), (1, 0), B) 6 0 0 0 0

((0, 0), (0, 1), (1, 1), B) 12 2 10 14 18

((0, 0), (0, 1), (1, 1), (1, 0), B) 12 2 10 14 18

and its probability is (1 − ε12)ε6 = ε6 + O(ε18). It is not difficult to see that we
also have γ (ε) = ε6 + o(ε6) (the next example gives a proof in a more general
setting). When we reach B via some path π ∈ �B, the estimator Y (ε) takes
the value p(π, ε)/q(π, ε), which is the corresponding likelihood ratio, and this
happens with probability q(π, ε). Note that p(π, ε) = a(π )εb(π ) + o(εb(π )) and
q(π, ε) = �(εc(π )) for some integers b(π ) and c(π ), and a real number a(π ) > 0.
Then the kth relative moment can be written as

mk(ε) =
∑

π∈�B

q(π, ε)

[
p(π, ε)

q(π, ε)γ (ε)

]k

and the contribution of path π ∈ �B to mk(ε) is

q(π, ε)

[
p(π, ε)

q(π, ε)γ (ε)

]k

= εδ(k,π ) + o
(
εδ(k,π )

)
,

where δ(k, π ) = k(b(π ) − 6) − (k − 1)c(π ). This contribution vanishes when
ε → 0 if and only if δ(k, π ) > 0. For the most likely path π1, we have δ(k, π1) =
−(k − 1)c(π1) ≤ 0 and its contribution to mk(ε) is 1 + o(1) if and only if q(π, ε) =
ε6 + o(ε6). These two conditions are necessary and sufficient for having mk(ε) =
1 + o(1), that is, for VRCM-k. To prove it formally, we actually have one more
detail to check: the number of paths that contain cycles is infinite and we must
make sure that their total contribution remains negligible. This is done for the
general case in the next example. Note that in the present case, all cycles have
probability O(ε2), so the probability of having c cycles or more decreases as
O(ε2c). Similarly, BRM-k holds if and only if δ(k, π ) ≥ 0 for all acyclic paths
π ∈ �B.

Table II enumerates all acyclic paths π ∈ �B, and gives the values of b(π ),
c(π ), and δ(k, π ) for k = 2, 3, and 4, for those paths. We can see that VRCM-k
holds for all k < 3 but not for k ≥ 3. The problem comes from the path π =
((0, 0), (0, 1), B), whose probability has not been increased sufficiently by the
IS scheme. When this path is selected, the likelihood ratio is ε2/(1 − ε2), which
decreases too slowly relative to the mean γ (ε) when ε → 0. The contribution of
this path to the relative kth centered moment is

�(ε12|ε2 − ε6)/ε6|k) = �(ε12|ε−4 − 1|k) = �
(
ε−4(k−3)

)
,

which does not vanish as ε → 0 for k ≥ 3. For k > 3, this contribution actually
increases with ε, so the estimator is not even BRM-k for k > 3. For k = 3, this
contribution is �(1).
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To improve this IS estimator and make it VRCM-k for all k, it suffices to
change q((0, 0), (0, 1), ε), say from ε12 to ε8. Then, c(π ) decreases by 4 for the
first three paths in Table II, and we have δ(k, π ) > 0 for all paths π ∈ �B \ {π1}
and all k. The resulting estimator is VRCM-k for all k. We can also observe that
changing from ε12 to ε8 gives a better approximation of the zero-variance IS.

Example 2.23. We now develop the ideas of the previous example in a more
general Markov chain setting. Consider a Markov chain {X j , j ≥ 0} with finite
state space and with transition probabilities

p(x, y , ε) = P[X j = y | X j−1 = x] = a(x, y)εb(x, y),

where a(x, y) and b(x, y) are nonnegative constants (independent of ε) for all
pairs of states (x, y). Let B be a given set of states and suppose that the chain
starts from some fixed state x0 
∈ B. We want to estimate the probability γ (ε)
of reaching B before returning to x0.

Let �B be the set of all sample paths π = (x0, x1, . . . , xτ ) going from x0 to
B, where xτ ∈ B and x j 
∈ B for all j < τ . Suppose that among all the paths
π ∈ �B, there is a set �1 of paths π having probability

p(π, ε) =
τ∏

j=1

p(x j−1, x j , ε) = a(π )εb + o(εb)

where a(π ) > 0 and b > 0, and all other paths have probability p(π, ε) = o(εb).
Suppose also that all cycles (paths going from one state to the same state) that
belong to some path π ∈ �B have probability O(εδ), for some constant δ > 0.
Then, �1 cannot contain paths having a cycle, so it must be finite. It is easy to
see that the paths π ∈ �1 are the dominant paths within �B when ε → 0, in
the sense that

lim
ε→0

1

γ (ε)

∑
π∈�1

p(π, ε) = lim
ε→0

aεb + o(εb)

γ (ε)
= 1,

where a = ∑
π∈�1

a(π ).
Suppose now that we simulate this chain using importance sampling by

replacing the probabilities p(x, y , ε) by new probabilities q(x, y , ε) such that
for any path π ∈ �1, the new probability of that path satisfies

q(π, ε) =
τ∏

j=1

q(x j−1, x j , ε) = a(π )

a
+ o(1) (14)

when ε → 0. This implies that the sum of probabilities of all paths in �B \ �1

is o(1) under these new probabilities. The IS estimator of γ (ε) is the likelihood
ratio Y (ε) = p(π, ε)/q(π, ε) if we reach B via some path π , and 0 if we do not
reach B. When we reach B via a path π ∈ �1, we have

Y (ε) = p(π, ε)/q(π, ε) = a(π )εb

a(π )/a + o(1)
= aεb + o(εb),

and this happens with probability 1 + o(1). The set of all other paths leading
to B has total probability o(1). We nevertheless need to bound the contribution
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of those paths to the moments of order k > 1, and this is a bit tricky because
these paths could contain an unlimited number of cycles, so their number is
generally infinite.

To bound the contribution of those paths π ∈ �B \ �1, we assume that for
each such path having original probability p(π, ε) = �(εb(π )) for b(π ) > b, the
new probability satisfies q(π, ε) = �(εc(π )), for some constant c(π ) > 0, and that
these constants satisfy

δ(k, π ) = k[b(π ) − b] − (k − 1)c(π ) > 0 (15)

if we are interested in the kth moment. Finally, we assume that for any state
x 
= x0, x 
∈ B, and that belongs to a path π ∈ �B, the probability of returning to
x (i.e., making a cycle) before hitting B or x0 is never equal to 1 under the new
probabilities, and the likelihood ratio associated with any such cycle does not
exceed 1, at least for ε small enough. Since the number of possible cycles is finite,
this assumption implies that there is a constant ρ < 1 such that the probability
that there are j cycles or more does not exceed ρ j . Let �

(0)
B be the set of paths

in �B that contain no cycle. For any path π ∈ �B that has cycles, let φ(π ) ∈ �
(0)
B

the path obtained from π by removing all cycles. Under our assumptions, given
that we have a path π for which φ(π ) = π0 ∈ �

(0)
B , the probability that this path

has j cycles does not exceed ρ j . Therefore, the set φ−1(π0) of all paths π that
map to π0 has total probability at most q(π0, ε)(1+ρ+ρ2+· · · ) = q(π0, ε)/(1−ρ).
And the likelihood ratio associated with any path in φ−1(π0) does not exceed
that of π0 (for ε small enough). For the paths π for which π0 = φ(π ) ∈ �1, the
probability of a cycle must be o(1), because q(π, ε) = �(1) if and only if π ∈ �1.
We can then replace ρ by o(1) in the preceding and the set of paths in φ−1(π0)
that contain at least one cycle has total probability q(π, ε)o(1)/(1 − o(1)).

With these ingredients in hand, we can bound the kth relative centered
moment of the IS estimator as follows.

E

[∣∣∣∣Y (ε)

γ (ε)
− 1

∣∣∣∣
k
]

=
∑

π∈�B

q(π, ε)

∣∣∣∣ p(π, ε)

q(π, ε)γ (ε)
− 1

∣∣∣∣
k

≤
∑
π∈�1

q(π, ε)

∣∣∣∣aεb + o(εb)

γ (ε)
− 1

∣∣∣∣
k

+
∑
π∈�1

q(π, ε)o(1)

1 − o(1)

∣∣∣∣ p(π, ε)

q(π, ε)γ (ε)
− 1

∣∣∣∣
k

+
∑

π∈�
(0)
B \�1

q(π, ε)

1 − ρ

∣∣∣∣ p(π, ε)

q(π, ε)γ (ε)
− 1

∣∣∣∣
k

= (1 + o(1))
∣∣1 + o(1) − 1

∣∣k +
∑
π∈�1

o(1) +
∑

π∈�
(0)
B \�1

O
(
εc(π ) + εk[b(π )−b]−(k−1)c(π )

)

= o(1)

when ε → 0. So we have VRCM-k. From Proposition 2.21, this implies that
q(π, ε) − q∗(π, ε) → 0 for any sample path π , where q∗(π, ε) denote the path
probabilities under the zero-variance IS.
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Condition (14) turns out to be also necessary for VRCM-k, since if q(π, ε) =
a(π )/a + δ(π )+o(1) for some δ(π ) 
= 0 and π ∈ �1, then Y (ε) = a(π )εb/[a(π )/a +
δ(π ) + o(1)] = aεb/[1 + aδ(π )/a(π )] + o(εb), and the contribution of this path to
the kth relative centered moment is no longer o(1).

Example 2.22 does satisfy all the assumptions made here.

In the following sections, we examine the robustness concepts discussed so
far in some settings that fit under the umbrella of estimating a first-passage
probability for a Markov chain.

3. ESTIMATORS BASED ON ZERO-VARIANCE APPROXIMATION FOR
FIRST-PASSAGE PROBABILITIES IN A MARKOV CHAIN

In this section, we adopt a framework where a rare event occurs when some
discrete-time Markov chain hits a given set of states B before hitting some other
set A, and we want to estimate the probability of this rare event. In some of these
settings, the Markov chain is a random walk on the real line, with i.i.d. incre-
ments, and the rare event occurs when the walks exceeds some fixed level. We
look at situations where the increments have light-tail and heavy-tail distribu-
tions, and we consider both state-independent and state-dependent IS schemes.
Our purpose is to study, in these settings, the different robustness properties
defined earlier, and to illustrate the differences between these properties.

The model is a Markov chain X = {X j , j ≥ 0} living on a state space S
equipped with a sigma-field F , with transition kernel K = {K (x, C) : x ∈
S, C ∈ F}. We use the notation Px(·) for the probability measure generated by
X given that X 0 = x. For C ⊂ S, define τC = inf{ j ≥ 0 : X j ∈ C}. Given A and

B, two disjoint subsets of S, and some fixed initial state x0 ∈ (A∪B)c def= S\A∪B,
we are interested in estimating γ (x0), where

γ (x) = γ (x, ε) = Px[τB < τA]

is the probability of reaching B before A (in finite time) when starting from
x ∈ S. (We implicitly assume all along that τB < τA implies that τB < ∞.) In
particular, γ (x) = 1 for x ∈ B and γ (x) = 0 for x ∈ A. In this model, K , A, and
B may depend on ε.

An importance sampling scheme here consists in replacing the kernel K
by another kernel, and multiplying the original estimator by the appropriate
likelihood ratio [Glynn and Iglehart 1989; Juneja and Shahabuddin 2006]. It is
well known that in this setting, a kernel K ∗ defined by

K ∗(x, dy) = K (x, dy)
γ ( y)

γ (x)

for all x such that γ (x) > 0, and (say) K ∗(x, A) = 1 when γ (x) = 0, gives a
zero-variance IS estimator [Juneja and Shahabuddin 2006]. This kernel K ∗

describes the conditional behavior of the chain given the event {τB < τA}; see
Blanchet and Glynn [2008, Theorem 1]. Unfortunately, one cannot use it in
practice to simulate the chain (in general), because this would require perfect
knowledge of the function γ (·). But in view of this characterization of the op-
timal change-of-measure, a natural strategy in developing a state-dependent
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importance sampling for estimating γ (x0) is to use as a change-of-measure a
transition kernel of the form

Kv(x, dy) = K (x, dy)
v( y)

w(x)
,

where v : S → [0, ∞) is a good approximation (in some sense) of the function
γ (·), and

w(x) =
∫
S

K (x, dy)v( y)

is the appropriate normalizing constant to make sure that Kv(x, ·) integrates
to 1. This w(x) is assumed to be finite for every x ∈ (A ∪ B)c. We shall use
P

v
x(·) to denote the probability measure generated by the chain X under the

kernel Kv(·), with initial state x, and E
v
x(·) for the corresponding expectation.

The corresponding IS estimator of γ (x0) is the indicator of the event multiplied
by the likelihood ratio associated with the change of measure and the realized
sample path:

Y = Y (ε) = I[τB < τA]
τB∏
j=1

w(X j−1)

v(X j )
= I[τB < τA]

v(X 0)

v(X τB )

τB−1∏
j=0

w(X j )

v(X j )
. (16)

Since we know that γ (x) = 1 for x ∈ B, we can take v(x) = 1 for all x ∈ B. Note
that when v = γ , we have w = v and the last product in (16) equals 1. Ideally,
we want v to be a good enough approximation to γ for this product to always
remain close to 1; in this case Y will always take a value close to γ (x0) when
τB < τA, which implies that most of the time the event {τB < τA} will occur.
Then, the variance of Y will be very small.

To rigorously prove robustness properties such as LE-k, BRM-k, and VRCM-
k, we may use an asymptotic lower bound on γ (x0, ε) and an asymptotic upper
bound on the kth moment of Y under the measure P

v
x0

(·), for ε → 0. The lower
bound may come from a known asymptotic approximation of γ (x0, ε), while
the upper bound can be obtained via a Lyapunov inequality as indicated in
Proposition 3.1. This proposition generalizes a result of Blanchet and Glynn
[2008], that corresponds to the case of k = 2, and which the authors have used
to establish the BRE property of a state-dependent estimator.

PROPOSITION 3.1. Suppose that there are two positive finite constants κ1 and
κ2 and a function hk : S → [0, ∞) such that v(x) ≥ κ1 and hk(x) ≥ κ2 for each
x ∈ B, and (

w(x)

v(x)

)k

E
v
x[hk(X 1)] ≤ hk(x) (17)

for all x ∈ (A ∪ B)c. Then, for all x ∈ (A ∪ B)c,

E
v
x[Y k] ≤ vk(x)hk(x)

κk
1 κ2

. (18)
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PROOF. Let M = {Mn, n ≥ 0} be defined via

Mn = hk
(
X τB∧n

) τB∧(n−1)∏
j=0

(
w(X j )

v(X j )

)k

I (τB ∧ n < τA) ,

where a∧b means min(a, b). We first show that under P
v
x(·), M is a nonnegative

supermartingale adapted to the filtration G = {Gn = σ (X 0, ..., X n), n ≥ 0}
generated by the chain X . Let τ = min(τA, τB) = τA∪B and note that τ is a
stopping time with respect to G, that is, {τ > n} ∈ Gn for all n.

We decompose

E
v
x[Mn+1 | Gn] = E

v
x

[
Mn+1 · I(τ > n) | Gn

] + E
v
x

[
Mn+1 · I(τ ≤ n) | Gn

]
and bound each of the two terms. We have

E
v
x

[
Mn+1 · I(τ > n) | Gn

]
= I (τ > n, τB ∧ n < τA)

n−1∏
j=0

(
w(X j )

v(X j )

)k

· E
v
x

[
hk (X n+1)

(
w (X n)

v (X n)

)k
∣∣∣∣∣Gn

]

≤ I (τ > n, τB ∧ n < τA) hk (X n)

n−1∏
j=0

(
w(X j )

v(X j )

)k

,

where the last inequality follows from (17). On the other hand,

E
v
x0

[Mn+1 · I (τ ≤ n) | Gn] = hk
(
X τB

) τB−1∏
j=0

(
w(X j )

v(X j )

)k

I (τB < τA, τ ≤ n) .

Combining these two inequalities, we obtain

E
v
x0

[Mn+1 | Gn] ≤ Mn.

It then follows from the supermartingale convergence theorem that

lim
n→∞ Mn = hk

(
X τB

) τB−1∏
j=0

(
w(X j )

v(X j )

)k

I (τB < τA)

almost surely. The supermartingale property further implies that

E
v
x0

[Mn] ≤ M0 = hk (x) .

Fatou’s lemma and the fact that hk(x) ≥ κ2 for x ∈ B imply that

κ2E
v
x

[
τB−1∏
j=0

(
w(X j )

v(X j )

)k

I (τB < τA)

]
≤ hk(x).

From this, we obtain that

E
v
x

[
Y k] = E

v
x

⎡
⎣I[τB < τA]

(
v(x)

v(X τB )

τB−1∏
j=0

w(X j )

v(X j )

)k
⎤
⎦ ≤

(
v(x)

κ1

)k hk(x)

κ2

,

which yields the result.
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As a consequence of the previous proposition, we obtain the following
theorem.

THEOREM 3.2. Assume that the conditions of Proposition 3.1 are satisfied.

(i) If

lim
ε→0

ln[v(x0, ε)] + k−1 ln[hk(x0, ε)]

ln[γ (x0, ε)]
= 1,

then Y (ε) is LE-k.
(ii) If

lim
ε→0

[
v(x0, ε)

γ (x0, ε)

]k

hk(x0, ε) < ∞,

then Y (ε) is BRM-k.
(iii) If

lim
ε→0

[
v(x0, ε)

γ (x0, ε)

]k hk(x0, ε)

κk
1 κ2

= 1,

then Y (ε) is VRCM-k.

PROOF. The three assertions follow immediately from the corresponding def-
initions; for (iii), we use the equivalence given in Proposition 2.19.

These sufficient conditions are often convenient to verify the BRM-k, LE-k,
and VRCM-k properties of a given estimator. We will use the first two in the next
section. It is clear that condition (iii) is much stronger than (ii), which is in turn
stronger that (i). Dupuis and Wang [2004] have a similar condition for LE-2,
and they interpret the Lyapunov function hk as a subsolution to the recurrence
equation of a stochastic game in which we select a change of measure (for IS)
and then a devil picks a set of sample paths with the worst-possible variance
contribution.

4. LARGE DEVIATION PROBABILITIES IN RANDOM WALKS

4.1 The Random Walk

Let D1, D2, . . . be i.i.d. random variables, Sj = D1 + · · · + D j (the j th partial
sum), for j ≥ 0. Note that {Sj , j ≥ 0} is a random walk over the real line. Take
a constant 	 > E[D j ], put n = n(ε) = �1/ε�, and let

γ (ε) = γ (ε, 	) = P[Sn/n ≥ 	].

The weak law of large numbers guarantees that γ (ε) → 0 when ε → 0. The
indicator function Y (ε) = I[Sn ≥ n	] is an unbiased estimator of γ (ε) with kth
moment E[Y k(ε)] = γ (ε), so its relative kth moment is

γ (ε)/γ k(ε) = 1/γ k−1(ε)

for all k ≥ 1. Thus, this estimator is not LE-k whenever k > 1.
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4.2 State-Independent Exponential Twisting Based on Large Deviation Theory

For this situation, it is well known that an LE-2 estimator can be obtained via
IS with exponential twisting, under the assumption that D j has a light tail
distribution [Siegmund 1976; Bucklew et al. 1990; Bucklew 2004], as we now
outline.

Suppose D j has density π over R, with finite moment generating function

M (θ ) =
∫ ∞

−∞
eθxπ (x)dx = E

[
eθ D j

]
for θ in a neighborhood of 0 (this is equivalent to assuming that D j has finite
moments of all orders). Let �(θ ) = ln M (θ ) denote the cumulant generating
function. Exponential twisting means inflating the density π (x) by a factor
that increases exponentially with x, and normalizing so that the new density
integrates to 1. This new density is

πθ (x) = eθxπ (x)/M (θ ) = eθx−�(θ )π (x), x ∈ R,

where θ > 0 is a parameter to be determined and M (θ ) turns out to be the
appropriate normalization constant. Let Eθ denote the mathematical expec-
tation associated with the new density πθ . It is easily seen that Eθ [D j ] =
� ′(θ ) = M ′(θ )/M (θ ) and � ′(0) = M ′(0) = μ. The IS estimator of γ (ε) under this
density is

Y (θ , ε) = I[Sn ≥ n	]L(θ , Sn),

where

L(θ , Sn) = exp[−θSn] M n(θ ) = exp[n�(θ ) − θSn].

We now assume that there exists a real number θ∗
	 > 0 such that � ′(θ∗

	 ) = 	.
This is typically the case because frequently, � ′(θ ) is continuous in θ , � ′(θ ) → ∞
when θ → θ0 for some θ0 > 0 (i.e., � ′(θ ) is what is called steep) and we know that
� ′(0) = μ < 	. Under steepness, the three propositions that follow are direct
consequences of the results of Sadowsky [1993]. They imply that for all k ≥ 2,
Y (θ∗

	 , ε) is LE-k but is not BRM-k. Sadowsky states his results only for integer
k, but his proofs work for any real k > 1. Let I (	) = 	θ∗

	 − �(θ∗
	 ); this function I

is known as the large deviation rate function.

PROPOSITION 4.1. For any k > 1 and any θ the estimator Y (θ , ε) is not BRM-k.
It is LE-k if and only if θ = θ∗

	 . In the latter case,

lim
ε→0

ln γ (ε)

n(ε)
= lim

ε→0

ln E[Y k(ε)]

kn(ε)
= I (	).

Suppose now that we make m(ε) i.i.d. copies of Y (θ , ε), take their average
μ̃(ε) as an estimator of μ, and take their sample variance σ̃ 2(ε) as an estimator
of the variance of Y (θ , ε).

PROPOSITION 4.2. Suppose that m(ε) ≡ m (a fixed constant). Then, for any
k ≥ 1, σ̃ 2(ε) is not BRM-k, and it is LE-k if and only if θ = θ∗

	 .
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PROPOSITION 4.3. Suppose that θ = θ∗
	 . Then, for all k > 1, μ̃(ε) is BRM-k if

and only if m(ε) = O(ε−1/2), and similarly for σ̃ 2(ε). On the other hand, these
estimators have a computational cost proportional to m(ε)n(ε) = O(ε−3/2). Since
their relative moments are �(1) when m(ε) = �(ε−1/2), their work-normalized
relative variance is unbounded.

4.3 A State-Dependent IS Scheme for Light-Tailed Sums

BRM-k for k > 1 cannot be obtained with a state-independent IS scheme as in
the previous section, but it can be achieved with a state-dependent IS scheme,
as we now explain. As a key ingredient, we use the following (asymptotic) ap-
proximation of γ (ε, 	) = P[Sn ≥ n	], taken from Asmussen [2003, page 355].

PROPOSITION 4.4. Assume that D1 has a density with respect to the Lebesgue
measure. Then, for fixed 	 and n → ∞,

P[Sn ≥ n	] = exp[−nI (	)]

[2πn� ′′(θ∗
	 )]1/2θ∗

	

[1 + o(1)]. (19)

The random walk model considered here fits the framework of Section 3 if
we define the state of the Markov chain at step j as X j = (n − j , L j ), where
n− j is the number of steps that remain and (n− j )L j = n	− Sj is the distance
that remains to be covered for Sn to reach n	. We start in state x0 = (0, 0), the
set B is {(0, 	n) : 	n ≤ 0}, and we have

γ (n − j , 	 j ) = P[Sn − Sj ≥ 	 − (n − j )	 j ] = P[Sn− j /(n − j ) ≥ 	 j ].

In view of (19), we can think of approximating γ (n − j , 	 j ) by

v(n − j , 	 j ) = exp[−(n − j )I (	 j )]

[2π (n − j )� ′′(θ∗
	 j

)]1/2
(20)

for j < n and 	 j > 0, and v(0, 	n) = I[	n ≤ 0]. The latter ensures that we hit
B with probability 1 under this IS scheme, because the last transition is made
under the distribution conditional on hitting B. When 	 j ≤ 0 for j < n, IS
is turned off for step j . For j < n − 1 and x = (n − j , 	 j ) with 	 j > 0, the
normalizing constant w(n − j , 	 j ) is

w(n − j , 	 j ) = E
v
x

[
exp[−(n − j − 1)I (L j+1)]

[2π (n − j − 1)� ′′(θ∗
L j+1

)]1/2
| L j = 	 j

]

where L j+1 = [(n − j )L j − D j+1)]/(n − j − 1). For j = n − 1, it is w(1, 	n−1) =
P[Dn > 	n−1] = γ (1, 	n−1). We have

max
n> j

[v(n − j , 	 j )/γ (n − j , 	 j )] < ∞

for any fixed j and 	 j . In our expression for v, we dropped the θ∗
	 that appears in

the denominator of (19) because it typically leads to a simpler density and does
not play a key role for the BRM-k property. If D1 has the normal distribution,
for example, then the IS scheme without the θ∗

	 in the denominator just changes
the parameters of the normal distribution.
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Under the assumption that D1 has the normal distribution, it is shown by
Blanchet and Glynn [2006] that w(n − j , 	 j )/v(n − j , 	 j ) ≤ 1 + (n − j )−2 for all
j < n. In that case, to establish the BRM-k property, we can define

hk(n − j , 	 j ) =
n− j∏
i=1

(1 + i−2)k

for j ≤ n, where an empty product equals 1 by convention. Then,(
w(n − j , 	 j )

v(n − j , 	 j )

)k

E
v
x

[
hk(n − j − 1, L j+1)

hk(n − j , L j )
| L j = 	 j

]

=
(

w(n − j , 	 j )

v(n − j , 	 j )

)k

(1 + (n − j )−2)−k ≤ 1,

so the conditions of Proposition 3.1 are satisfied with κ1 = κ2 = 1. Since the
function hk is bounded by K = ∏∞

i=1(1 + i−2)k < ∞, the BRM-k property for
all k ≥ 1 then follows from Part (ii) of Theorem 3.2; this gives the following
generalization of a result proved by Blanchet and Glynn [2006] for k = 2.

PROPOSITION 4.5. Suppose that D1 has a normal distribution. Then the IS
scheme that approximates the zero-variance estimator as in Section 3 by using
the function v defined in (20) as described earlier has the BRM-k property.

Under the change-of-measure adopted for the previous result, the Gaussian
property is preserved. That is, if the original (nominal) distribution of the D′

is
is a standard normal, then, given Sk = s for k < n − 1, Dk+1 is normally
distributed with mean (n	 − s)/(n − k − 1) and variance 1 + 1/(n − k − 1). This
explicit description indicates why the estimator enjoys BRM-k. In particular,
the twisting of the increment’s mean is adjusted at each time-step to direct the
process in the right direction and is turned off as the boundary n	 is approached.
Although the variance is twisted incrementally, it is the contribution of the drift
that drives the overshoot over the boundary in the standard (blind, or open loop)
independent and identically distributed (i.i.d.) exponential tilting. In fact, in
Blanchet et al. [2009], it is shown that it is possible to achieve BRM-k by tilting
the mean only (not the variance), so the tilting applied to the variance, although
convenient for the analysis because it comes from the asymptotic approximation
(19), is not crucial. The zero-variance change-of-measure can be shown to yield
an overshoot that remains bounded (in distribution) as n → ∞ [Blanchet and
Glynn 2006]. In contrast, because of the CLT, under the blind i.i.d. tilting the
overshoot is of order O(n1/2). Under the state-dependent importance sampling
discussed here, the growth of the overshoot is controlled and its contribution
when computing relative moments is well behaved. To get VRCM-k via Part
(iii) of Theorem 3.2, we would need hk(x0) = 1+o(1), which is not the case here.
In fact, most of the contribution to the kth relative moment comes from the
last few steps of the walk, and this contribution remains bounded away from 0
when n → ∞.

A similar development can be made for the non-Gaussian case, where D1 has
a general distribution with finite moment generating function [Blanchet et al.
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2009]. In fact, it turns out that BRM-k can be obtained by exponential twisting
alone if the twisting parameter is recomputed at each step. This is usually
easier to implement than the zero-variance approximation based on 19).

4.4 A Criterion for Multidimensional Random Walks

Dupuis and Wang [2004] have developed a criterion that allows to design state-
dependent IS estimators that are LE, in the context of a d -dimensional random
walk with light-tailed increments. They restrict their change of measure to
exponential twisting, but allow the twisting parameter to depend on the current
state of the walk. The techniques can be extended to cover more general Markov
processes [Dupuis and Wang 2005]. Here we summarize their results and argue
that the resulting estimators are LE-k for all k ≥ 1. Let Sj = D1 + · · · + D j ,
where the D j ’s are i.i.d. random variables with mean zero, taking their values
in R

d , and with cumulant generating function �(θ ) = ln E[exp(θ ·D1)] for θ ∈ R
d .

For simplicity, we assume that �(·) is finite throughout R
d .

We are interested in estimating P0(Sn/n ∈ B), for a set B ⊂ R
d that does

not contain 0. We assume as in Dupuis and Wang [2004] that the Legendre
transform of �, L(β) = supθ∈Rd (θ · β − �(θ )) satisfies

inf
β∈B∗∗

L(β) = inf
β∈B

L(β) = inf
β∈B̄

L(β),

where Ḃ and B̄ are the interior and closure of B, respectively. Note that the
one-dimensional setting of Sections 4.1 and 4.2 is a special case of this with
B = [	, ∞); things are generally more complicated in the multidimensional case
because we can reach B from many possible directions, whence the parameter
β. We further assume that it is possible to find a function

I = {
I (x, t) : x ∈ R

d , 0 ≤ t ≤ 1
}

,

that solves (in the classical sense) the nonlinear partial differential equation
(PDE)

∂t I (x, t) = � (−∇x I (x, t)) (21)

subject to I (x, 1) = 0 for x ∈ B and I (x, 1) = ∞ for x 
∈ B. The algorithm
suggested by Dupuis and Wang [2004] proceeds as follows. Let x = Sj /n for
some j < n; then let t = j/n and define

θ (x, t) = −∇x I (x, t) .

Sample the increment D j+1 according to the twisted distribution Pθ (x,t) defined
via

Pθ (x,t)

(
D j+1 ∈ d y

) = P
(
D j+1 ∈ d y

)
exp [θ (x, t) y − � (θ (x, t))] .

The estimator takes the form

Y = exp

(
n−1∑
j=0

[−θ (Sj , j/n)D j+1 + �(θ (Sj , j/n))]

)
I(Sn/n ∈ B).
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THEOREM 4.6 (EXTENDS DUPUIS AND WANG [2004]). Suppose that (21), with
the boundary conditions given before, has a solution I in the classical sense.
Let P

∗
0(·) be the probability measure generated by the previous state-dependent

IS strategy, given S0 = 0. Then,

lim
n→∞ −1

n
ln P0 (Sn/n ∈ B) = lim

n→∞ − 1

nk
ln E

∗
0[Y k] = I (0, 0),

so this estimator is LE-k for any k ≥ 1.

PROOF. We have written the description of the algorithm and the character-
ization of the solution to the Bellman equation derived by Dupuis and Wang
[2004] in a slightly different way. Our description corresponds basically to the
PDE approach derived in Section “Further remarks” of Dupuis and Wang [2004,
pages 495–496]. The Isaacs equation displayed on their page 495 can be solved
and yields (21), which corresponds exactly to their Eq. (4.5), with our function
I being denoted U in that paper. The proof that the algorithm verifies LE-
k follows the same sequence of arguments as the proof of their Theorem 3.1
for LE-2, assuming that the Isaacs equation is satisfied in a classical sense.
This equation holds if the solution to (21) is satisfied in the classical sense.
The modifications to the proof are as follows (in their notation). Replace 2 by
k in the definition of their function V n, in the theorem’s statement, and every-
where in the proof, including in the exponential that replaces the indicator in
the middle of their page 490. We also multiply −〈α, y〉 + H(α) and the func-
tion L by k − 1 wherever they appear from the last line of page 490 up to
Eq. (3.8). To obtain the modification of (3.6), we apply their Lemma 7.1 with
f ( y) = nW n

F (x + y/n, i + 1) + (k − 2)[〈α, y〉 − H(α)].

The previous result indicates that state-dependent samplers based on the
solution of the Isaacs equation, proposed in Dupuis and Wang [2004] to de-
sign estimators that are asymptotically optimal, also achieve LE-k for k > 2.
However, as pointed out in Section 3 of Dupuis and Wang [2004], in typical cir-
cumstances it is difficult (or impossible) to find a classical solution to the PDE
(21). However, one often can introduce a mollification procedure, applied to a
solution of this PDE in the weak sense (i.e., a solution for which the gradients
are not strictly defined at every single point in time and space). Examples of
such implementation schemes are described by Dupuis and Wang [2004] and
also, in the case of a path-dependent simulation example, by Blanchet et al.
[2006], both for k = 2. Similar techniques could be used for k > 2.

4.5 Heavy-Tailed Increments

We revisit the estimator proposed by Blanchet and Glynn [2008] for the steady-
state delay in a single-server queue, and show that it can be designed to achieve
BRM-k for all k ≥ 1. The model is again a random walk over the real line.

We have X j = x0 + D1 +· · ·+ D j where the D j ’s are independent and identi-
cally distributed (i.i.d.) with mean E[D j ] < 0, and x0 is some fixed constant. Let
B = B(ε) = [1/ε, ∞) and A = {∞}, so τB = inf{ j ≥ 1 : X j > 1/ε} and τA = ∞.
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We want to estimate γ (ε) = γ (0, ε), where

γ (x, ε) = Px[τB < ∞]

and Px represents the probability when x0 = x. This γ (x, ε) may represent
the probability of eventual ruin of an insurance company with initial reserve
−x +1/ε, using an appropriate interpretation of the D j ’s in terms of i.i.d. claim
sizes and interarrival times. It can also be interpreted as the tail of the steady-
state delay in a single-server queue [Asmussen 2003, page 260]. This model has
other applications as well. Note that when εx < 1, we have

γ (x, ε) = γ (0, ε/(1 − εx)). (22)

To keep the discussion simple, we shall assume that D j possesses a regularly
varying tail; that is, for each b > 0,

lim
t→∞

P (D j > bt)

P (D j > t)
= b−α

for some α > 1. The discussion that follows holds in greater generality, for
instance, including Weibull or lognormal tails; see Blanchet and Glynn [2008,
Section 3], for a more general framework.

In Blanchet and Glynn [2008], the authors propose to approximate γ (·)
in the zero-variance change of measure by some function v(·) such that
limε→0 v(x, ε)/γ (x, ε) = 1, and suggest a specific selection of v(·) that is later
proved to yield an IS estimator with BRE. More specifically, they introduce a
nonnegative random variable Z such that

P[Z > t] = min

(
1,

1

E[−D j ]

∫ ∞

t
P[D j > s]ds

)
. (23)

Motivated by a classical result stating that

lim
ε→0

P[Z > 1/ε]

γ (0, ε)
= 1, (24)

(see Asmussen [2003, page 296]), and based on the discussion leading to Eq. (16),
Blanchet and Glynn [2008] suggest using

v(x, ε) = va∗ (x, ε) = P[Z > a∗ + 1/ε − x],

with corresponding normalization constant

w(x, ε) = wa∗ (x, ε) = P[Z + D j > a∗ + 1/ε − x],

for some constant a∗ > 0 chosen to satisfy the Lyapunov inequality of Proposi-
tion 3.1 for k = 2.

As we now show, for each k ≥ 1, it is possible (and not difficult) to find a
constant a∗

k > 0 that can be proved to yield the BRM-k property via Proposi-
tion 3.1. For this, we will use the following result, which follows directly from
Proposition 3 of Blanchet and Glynn [2008].
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PROPOSITION 4.7. For each k > 1 and δ ∈ (0, 1), there is a real number a∗
k > 0

such that

−δ ≤
vk

a∗
k
(x, ε) − wk

a∗
k
(x, ε)

P[D j > x + a∗
k]wk−1

a∗
k

(x, ε)
(25)

for all x ≤ 1/ε.

The constant a∗
k can be computed numerically, and the pair (δ, a∗

k) could even-
tually be selected to minimize the upper bound on the relative moment of order
k given by the next theorem. This upper bound implies the BRM-k property.

THEOREM 4.8. Fix δ ∈ (0, 1), select a∗
k > 0 that satisfies (25), and let κ(a∗

k) =
infx∈B va∗

k
(x, ε) = P[Z > a∗

k]. Then,

E
v
x[Y k] ≤

vk
a∗

k
(x, ε)

(1 − δ)
(
κ

(
a∗

k

))k

and consequently

lim sup
ε→0

E
v
0

[
Y k

]
γ k(0, ε)

≤ 1

(1 − δ)
(
κ

(
a∗

k

))k < ∞.

PROOF. Define

hk(x) = I
(
x − a∗

k ≤ 1/ε
) + (1 − δ)I

(
x − a∗

k > 1/ε
)
.

For x ≤ 1/ε, the Lyapunov condition in Proposition 3.1 takes the form(
wa∗

k
(x, ε)

va∗
k
(x, ε)

)k−1
E

[
va∗

k (D1 + x, ε) hk (D1 + x)
]

va∗
k
(x, ε)

≤ 1.

This is equivalent to

E
[
va∗

k (D1 + x, ε) hk (D1 + x)
]

wa∗
k
(x, ε)

≤
(

wa∗
k
(x, ε)

va∗
k
(x, ε)

)k

. (26)

Using the interpretation of va∗
k
(·, ε) as a tail probability, we have

E
[
va∗

k (D1 + x, ε) (hk (D1 + x) − 1)
]

wa∗
k
(x, ε)

= −δ
E

[
P

(
Z + D1 > a∗

k + 1/ε − x | D1

) · I
(
D1 > a∗

k + 1/ε − x
)]

P
(
Z + D1 > a∗

k + 1/ε − x
)

= −δ P
(
D1 > a∗

k + 1/ε − x | Z + D1 > a∗
k + 1/ε − x

)
.

Therefore, showing (26) is equivalent to establishing that

−δ P
(
D1 > a∗

k + 1/ε − x | Z + D1 > a∗
k + 1/ε − x

) ≤
vk

a∗
k
(x, ε) − wk

a∗
k
(x, ε)

wk
a∗

k
(x, ε)

.
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Since Z ≥ 0, this in turn is equivalent to the inequality

−δ ≤
vk

a∗
k
(x, ε) − wk

a∗
k
(x, ε)

P
(
D1 > a∗

k + 1/ε − x
)

wk−1
a∗

k
(x, ε)

,

which holds by definition of a∗
k . The conclusion then follows directly from Propo-

sition 3.1 and the fact that limε→0 v(0, ε)/γ (0, ε) = 1.

The next example underlines the fact that finding an approximation v that
provides BRM-k is not so obvious, and that the approximation must be good over
a very wide range of states. In particular, it shows that even if v(x, ε) = γ (x, ε)
whenever ε is small enough, for any given x, one can still obtain an estimator
that fails to achieve BRM-k or LE-k.

Example 4.9. Suppose we take

v(x, ε) = γ (x, ε)I (x ≤ cε) + I (x > cε) .

This gives

v(x, ε) ≤ γ (cε, ε)I (x ≤ cε) + I (x > cε) ;

w(x, ε) ≥ P (D1 + x > cε) .

We will choose cε as a function of ε so that cε → ∞. Then, for any fixed x, v(x, ε) =
γ (x, ε) when ε is small enough, which means that the function v(·) converges
pointwise to γ (·) when ε → 0. A natural question is if such approximation would
be enough for BRM-k? We are interested in the kth moment

E
v
0

[
Y k] = E

v
0

⎡
⎣(

τB−1∏
j=0

w(X k , ε)

v(X k , ε)

)k

I (τB < ∞)

⎤
⎦

= E0

⎡
⎣(

τB−1∏
j=0

w(X k , ε)

v(X k , ε)

)k−1
I (τB < ∞)

v(0, ε)

⎤
⎦ .

Our bounds on w(x, ε) and v(x, ε) imply that

w(x, ε)

v(x, ε)
≥ P (D1 + x > cε)

γ (cε, ε)I (x ≤ cε) + I (x > cε)
≥ P (D1 + x > cε)

γ (cε, ε)
I (x ≤ cε) .

Therefore,

E0

⎡
⎣(

τB−1∏
j=0

w(X k , ε)

v(X k , ε)

)k−1
I (τB < ∞)

v(0, ε)

⎤
⎦ ≥

(
P (D1 > cε)

γ (cε, ε)

)k−1
P0

(
τB = 1

)
v(0, ε)

.

For simplicity, let us assume that D1 has Pareto-type tails with index α > 1. In
particular, P(D1 > t)tα → c > 0 as t → ∞ and, because of (22), (23), and (24),

γ (cε , ε) = γ (0, ε/(1 − εcε)) = �
(
P[Z > (1 − εcε)/ε]

)
= �

(∫ ∞

(1−εcε )/ε

ct−αdt
)

= �((1 − εcε)/ε)1−α = �(εα−1)
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as ε → 0 whenever εcε = o(1) as ε → 0. Suppose we take cε = ε−β for some β ∈
(0, 1). Then, the right-hand side of the previous inequality is �(εβα(k−1)/εk(α−1)),
which blows up for ε → 0 whenever β < k(α − 1)/(α(k − 1)) .

The problem here is the contribution of the likelihood ratio corresponding to
the interval (cε, 1/ε] in the state space, due to a bad approximation of the zero-
variance importance sampler in that region of the state space. The contribution
of the likelihood ratio corresponding to this bad approximation is captured,
most importantly, by the normalizing constant w(x, ε), which involves a first
transition expectation. This expectation must account for the possibility that
the process jumps to the bad region and this possibility is quantified and added
to the likelihood ratio. The accumulation of all these contributions induces
a poor behavior of the overall importance sampling strategy by inflating the
moments of the likelihood ratio. This problem could be cured by increasing cε

at a faster speed.

5. HIGHLY RELIABLE MARKOVIAN SYSTEMS

5.1 The Model

We consider an HRMS with c types of components and ni components of type
i, for i = 1, . . . , c. Each component is either in a failed state or an operational
state. The state of the system is represented by a vector x = (x(1), . . . , x(c)), where
x(i) is the number of failed components of type i. Thus, we have a finite state
space S of cardinality (n1 + 1) · · · (nc + 1). We suppose that S is partitioned in
two subsets U and F , where U is a decreasing set (i.e., if x ∈ U and x ≥ y ∈ S,
then y ∈ U) that contains the state 0 = (0, . . . , 0) in which all the components
are operational. We say that y ≺ x when y ≤ x and y 
= x.

Following Shahabuddin [1994], we assume that the times to failure and times
to repair of the individual components are independent exponential random
variables with respective rates

λi(x) = ai(x)εbi (x) and μi(x) = �(1) (27)

for type-i components when the current state is x, where ai(x) > 0 and bi(x) ≥ 1
are real numbers for each i. The parameter ε � 1 represents the rarity of fail-
ures; the failure rates tend to zero when ε → 0. The choice of parameterization
determines in what asymptotic regime the system is studied. Failure propaga-
tion is allowed: from state x, there is a probability pi(x, y) (which may depend
on ε) that the failure of a type-i component directly drives the system to state
y , in which there could be additional component failures. Thus, the net jump
rate from x to y is

λ(x, y) =
c∑

i=1

λi(x)pi(x, y) = O(ε).

Similarly, the repair rate from state x to state y is μ(x, y) (with possible
grouped repairs), where μ(x, y) does not depend on ε (i.e., repairs are not rare
events when they are possible). The system starts in state 0 and we want
to estimate the probability γ (ε) that it reaches the set F before returning to
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state 0. Estimating this probability is relevant in many practical situations
[Heidelberger 1995; Juneja and Shahabuddin 2006].

This model evolves as a continuous-time Markov chain (CTMC) (Z (t), t ≥ 0},
where Z (t) is the system’s state at time t. Its canonically embedded discrete-
time Markov chain (DTMC) is {X j , j ≥ 0}, defined by X j = Z (ξ j ) for j =
0, 1, 2, . . . , where ξ0 = 0 and 0 < ξ1 < ξ2 < · · · are the jump times of the CTMC.
Since the quantity of interest here, γ (ε), does not depend on the jump times
of the CTMC, it suffices to simulate the DTMC. This chain {X j , j ≥ 0} has
transition probability matrix P with elements

P(x, y) = P[X j = y | X j−1 = x] = λ(x, y)/q(x)

if the transition from x to y corresponds to a failure and

P(x, y) = μ(x, y)/q(x)

if it corresponds to a repair, where

q(x) =
∑
y∈S

(λ(x, y) + μ(x, y))

is the total jump rate out of x, for all x, y in S. We will use P to denote the
corresponding measure on the sample paths of the DTMC.

To fit the framework of Section 3, we must distinguish two cases for state 0:
(1) when we are in the initial state X 0 = 0 and (2) if we return to that state
later on. We consider them as two different states; in the second case, we will
call the state 0′ to make the distinction. Then, we have A = {0′}, B = F , and
γ (ε) = P[τB < τA].

Let � denote the set of pairs (x, y) ∈ S2 for which P(x, y) > 0. Our final
assumptions are that the DTMC is irreducible on S and that for every state
x ∈ S, x 
= 0, there exists a state y ≺ x such that (x, y) ∈ � (that is, at least
one repairman is active whenever a component is failed). We further assume
that from state 0, the failures with probability in �(1) do not directly lead to F ,
since otherwise γ (ε) = �(1) is not a rare event probability. Shahabuddin [1994]
shows that for this model, there is a real number r > 0 such that γ (ε) = �(εr ),
that is, the probability of interest decreases at a polynomial rate when ε → 0.
Nakayama [1996] makes the additional assumption that the bi(x) are positive
integers; in that case, r is always an integer. We also make this assumption for
the remainder of the article, to simplify the analysis.

5.2 IS for the HRMS Model

Several IS schemes have been proposed in the literature for this HRMS model;
see, for example, Cancela et al. [2002], Nakayama [1996], and Shahabuddin
[1994]. Here we first limit ourselves to the so-called simple failure biasing
(SFB), also named Bias1, and then consider more general classes of changes of
measures determined by certain sets of conditions. Our aim is to analyze the
robustness properties under that scheme, and not to try approaching the zero-
variance IS as in Example 2.23. We do not claim that SFB is a good IS scheme.
SFB changes the matrix P to a new matrix P∗ defined as follows. For states
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x ∈ F ∪ {0} ∪ {0′}, we have P∗(x, y) = P(x, y) for all y ∈ S, that is, the transi-
tion probabilities are unchanged. For any other state x, a fixed probability ρ is
assigned to the set of all failure transitions, and a probability 1 − ρ is assigned
to the set of all repair transitions. In each of these two subsets, the individual
probabilities are taken proportionally to the original ones. Note that the IS does
not depend on the parameterization by ε; it depends only on the actual rates.
Under certain additional assumptions, this change of measure increases the
probability of failure when the system is up, in a way that failure transitions
are no longer rare events, that is, P

∗[τB < τA] = �(1).
For a given sample path ending at step τ = min(τA, τB), the likelihood ratio

for this change of measure can be written as

L = L(X 0, . . . , X τ ) = P[(X 0, . . . , X τ )]

P∗[(X 0, . . . , X τ )]
=

τ∏
j=1

P(X j−1, X j )

P∗(X j−1, X j )

and the corresponding (unbiased) IS estimator of γ (ε) is given by

Y (ε) = L(X 0, . . . , X τ ) I [τB < τA] . (28)

We will now examine the robustness properties of this estimator under the SFB
sampling.

5.3 Asymptotic Robustness for the HRMS Model Under IS

For this HRMS model, a characterization of the IS schemes that satisfy the BRE
property was obtained by Nakayama [1996] and the equivalence between BRE
and LE for this model was mentioned without proof in Heidelberger [1995].
Our first result generalizes this, for SFB. Note that under a static change of
measure such as SFB, the expected computing time is �(1).

PROPOSITION 5.1. In the HRMS framework adopted here, with SFB, the two
properties BRM-k and LE-k are equivalent. These two properties are also equiv-
alent for the gth empirical moment of Y (ε) and for its empirical variance.

PROOF. Recall that Shahabuddin [1994] proves that γ (ε) = �(εr ) for some
integer r ≥ 0. Following the same argument, just replacing the likelihood ratio
L by Lg , we can show (as done by Tuffin [1999] for the second moment) that
there is a constant sg ≤ gr such that

E[Y g (ε)] = �(εsg ), (29)

where Y (ε) is defined in (28). Note that s1 = r. From Jensen’s inequality, we
also have sk g ≤ ksg . The equivalence between LE-k and BRM-k for the gth
empirical moment then follows from Example 2.13. The case of the empirical
variance is handled by replacing Y (ε) by S2

n(ε); one can see that each moment
of S2

n(ε) is �(εν) for some ν ≥ 0 and the result follows easily from this and
Example 2.13.

Our next result characterizes BRM-k for the gth empirical moment in the
HRMS framework. In particular, it gives characterizations of BRM-k for Y (ε),
as well as BRM-k and LE-k for S2

n(ε). It requires additional notation. We no
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longer limit our change of measure for IS to SFB, but we restrict it to a class I
of measures P

∗ defined by a transition probability matrix P∗ with the following
property: whenever (x, y) ∈ � and P(x, y) = �(εd ), then P∗(x, y) = �(ε	) for
	 ≤ d . This means that the probability of a transition under the new probability
transition matrix is never significantly smaller than under the original one.
From now on, we assume that P∗ satisfies this property. Note that SFB and all
other IS schemes developed in the literature belong to this class.

We define the following sets of sample paths. We have

�m = {(x0, . . . , xn) : n ≥ 1, x0 = 0, xn ∈ F ,

x j 
∈ {0′, F} and (x j−1, x j ) ∈ � for 1 ≤ j ≤ n,

and P
[
(X 0, . . . , X τ ) = (x0, . . . , xn)

] = �(εm)};

� =
∞⋃

m=r

�m;

this � is the set of all paths that lead to the rare event.
We now derive a necessary and sufficient condition on P

∗ for BRM-k of the
gth moment. This result means that a path cannot be too rare under the IS
measure P

∗ to verify BRM-k for the gth moment. Special cases of this result
were obtained under the same conditions in Nakayama [1996] for BRE (k = 2
and g = 1), where it was shown that 	 ≤ 2m − r is needed, and in Tuffin [1999,
2004] for BNA, where the necessary and sufficient condition is 	 ≤ 3m/2−3s/4,
where s is the real number such that σ 2(ε) = �(εs). Note that s = s2 if and only
if σ 2(ε) = �(Y 2(ε)), where sg is defined via (29).

THEOREM 5.2. For an IS measure P
∗ ∈ I, we have BRM-k for the gth em-

pirical moment if and only if for all integers m such that r ≤ m < ksg and all
paths (x0, . . . , xn) ∈ �m,

P
∗{(X 0, . . . , X τ ) = (x0, . . . , xn)} = �(ε	)

for some 	 ≤ k(mg − sg )/(k g − 1).

PROOF. For k = g = 1, the interval for m is empty and we always have
BRM-1 for the first moment, so the result holds. We now suppose that k g > 1.

(a) Necessary condition. Suppose that there exist m ∈ N and (x0, . . . , xn) ∈ �m

such that P
∗{(X 0, . . . , X τ ) = (x0, . . . , xn)} = �(εk(mg−sg )/(k g−1)+	′

) with 	′ > 0 and
m < ksg . Then we have

E[(Y (ε))k g ] ≥ L(x0, . . . , xn)k g
P

∗ [
(X 0, . . . , X τ ) = (x0, . . . , xn)

]
= �(εk g (m−k(mg−sg )/(k g−1)−	′)+k(mg−sg )/(k g−1)+	′

)

= �(εksg −(k g−1)	′
).

Thus E[(Y (ε))k g ]/E[(Y (ε))g ]k = O(ε−(k g−1)	′
), which is unbounded when ε → 0.

(b) Sufficient condition. Let (x0, . . . , xn) ∈ �m such that m < ksg . Under the
given condition, we have

P
∗[(X 0, . . . , X τ ) = (x0, . . . , xn)] = �(ε	)
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for some 	 ≤ k(mg − sg )/(kg − 1). Then,

(L(x0, . . . , xn))kg
P

∗[(X 0, . . . , X τ ) = (x0, . . . , xn)] = �(εkgm)

�(εkg	)
�(ε	) = O(εksg ).

Using the fact that |�m| < ∞ from the first part of Nakayama [1996, Lemma 1
ii)], we have∑

r≤m<ksg

∑
(x0,... ,xn)∈�m

(L(x0, . . . , xn))k g
P

∗[(X 0, . . . , X τF ) = (x0, . . . , xn)] = O(εksg ).

(30)

Also, using again Nakayama [1996, Lemma 1] (with N the total number of
components, and α, β, and δ constant),

∞∑
m=ksg

∑
(x0,... ,xn)∈�m

[L(x0, . . . , xn)]k g
P

∗[(X 0, . . . , X τ ) = (x0, . . . , xn)]

≤
∞∑

m=ksg

∑
(x0,... ,xn)∈�m

δm+1αβmεm

≤
∞∑

m=ksg

|S|(m+1)N δm+1αβmεm

= αδ|S|N
∞∑

m=ksg

(
|S|(m+1)δβε

)m

= �(εksg ). (31)

Combining (30) and (31) gives E[(Y (ε))k g ] = O(εksg ), meaning that we have
BRM-k of the gth moment.

In Tuffin [1999], a different class J of measures P
∗ defined by a transition

probability matrix P∗ is used, motivated by the fact that absolute centered
moments were considered. This class is more restrictive: for such a P∗, whenever
(x, y) ∈ � and P(x, y) = �(εd ), if y � x 
= 0, then P∗(x, y) = �(ε	) with 	 < d ,
whereas if x � y or if y � x = 0, then P∗(x, y) = �(ε	) with 	 ≤ d . Using
this class of measures, we could show, by similar arguments to those given
previously and in Tuffin [1999, 2004], that we have BRM-k for the gth moment
if and only if for all integers 	 and m such that m−	 < r, and all (x0, . . . , xn) ∈ �m

with P
∗{(X 0, . . . , X τ ) = (x0, . . . , xn)} = �(ε	), we have 	 ≤ k(mg − sg )/(k g − 1).

The difference in the characterization is then in terms of the set of paths. Note
that the set here is more restrictive (because the class of functions is more
restrictive too). Indeed, if m − 	 < r = s1, then m < 	 + s1 ≤ ksg for all g ≥ 2.

In the specific case of the empirical mean and variance, we have the following.

COROLLARY 5.3. For an IS measure P
∗ ∈ I, we have BRM-k for Y (ε) if and

only if for all integers m such that r ≤ m < kr and all (x0, . . . , xn) ∈ �m,

P
∗{(X 0, . . . , X τ ) = (x0, . . . , xn)} = �(ε	)

for 	 ≤ k(m − r)/(k − 1). We also have BRM-k for Y 2(ε) if and only if the same
condition holds with 	 ≤ k(2m − s2)/(2k − 1) . We have BRM-k for the empirical
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variance if and only if 	 ≤ k(2m − s)/(2k − 1).

The following additional relationships between measures of robustness were
proved in Tuffin [2004].

PROPOSITION 5.4. In our HRMS framework with an IS sampling scheme in
J , BNA implies AGEV, which implies BRE, which implies AGEM. For each of
these implications, the converse is not true.

The next result implies that IS sampling schemes in I cannot provide
VRMC-k.

PROPOSITION 5.5. In our HRMS setting, with an IS measure in I, we have
E[(Y (ε) − γ (ε))k] = O(γ k(ε)) for all k ≥ 1. In particular, σ 2(ε) = O(γ 2(ε)).

PROOF. From our assumptions, there is a path π = (0, x, . . . , 0′) that does
not hit F , such that the initial failure leading to the transition from 0 to x has
probability �(1) (because no repair is possible from state 0), and thereafter has
only repairs until we return to 0′. (We must have x 
∈ F because otherwise
γ (ε) = �(1).) This path has probability �(1) under IS. Since

E[(Y (ε) − γ (ε))k] = E[(L I(τB < τA) − γ (ε))k]

≥ γ k(ε) P[(X 0, . . . , X τ ) = π ]

= �(γ k(ε)),

we get that E[(Y (ε) − γ (ε))k] = O(γ k(ε)).

Our necessary and sufficient conditions in Theorem 5.2 lead to the following
results.

PROPOSITION 5.6. For an IS scheme in I, BRM-k and LE-k for the gth mo-
ment are equivalent. Similarly, for S2

n(ε), BRE and LE are equivalent.

PROOF. The first part follows again directly from Example 2.13, using the
fact that E[(Y (ε))g ] = �(εsg ) and E[(Y (ε))k g ] = �(εsk g ) with skg ≤ ksg from
Jensen’s inequality. For the empirical variance, we use the arguments of the
same examples, combined with the fact that σ 2(ε) = �(εs) and E[S4

n(ε)] = �(εt)
with t ≤ 2s.

Next we show that BRM-2 and LE-2 for S2
n(ε) are stronger than BNA when

using the class of measures J .

PROPOSITION 5.7. Under an importance measure in J , BRM-2 for S2
n(ε) im-

plies BNA.

PROOF. This is a direct consequence of the necessary and sufficient con-
ditions over the paths for the BNA and BRM-2 properties. These conditions
are that for all 	 and m such that m − 	 < r, and such that there is a
path (x0, . . . , xn) ∈ � for which P{(X 0, . . . , X τ ) = (x0, . . . , xn)} = �(εm) and
P

∗{(X 0, . . . , X τ ) = (x0, . . . , xn)} = �(ε	), we must have 	 ≤ 4m/3−2s/3 for BRM-
2 for S2

n(ε) and 	 ≤ 3m/2 − 3s/4 for BNA. But 4m/3 − 2s/3 = 8/9(3m/2 − 3s/4),
so the theorem is proved if we always have 3m/2 − 3s/4 ≥ 0, that is, 2m ≥ s,
which is true since 2m ≥ 2r ≥ s.
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The following counterexample shows that the converse is not true: there are
systems and IS measures P

∗ for which BNA is verified but not BRM-2 for S2
n(ε).

Fig. 1. A two-dimensional model with its transition probabilities.

Fig. 2. A two-dimensional example with SFB transition probabilities.

Example 5.8. We consider the same system as in Example 2.22, with two
component types and two components of each type. The original transition prob-
abilities are shown in Figure 1, and those using SFB failure biasing can be seen
in Figure 2. The states in F are colored in gray. For this model, as can be easily
seen in Figure 1, r = 6 and �6 is comprised of the single path ((2, 2), (1, 2), (0, 2)).
Moreover, s = s2 = 12 and the sole path in � such that

P
2{(X 0, . . . , X τ ) = (x0, . . . , xn)}

P∗{(X 0, . . . , X τ ) = (x0, . . . , xn)} = �(ε12)
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is the path in �6 for which Figure 2 shows that it is �(1) under probability
measure P

∗. If 	 is the integer such that P{(X 0, . . . , X τ ) = (x0, . . . , xn)} = �(εm)
and P

∗{(X 0, . . . , X τ ) = (x0, . . . , xn)} = �(ε	), it can also be readily checked that
	 ≤ 3m/2−3s/4 for all paths, meaning that BNA is verified. However, the path
((2, 2), (2, 1), (2, 0)) is such that m = 14 and 	 = 12. Then 12 = 	 > 4m/3−2s/3 =
32/3, so the necessary and sufficient condition of Theorem 5.2 for k = g = 2 is
not verified. So we have BNA but not BRM-2 for S2

n(ε). It is also easy to verify
that for this example, we have BRM-3 but not BRM-4.

6. CONCLUSION

We have introduced and studied several new characterizations of the asymp-
totic robustness of estimators in the context of rare-event simulation. For k > 2,
the new properties of BRM-k and LE-k are relevant whenever we estimate
higher moments than the mean. The new concept of VRCM-k is much stronger
than the standard concepts of BRE and LE, which have been the usual targets
when defining IS schemes over the last decade. The design of estimators with
the VRCM-k property is a quite interesting challenge for the coming years. For
certain classes of applications, this could lead to much more efficient estimators
than those currently available. In fact, such estimators have already started to
appear very recently. Another important topic for further research is the devel-
opment of an appropriate framework to analyze work-normalized versions of
the asymptotic robustness properties examined here. It would have to address
the difficulties discussed in the introduction.
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