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Abstract Harris recurrence is a widely used tool in the analysis of queueing systems.
For discrete time Harris chains, such systems automatically exhibit wide-sense regen-
erative structure, so that renewal theory can be applied to questions related to con-
vergence of the transition probabilities to the equilibrium distribution. By contrast, in
continuous time, the question of whether all Harris recurrent Markov processes are
automatically wide-sense regenerative is an open problem.This paper reviews the
key structural results related to regeneration for discrete time chains and continuous
time Markov processes, and describes the key remaining openproblem in this subject
area.
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1 Introduction

In constructing a queueing model, the first order of businessis typically to estab-
lish the conditions under which the system is stable. The stability (or instability) of
the model has both important performance engineering implications and fundamental
mathematical consequences. When the model inputs are stationary sequences, stabil-
ity is often established using tools based on ergodic theoryand monotonicity; see,
for example, [11]. A much richer class of tools exists when the model inputs form
independent and identically distributed (iid) sequences,in which case the system can
typically be studied as a Markov chain or Markov process. Particularly nice mathe-
matical properties ensue when the chain or process can be established to be Harris
recurrent. For example, Harris recurrence is known to implyexistence of invariant
measures, as well as laws of large numbers and central limit theorems.
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Harris recurrence underlies much of the extensive stability theory for queues that
have been developed over the last twenty years. For example,the very useful connec-
tions that have been developed between fluid model stabilityand queueing network
stability rest on a framework in which (deterministic) fluidstability is shown to im-
ply (positive) Harris recurrence of the associated (stochastic) queueing model; see
[4]. Harris recurrence has also been exploited in the study of stability of Brownian
queueing models, as investigated (for example) in [9]. Finally, it should be noted that
a middle ground between the tractability of assuming iid model inputs and the gen-
erality of stationary process inputs arises when the inputsare assumed themselves to
be Harris recurrent Markov processes. Providing conditions under which the queue
is then Harris recurrent underlies the approach developed in [15].

Harris recurrence also can be fruitfully exploited in the development of numerical
algorithms for studying queues, specifically Monte Carlo simulation-based methods.
In particular, Harris recurrence implies that the process exhibits one-dependent re-
generative structure, which can then be utilized to (significantly) simplify the con-
struction of confidence intervals for equilibrium expectations; see [6] for details.

In view of the important connections between queueing theory and Harris recur-
rence, we discuss in this paper a key mathematical question that remains open in our
understanding of Harris recurrence in continuous time: When is the theory of renewal
equations applicable to the study of such processes? This essentially comes down to
determining whether all such processes are wide-sense regenerative. In the remainder
of this paper, we review in Section 2 the key results in the theory of Harris recurrence
for discrete-time Markov chains. Section 3 then describes the corresponding theory
in continuous time, and presents our open problem.

2 Harris Recurrent Markov Chains

Let X = (Xn : n≥ 0) be a (time-homogeneous) Markov chain taking values in a sep-
arable metric spaceS, endowed with Borelσ -algebraS . We denote the associated
probability and expectation operator under whichX0 = x∈ Sby Px(·) and Ex(·), re-
spectively. Such a Markov chainX is said to beHarris recurrent if there exists a
non-trivialσ -finite measureη on (S,S ) for which η(A)> 0 implies that

∞

∑
i=1

I(Xn ∈ A) = ∞ Px a.s. (2.1)

for eachx∈ S. A clearly equivalent characterization of Harris recurrence is to require
that wheneverη(A)> 0,

τA < ∞ Px a.s. (2.2)

for eachx∈ S, whereτA = inf{n≥ 0 : Xn ∈ A} is the first hitting time ofA.
However, in the presence of the separability ofS (and the consequent countable

generation ofS ), an additional interesting and non-trivial re-formulation of Harris
recurrence is possible. In particular, Harris recurrence is then equivalent to existence
of anS -measurable subsetK ⊆ S (called asmall setin [12]) for which there exists
λ > 0, a probabilityϕ onS, andm≥ 1 such that:
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i) τK < ∞ Px a.s. for eachx∈ S;
ii) Px(Xm ∈ B)≥ λ ϕ(B) for x∈ K andB∈ S .

In the presence of the above re-formulation, [13] and [2] recognized that condition
ii) permits one to write them-step transition probabilities in the form

Px(Xm ∈ ·) = λ ϕ(·)+ (1−λ )Q(x, ·) (2.3)

for x∈K, whereλ necessarily must lie in(0,1] and(Q(x,B) : B∈S ) is a probability
onS for eachx∈ K. In view of (2.3), one can identify regenerative structure for X as
follows:

Suppose that X visits K at timeτ. Flip a λ -coin. If theλ -coin comes up “heads”,
distribute Xτ+m according toϕ ; if the λ -coin comes up “tails”, distribute Xτ+m ac-
cording to Q(Xτ , ·). Then, generate(Xτ+1, . . . ,Xτ+m−1), conditional on(Xτ ,Xτ+m).

Conditional on the coin coming up “heads”,Xτ+m has a distributionϕ that is
independent of the positionXτ m time units earlier. Thus, the timeT = τ +m is a
randomized stopping time that exhibits regenerative structure. Of course, condition i)
ensures that infinitely many such regeneration timesT0,T1,T2, . . . occur at whichXTi

has distributionϕ . The regeneration times(Tn : n≥ 0) constructed in this way have
the following properties:

Property 1: SetT−1 = 0 and letWj =((Xk,Tj −Tj−1) : Tj−1 ≤ k< Tj) be thej ’th cycle
induced by(Tn : n≥ 0). Then, the sequence(Wj : j ≥ 0) is a one-dependent sequence
of random elements (in the sense that(Wk : k≤ j) is independent of(Wk : k≥ j +2)).
Furthermore,(Wk : k≥ 1) is a sequence of identically distributed random elements. In
view of this cycle structure,X is said to possessone-dependent regenerative cycles.

Property 2: For eachn ≥ 0, (XTn+k : k ≥ 0) is independent ofTn (and, of course,
(XTn+k : k ≥ 0) is identically distributed inn as a consequence of Property 1). This
means, by definition, thatX is awide-sense regenerative process.

Whenm= 1, the cycles(Wj : j ≥ 0) are actually independent, so thatX is then
a (classically)regenerative process. (In fact, [14] proves that cycle independence im-
plies that condition ii) then must hold withm= 1.) The existence of one-dependent
cycle structure then permits one to easily establish laws oflarge numbers, central
limit theorems, laws of the iterated logarithm and other limit results that are valu-
able both theoretically and computationally (in simulation of such processes) under
the weakest possible conditions; see [7] and [8] for a discussion of necessary and
sufficient conditions for such limit theorems whenX is classically regenerative.

On the other hand, in the presence of wide-sense regeneration, it follows that if
P(X0 ∈ ·) = ϕ(·) (so thatT0 = 0 andX is a non-delayed regenerative process), then

E f (Xn) = E f (Xn)I(T1 > n)+
n

∑
j=1

E f (Xn− j)P(T1 = j)
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for (measurable)f : S→ R+. This permits one to apply the full arsenal of renewal
theory to the study of the Markov chainX. In particular, renewal-theoretic methods
offer a powerful device for obtaining conditions under which Xn converges to a limit
X∞ in total variation distance, as well as in computing associated rates of convergence.

3 Harris Recurrent Markov Processes

Let X = (X(t) : t ≥ 0) be a (time-homogeneous) strong Markov process taking values
in a separable metric spaceS, endowed with Borelσ -algebraS , and possessing
sample paths that are right continuous with left limits. Analogously to discrete time,
X is said to beHarris recurrent(in continuous time) if there exists a non-trivialσ -
finite measureη on (S,S ) for whichη(A)> 0 implies that

∫ ∞

0
I(X(t) ∈ A)dt = ∞ Px a.s. (3.1)

for eachx ∈ S; see [3] for this definition. As shown in [10], (3.1) is equivalent to
existence of a non-trivialσ -finite measureν on (S,S ) for which ν(A) > 0 implies
that

τA < ∞ Px a.s. (3.2)

for eachx ∈ S, whereτA = inf{t ≥ 0 : X(t) ∈ A}. Note that in continuous time, the
measureν need not coincide withη as must be the case in discrete time; see (2.1)
and (2.2). (For example, a one-dimensional recurrent diffusion visits points infinitely
often, and yet spends zero time there.)

Note that if (Γn : n ≥ 0) is the sequence of jump times of a unit rate Poisson
process independent ofX, then(X(Γn) : n≥ 0) is a time-homogeneous Markov chain
taking values inS. Furthermore, it is easily verified that (3.1) implies that

∞

∑
n=0

I(X(Γn) ∈ A) = ∞ Px a.s.

for eachx∈ S, so that(X(Γn) : n≥ 0) is a Harris recurrent Markov chain (in discrete
time). We can then exploit the one-dependent regenerative structure of(X(Γn) : n≥ 0)
to conclude that(X(t) : t ≥ 0) contains one-dependent regenerative cycles. In other
words, every Harris recurrent Markov process satisfies:

Property 1’: Set T−1 = 0. There exists a sequence of randomized stopping times
(T(n) : n ≥ 0) for which (Wj : j ≥ 0) is a one-dependent sequence of identically
distributed random elements, whereWj = ((X(s),T( j)−T( j −1)) : T( j −1)≤ s<
T( j)).

Turning to the analog of Property 2, suppose that there exists a subsetK ∈ S , λ > 0,
a probabilityϕ onS, andt > 0 such that:

i’) τK < ∞ Px a.s. for eachx∈ S;
ii’) Px(X(t) ∈ B)≥ λ ϕ(B) for x∈ K andB∈ S .
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In the presence of i’) and ii’), we can directly exploit the regenerative construction
of Section 2 to establish thatX(τK + t) has distributionϕ with probabilityλ , inde-
pendent of the positionX(τK). Because of condition i’), infinitely many regeneration
times(T∗(n) : n≥ 0) at whichX(T∗(n)) has distributionϕ (independent ofT∗(n) and
X(T∗(n)− t)) can be constructed. (The independence ofT∗(n) andX(T∗(n)) follows
from the fact thatT∗(n) is determined by(X(s) : 0≤ s≤ T∗(n)− t) and the sequence
of coin flips used up to timeT∗(n)− t.) Thus, conditions i’) and ii’) guarantee that
Property 2’ holds:

Property 2’: For eachn≥ 0, (X(T∗(n)+ s) : s≥ 0) is independent ofT∗(n) (and, of
course,(X(T∗(n)+s) : s≥ 0) is identically distributed inn), so thatX is a wide-sense
regenerative process.

Given the presence of wide-sense regeneration, it follows that if T∗(0) = 0 (so thatX
is a non-delayed regenerative process), then

E f (X(r)) = E f (X(r))I(T∗(1)> r)+
∫
(0,t]

E f (X(r −u))P(T∗(1) ∈ du)

for (measurable)f : S→R+, so that (once again) the full body of renewal theory can
be applied to the analysis ofX. In view of this, i’) and ii’) are sometimes taken as the
natural starting point for a theory of recurrence in continuous time (rather than (3.1));
see, for example, [1], p. 198. This raises the question below:

Open Problem: Does every Harris recurrent Markov process (satisfying (3.1)) nec-
essarily satisfy i’) and ii’) (or, more generally, exhibit wide-sense regeneration)?

In addition to its natural interest as a key question in the recurrence theory for Markov
processes, it should be noted that in some applications, verification of (3.1) or (3.2)
is significantly easier than direct verification of i’) and ii’). This occurs because the
natural mechanism for specifying a Markov process in continuous time is through its
infinitesimal generator (see, for example, [5]), in which case the transition probabili-
ties(Px(X(t) ∈ B) : x∈ K,B∈ S ) will typically not be known explicitly.

To understand further the subtleties involved in proving that i’) and ii’) hold for
a process satisfying (3.1), it should be observed that the key to verifying i) and ii) is
the use of a measure-differentiation argument that can be found, for example, on p.
103-105 of [12]. The argument proves that when (2.1) holds, ii) can be verified for a
probabilityϕ that is absolutely continuous with respect toη . However, this can fail
in continuous time.

Example 3.1Let X = (X(t) : t ≥ 0) be the residual lifetime process associated with
a renewal process in which the inter-renewal time distribution F has countable sup-
port on(0,∞) and is non-arithmetic. In this case, the stationary distribution π for X
satisfies

π(dx) =
(1−F(x))dx∫
[0,∞) tF(dt)
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for x≥ 0, and (3.1) holds forη(dx) = I(x≥ 0)dx. BecauseF is supported on count-
able many points, so is itsn-fold convolution for eachn≥ 1. It follows that Px(X(t)∈
·) is singular with respect to Lebesgue measure for anyx ∈ R+ andt > 0. Conse-
quently, ii’) can not hold for a probabilityϕ that is absolutely continuous with respect
to η . Note, however, that this process is both classically regenerative and wide-sense
regenerative.

This example makes clear that any use of a measure-differentiation argument to
verify ii’) must have a different flavor than that used in discrete time. Example 3.1 is,
in some sense, a canonical example of the difficulties that can arise. In particular, if
(X(t) : t ≥ 0) is a Harris recurrent Markov process for whichX(t) converges in total
variation toπ ast → ∞ (or, equivalently, that there existsh> 0 such thatX(nh) con-
verges toπ in total variation asn→ ∞), then Px(X(t)∈ ·) has a non-trivial component
for t sufficiently large that is absolutely continuous with respect to π , so that one can
construct a recurrent subsetK ∈S for which ii’) holds withϕ absolutely continuous
with respect toπ . For the residual lifetime process, spread-outness ofF is known to
be a necessary and sufficient condition for total variation convergence; see [16].
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