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Wide-sense Regeneration for Harris Recurrent Markov
Processes. An Open Problem
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Abstract Harris recurrence is a widely used tool in the analysis obigirgy systems.
For discrete time Harris chains, such systems automatiesliibit wide-sense regen-
erative structure, so that renewal theory can be appliedigstépns related to con-
vergence of the transition probabilities to the equilibridistribution. By contrast, in
continuous time, the question of whether all Harris reaurMarkov processes are
automatically wide-sense regenerative is an open problémns. paper reviews the
key structural results related to regeneration for digctiete chains and continuous
time Markov processes, and describes the key remainingmoedtem in this subject
area.
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1 Introduction

In constructing a queueing model, the first order of busingsgpically to estab-
lish the conditions under which the system is stable. Theilgta(or instability) of
the model has both important performance engineering @afitins and fundamental
mathematical consequences. When the model inputs arestatisequences, stabil-
ity is often established using tools based on ergodic thaadsmonotonicity; see,
for example, [11]. A much richer class of tools exists whea thodel inputs form
independent and identically distributed (iid) sequenteshich case the system can
typically be studied as a Markov chain or Markov processti®darly nice mathe-
matical properties ensue when the chain or process can &lglissed to be Harris
recurrent. For example, Harris recurrence is known to ingxigtence of invariant
measures, as well as laws of large numbers and central ieoréms.
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Harris recurrence underlies much of the extensive staliitory for queues that
have been developed over the last twenty years. For exathpleery useful connec-
tions that have been developed between fluid model stahititiqueueing network
stability rest on a framework in which (deterministic) fligthbility is shown to im-
ply (positive) Harris recurrence of the associated (ststibpqueueing model; see
[4]. Harris recurrence has also been exploited in the stddyability of Brownian
gueueing models, as investigated (for example) in [9]. IBinashould be noted that
a middle ground between the tractability of assuming iid eldcputs and the gen-
erality of stationary process inputs arises when the inprgsassumed themselves to
be Harris recurrent Markov processes. Providing conditiomder which the queue
is then Harris recurrent underlies the approach develapgibi.

Harris recurrence also can be fruitfully exploited in thgelepment of numerical
algorithms for studying queues, specifically Monte Cartodation-based methods.
In particular, Harris recurrence implies that the procedslsts one-dependent re-
generative structure, which can then be utilized to (sigaiftly) simplify the con-
struction of confidence intervals for equilibrium expeictas; see [6] for details.

In view of the important connections between queueing thaad Harris recur-
rence, we discuss in this paper a key mathematical quesiddmémains open in our
understanding of Harris recurrence in continuous time: iNh¢he theory of renewal
equations applicable to the study of such processes? Té¢esitialy comes down to
determining whether all such processes are wide-sensegege. In the remainder
of this paper, we review in Section 2 the key results in thehef Harris recurrence
for discrete-time Markov chains. Section 3 then describescorresponding theory
in continuous time, and presents our open problem.

2 HarrisRecurrent Markov Chains

Let X = (X, :n > 0) be a (time-homogeneous) Markov chain taking values in a sep-
arable metric spacB, endowed with Boreb-algebra¥’. We denote the associated
probability and expectation operator under whi¢h= x € Sby R(-) and K(-), re-
spectively. Such a Markov chaiX is said to beHarris recurrentif there exists a
non-trivial o-finite measurey on (S,.’) for which n(A) > 0 implies that

_il(XneA) =0 Pya.s. (2.1)

for eachx € S. A clearly equivalent characterization of Harris recuoeis to require
that wheneven (A) > 0,
pn<o Pgas. (2.2)

for eachx € S, whereta = inf{n> 0: X, € A} is the first hitting time ofA.

However, in the presence of the separabilitysdind the consequent countable
generation of’), an additional interesting and non-trivial re-formutatiof Harris
recurrence is possible. In particular, Harris recurreadbén equivalent to existence
of an.”-measurable subskt C S(called asmall setin [12]) for which there exists
A >0, a probabilityp onS, andm > 1 such that:



i) Tk <o Pga.s.foreackxe S
i) Px(XmeB)>A¢(B)forxe KandBe ..

In the presence of the above re-formulation, [13] and [2bg:ized that condition
i) permits one to write then-step transition probabilities in the form

Px(Xme ) =A9()+(1-2)Q(x,") (2.3)

for x e K, whereA necessarily must lie it0, 1] and(Q(x,B) : B € .#”) is a probability
on Sfor eachx € K. In view of (2.3), one can identify regenerative structumeX as
follows:

Suppose that X visits K at tinte Flip a A-coin. If theA -coin comes up “heads”,
distribute X m according tog; if the A-coin comes up “tails”, distribute X, m ac-
cording to QXy,-). Then, generatéX;1,...,Xr+m-1), conditional on(X¢, Xz4+m).

Conditional on the coin coming up “headX;;mn has a distributionp that is
independent of the positio; m time units earlier. Thus, the timME=T17+mis a
randomized stopping time that exhibits regenerative sirecOf course, condition i)
ensures that infinitely many such regeneration tifig$1, To, ... occur at whichXy
has distributionp. The regeneration timeg,, : n > 0) constructed in this way have
the following properties:

Property 1 SetT_; =0 and leW; = (X, Tj — Tj—1) : Tj_1 <k < Tj) be thej’th cycle
induced by(T, : n > 0). Then, the sequend®, : j > 0) is a one-dependent sequence
of random elements (in the sense t& : k < j) is independent of\\ : k> j +2)).
Furthermore(W : k> 1) is a sequence of identically distributed random elements. |
view of this cycle structureX is said to possesme-dependent regenerative cycles

Property 2 For eachn > 0, (X1,4k : k> 0) is independent off, (and, of course,
(Xt,1k : k> 0) is identically distributed im as a consequence of Property 1). This
means, by definition, thaf is awide-sense regenerative process

Whenm = 1, the cyclegW, : j > 0) are actually independent, so this then
a (classicallyyegenerative proces§in fact, [14] proves that cycle independence im-
plies that condition ii) then must hold witim= 1.) The existence of one-dependent
cycle structure then permits one to easily establish lawsrge numbers, central
limit theorems, laws of the iterated logarithm and othertlimsults that are valu-
able both theoretically and computationally (in simulataf such processes) under
the weakest possible conditions; see [7] and [8] for a dsionsof necessary and
sufficient conditions for such limit theorems wh¥rnis classically regenerative.

On the other hand, in the presence of wide-sense regeneratiollows that if
P(Xo € -) = ¢(-) (so thatTy = 0 andX is a non-delayed regenerative process), then

Ef(Xy) =Ef(Xa)l (T2 >n) + % Ef(Xn-j)P(TL =)

=1



for (measurablef : S— R,. This permits one to apply the full arsenal of renewal
theory to the study of the Markov chai In particular, renewal-theoretic methods
offer a powerful device for obtaining conditions under whi¢, converges to a limit
X in total variation distance, as well as in computing asgediaates of convergence.

3 HarrisRecurrent Markov Processes

LetX = (X(t) :t > 0) be a (time-homogeneous) strong Markov process taking salue
in a separable metric spa& endowed with Borelb-algebra.”, and possessing
sample paths that are right continuous with left limits. Rg@usly to discrete time,

X is said to beHarris recurrent(in continuous time) if there exists a non-triviau
finite measurey on (S,.7) for whichn(A) > 0 implies that

/:I(X(t)eA)dt:oo P a.s. 3.1)

for eachx € S; see [3] for this definition. As shown in [10], (3.1) is equ®mat to
existence of a non-trivia-finite measurev on (S,.”) for which v(A) > 0 implies
that

Ta<o Pya.s. (3.2)

for eachx € S, wheretp = inf{t > 0: X(t) € A}. Note that in continuous time, the
measurey need not coincide witlp as must be the case in discrete time; see (2.1)
and (2.2). (For example, a one-dimensional recurrentglffuvisits points infinitely
often, and yet spends zero time there.)

Note that if (I, : n > 0) is the sequence of jump times of a unit rate Poisson
process independent ¥f then(X(I,) : n > 0) is a time-homogeneous Markov chain
taking values irs. Furthermore, it is easily verified that (3.1) implies that

il (X(Mn) € A) =0 Pya.s.

for eachx € S, so that(X () : n > 0) is a Harris recurrent Markov chain (in discrete
time). We can then exploit the one-dependentregenerativetsre of(X () : n>0)

to conclude thatX(t) : t > 0) contains one-dependent regenerative cycles. In other
words, every Harris recurrent Markov process satisfies:

Property 1 SetT_1 = 0. There exists a sequence of randomized stopping times
(T(n) : n > 0) for which (W; : j > 0) is a one-dependent sequence of identically
distributed random elements, whétg = ((X(s),T(j)—T(j—1)):T(j—1) <s<
T(i))

Turning to the analog of Property 2, suppose that thereeaistibsef € ., A > 0,

a probabilityg on S, andt > 0 such that:

i) Tk <o Pya.s. foreackke S
i) Px(X(t)eB)>A¢(B)forxe KandBe.”.



Inthe presence of i) and ii’), we can directly exploit thgemerative construction
of Section 2 to establish that(1k +t) has distributionp with probability A, inde-
pendent of the positioK (1x ). Because of condition i'), infinitely many regeneration
times(T*(n) : n>0) at whichX(T*(n)) has distributior$ (independentof *(n) and
X(T*(n)—t)) can be constructed. (The independenc&dh) andX(T*(n)) follows
from the fact thal *(n) is determined byX(s) : 0 <s< T*(n) —t) and the sequence
of coin flips used up to tim&@*(n) —t.) Thus, conditions i’) and ii’) guarantee that
Property 2’ holds:

Property 2 For eacm > 0, (X(T*(n) +s) : s> 0) is independent of *(n) (and, of
course{X(T*(n)+s): s> 0) is identically distributed im), so thaiX is a wide-sense
regenerative process.

Given the presence of wide-sense regeneration, it follbasit T*(0) = 0 (so thatX
is a non-delayed regenerative process), then

Ef(X(r)) =Ef(X(r)I(T*(1) >r)+ o Ef(X(r—u))P(T*(1) € du)

for (measurablej : S— R, so that (once again) the full body of renewal theory can
be applied to the analysis &f. In view of this, i’) and ii’) are sometimes taken as the
natural starting point for a theory of recurrence in continsitime (rather than (3.1));
see, for example, [1], p. 198. This raises the question helow

Open Problem: Does every Harris recurrent Markov process (satisfyinty)jec-
essarily satisfy i") and ii’) (or, more generally, exhibitde-sense regeneration)?

In addition to its natural interest as a key question in tleemence theory for Markov
processes, it should be noted that in some applicationgicegion of (3.1) or (3.2)
is significantly easier than direct verification of i") and.iiThis occurs because the
natural mechanism for specifying a Markov process in camtirs time is through its
infinitesimal generator (see, for example, [5]), in whickethe transition probabili-
ties (Px(X(t) € B) : x e K, B € . will typically not be known explicitly.

To understand further the subtleties involved in proviret i) and ii’) hold for
a process satisfying (3.1), it should be observed that thiedeerifying i) and ii) is
the use of a measure-differentiation argument that can tedfdfor example, on p.
103-105 of [12]. The argument proves that when (2.1) holflsan be verified for a
probability ¢ that is absolutely continuous with respecttoHowever, this can fail
in continuous time.

Example 3.1Let X = (X(t) : t > 0) be the residual lifetime process associated with
a renewal process in which the inter-renewal time distidvuF has countable sup-
port on(0,) and is non-arithmetic. In this case, the stationary distiim 71 for X
satisfies

(1—F(x))dx

) = tF(d)



for x > 0, and (3.1) holds fon (dx) = | (x > 0)dx. Becausé- is supported on count-
able many points, so is itsfold convolution for eacim > 1. It follows that R(X(t) €

-) is singular with respect to Lebesgue measure for>amyR, andt > 0. Conse-
quently, i) can not hold for a probability that is absolutely continuous with respect
to . Note, however, that this process is both classically regaive and wide-sense
regenerative.

This example makes clear that any use of a measure-diffatentargument to
verify i) must have a different flavor than that used in dige time. Example 3.1 s,
in some sense, a canonical example of the difficulties thatcize. In particular, if
(X(t) :t > 0) is a Harris recurrent Markov process for whi¥lit) converges in total
variation torr ast — o (or, equivalently, that there exigts> 0 such thaiX(nh) con-
verges tarin total variation as1 — ), then R(X(t) € -) has a non-trivial component
for t sufficiently large that is absolutely continuous with resye 11, so that one can
construct a recurrent subgéte .~ for which ii’) holds with ¢ absolutely continuous
with respect tart. For the residual lifetime process, spread-outness isfknown to
be a necessary and sufficient condition for total variatmmvergence; see [16].
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