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ABSTRACT. - This paper presents procedures for estimating the parameters of a 
regulated firm's production function which explicitly model the impact of the private 
information possessed by utility in the regulatory process. The paper derives the optimal 
regulatory outcome for two cases: (1) the utility's private information is observable by 
the regulator and (2) only the distribution of the private information is observable by 
the regulator. Given a parametric form for the utility's production function, these optimal 
regulatory outcomes yield structural econometric models which can be estimated to recover 
the parameters of the regulated firm's production function. These models are estimated 
for the Class A California water utility industry, and the parameter estimates obtained are 
compared to those obtained from applying conventional cost-function estimation procedures. 
This estimation procedure recovers the parameters of the utility's production function as well 
as an estimate of the distribution function of the utility's private information parameter. Using 
a non-nested hypothesis testing procedure we find that the second private information model 
provides a superior description of the observed level of costs and output. The estimates 
from these models are then used to compute the increased production costs and output 
reduction which result from the utility's superior private information about its production 
process. We find noticeable, but not overwhelming, percentage cost increases introduced 
by this private information in the regulatory process. The major effect is the welfare loss 
to consumers from the reduction in output produced under asymmetric information versus 
symmetric information. 

Une analyse econometrique avec information asy 
metrique de I'equilibre entre regulateur et utilite publique 

RtSUMt. - Dans cet article, il s'agit de m6thodes pour estimer les parametres de la 
fonction de production d'une entreprise reglementee; ces methodes expliquent les effets 
dans le processus r6glemente d'information priv6e poss6d6 par une utilit6 publique. Cet 
article derive le r6sultat optimum de la r6gulation pour deux structures d'information : (1) ou 
l'information privee de l'utilit6 publique peut etre observe par le r6gulateur (le modele 

avec information sym6trique), et (2) ou seulement la distribution de cette information 
priv6e peut etre observe par le r6gulateur (le modele avec information asym6trique). 
Etant donn6 des formes param6triques pour la fonction de production et pour la fonction 
de commandes de l'utilite publique, ces r6sultats optimum de regulation produisent des 
modeles 6conom6triques structuraux; ces modeles peuvent etre estimer de sorte que l'on 
puisse recup6rer les parametres de la fonction de production de l'entreprise r6glement6e 
ainsi que la distribution d'information privee. Ils sont estimes pour la classe A des utilit6s 
publiques d'eau en Californie; cette industrie consiste en un ensemble d'entreprises qui 
livrent l'eau aux clients dans les centres metropolitains de la Californie. 
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1 Introduction 

This paper presents procedures for estimating the parameters of a 
regulated firm's production function which explicitly model the impact of 
the regulatory process on firm behavior. As emphasized by JOSKOW [1976], 
the major goal of public utility regulation is price-setting. One of the most 
common causes of disputes in determining these prices is over the regulated 
firm's true minimum-cost of production. The regulated firm has private 
information, not known by the regulator, concerning its true production 
technology. In most instances, the utility also has very little incentive to 
reveal this private information to the regulator. Moreover, because it is a 

privately-owned company that must answer to its shareholders, the utility 
should use this private information to maximize its profits subject to the 

constraints imposed on it by the regulatory process. 
Economic theorists have been sympathetic to this asymmetric information 

problem faced by regulators and have addressed it by modeling the 
regulatory process as a revelation game where the regulator announces, 
for example, a price schedule giving the amount the utility is allowed to 

charge for its output as a function of its reported private information. A 

utility faced with this price schedule finds it in its best interest to truthfully 
report its private information. The regulator's price schedule is chosen to 

maximize some measure of welfare (for example, consumer surplus), subject 
to the constraints that each utility earns nonnegative profits and truthfully 

reports its private information. Although these theoretical models utilize 
stylized views of the regulatory process under asymmetric information, 
they do compute the optimal "second-best" regulator-utility equilibrium for 
this information structure. Important examples of this work include BARON 
and MYERSON [1982], BARON and BESANKO [1984, 1987] and BESANKO [1984]. 
LAFFONT and TIROLE [1986] have derived an alternative class of models where 

an ex post audit of the utility's costs is used, in addition to the ex ante price 
schedule, to obtain higher levels of welfare for the regulato r. 

Applied economists have largely ignored the impact of this private 
information on both utility and regulator behavior when attempting to 

recover the parameters of the utility's production function. The standard 

approach assumes: (1) a regulatory outcome where the utility minimizes 

total production costs for each level of output, and (2) that all economic 

magnitudes relevant to the utility and regulator, up to additive disturbances, 

are observable by the econometrician. Consequently, standard results from 

microeconomic duality theory can be applied and a cost function and system 

of factor demand functions are estimated which impose the restrictions 

implied by cost-minimizing behavior. Representative of works along these 

lines are CHRISTENSEN and GREENE [1976] for electric utilities, and MANN and 
MIKESELL [1976], MORGAN [1977], CRAIN and ZARDHOOKI [1978], BRUGGINK 
[1982], FEIGENBAUM and TEEPLES [1983], and TEEPLES and GLYER [1987] for 

water utilities. 
Our approach differs from the standard approach in four basic respects. 

First it acknowledges and models the impact of the utility's private 
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information on the (not necessarily minimum) cost function estimated to 
recover the parameters of the production function. Second, we recover an 

estimate of the distribution of this private information or unobservable (to 
the econometrician) source of heterogeneity across firms. A third way in 

which our analysis deviates from the standard approach is in explicitly 

modeling the impact of the demand and cost uncertainty faced by the utility 
on the observed regulatory outcome. Finally, our econometric model allows 
for the possibility that, from the viewpoint of the econometrician, both 
firms and regulators may not satisfy first-order conditions for optimizing 
behavior exactly each time period. In other words, from the perspective of 

the econometrician (but not from the perspective of the regulator or utility), 
first-order conditions are satisfied only in expectation; so that our model does 
not require that a firm purchase the same input mix when it is faced with 

the same set of input prices and demand, but in a different time period '. 

This paper posits two behavioral models of regulator-utility interaction 
under private information and estimates the parameters of the production 
function for urban water delivery in California under the assumptions 
of each model 2, This analysis uses data from a sample of Class A 

California water utilities for the period 1980 to 1988. The first model 
assumes private information on the part of the utility, but somehow, through 

information gathering, the regulator is able to completely learn the parameter. 
Consequently, the regulator can impose what we call the symmetric (or full) 
information regulatory outcome. Unfortunately, the econometrician is unable 
to observe this private information parameter and so must take into account 

its effect on utility behavior in specifying and estimating the cost function 
used to recover the parameters of the utility's production function. The 

second model assumes that the utility possesses private information, but the 
regulator is unable to completely learn this parameter through its information 
gathering efforts. However, the regulator does learn the distribution of this 
private information for each utility, and regulates using this incomplete 
information optimally. We assume that the regulator imposes the asymmetric 
information optimal "second-best" regulatory outcome, which maximizes 
the regulator's objectives subject to this informational asymmetry, without 
using ex post cost observations to reward or punish the utility. In this 

case, as well, the econometrician is unable to observe the utility's private 
information (or even its distribution), but must account for this assumed 
utility-regulator interaction when estimating the parameters of the utility's 
production function. We compare the estimates of the utility's production 
technology obtained from these two information structures. We also constrast 
these estimates with those obtained from standard minimum-cost function 
estimation procedures. 

1. McELROY [1987] points out the importance of modeling sources of error in econometric models 

of producer behavior in a manner consistent with economic theory. 

2. FEINSTEIN and WOLAK [1991] show that the interaction of the regulatory process with both the 

utility's desire to maximize profits and its superior knowledge of the production technology 
can invalidate the usual result that profit maximization implies cost minimization. They give 
instances when the structure of the regulatory process can cause a profit-maximizing utility to 

choose an input mix that is substantially different from the cost minimizing one, implying that 

empirical models of regulated firm behavior which assume cost minimization by the utility are 

misspecified. 
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Our theoretical model of the private information regulator-utility 
interaction is closer in spirit to the BARON and MYERSON [1982] model 
rather than the LAFFONT and TIROLE [1986] model because we do not allow 
the regulator to use ex post cost information to regulate the firm. We provide 
some justification for this assumption and other modeling assumptions when 

we describe the actual regulatory process faced by California water utilities. 
Nevertheless, in future research we plan to explore the empirical implications 
to the LAFFONT and TIROLE [1986] regulatory framework using this sample 
of utilities. 

We find that modeling the presence of private information in the 
regulatory process yields substantially different estimates for the structure 
of the production technology of a regulated utility. The major difference 
between conventional estimation techniques and those which account for the 
presence of private information is in the scale economies estimates obtained. 
Conventional procedures estimate substantial increasing returns to scale, 
whereas procedures which control for private information recover slight 
decreasing returns to scale. The major difference in estimation results across 
the two private information estimation procedures is in the distribution of 
unobserved efficiency recovered. The asymmetric information model finds 
far higher level of average efficiency than does the symmetric information 

model. The asymmetric information model also finds a smaller dispersion 
in the distribution of unobserved efficiency. In a non-nested test of the 
explanatory power of the symmetric versus asymmetric information models, 
we find that the asymmetric information model provides a statistically 
superior description of the observed regulator-utility equilibrium. We 
also quantify the extent of the regulatory distortions introduced into the 
asymmetric versus symmetric information equilibrium. Using our structural 

model parameter estimates we compute the increased cost of production 
to the utility of operating in an asymmetric versus symmetric information 
environment. We find that at its mean efficiency level, the average utility 

must spend about 8 percent more on production costs in the asymmetric 
information versus symmetric information environment to produce the same 
level of output due to the costs of signaling to the regulator its unobserved 

efficiency level. To assess the welfare loss to consumers, we compute an 
estimate of the output reduction due to asymmetric information. We find that 
at its mean efficiency level, the average utility produces about 25 percent 

less under asymmetric versus symmetric information. 

The remainder of the paper explains the methodology used to obtain these 
results. The next section first describes the Class A California water utility 
industry and the regulatory process faced by these utilities. This section 
then specifies the utility's production process, the demand function it faces, 
and our model of the regulatory process. Section 3 derives the optimal 
capital stock and rate schedules for both private information models of 
the regulatory process. Section 4 derives the likelihood function necessary 
to estimate each of the models. Section 5 describes our data sources and 

the process used to transform the raw data into the magnitudes used in 

the estimation procedure. Section 6 presents the results of our estimation. 
Section 7 concludes and discusses some of the caveats associated with our 

results. The paper contains two appendices, Appendix A, which presents 
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derivations of the results presented in the text, and Appendix B, which 
describes the details of the data construction process. 

2 Economic Environment and Model 
Development 

This section describes the Class A California water utility industry and 

the regulatory process faced by these firms. This discussion motivates 
both our use of the BARON and MYERSON [1982] conception of the private 
information regulatory process and our assumption about the source of the 
utility's private information. We then describe the production and demand 
conditions faced by the utility. We then present our theoretical model's 
conception of the process through which a utility files for a rate increase 

and the regulatory commission sets rates for our two models of commission 

information and behavior. 

2.1. California Water Utility Industry 

The Class A water utility industry is composed of all large privately 

owned water utilities delivering water to customers in California. These 
utilities primarily service medium-sized urban areas. The large cities such 
as San Francisco and Los Angeles are served by municipal water agencies. 

However, three out of the top five largest local water agencies in California 

are investor-owned (ASKARI [1988]). History appears to play a crucial role 
in determining whether a city is served by a municipal or private water 

company. Nevertheless, the trend toward municipal supply of water cited 
in BAIN, CAVES and MARGOLIS [1966] does not appear to be present in our 

sample period. 
For the purposes of regulation, the larger of these utilities are divided 

into districts and regulated on that basis by the California Public Utilities 
Commission (CPUC). The CPUC treats each district as a separate entity. As 

part of the regulatory process, each year all water districts must submit a 

copy of their annual report to the CPUC. For both of these reasons, we treat 

the CPUC districts as the unit of observation for the purposes of our study. 

The CPUC is composed of a five member commission appointed by 
the Governor of California for staggered six-year terms. The commission 
is backed by a staff of over 900 civil servants (CPUC [1987]). After a 

utility applies for a rate increase it must provide convincing evidence for 

reasonableness of their request during the rate case proceedings. The primary 
role of the staff in these proceedings is to protect the interests of consumers 

by challenging any statement or claim made by the utility they do not 

believe to be accurate or justified. The CPUC staff may present evidence 
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on all relevant factors to the case. Members of the public may also present 
their own views and may offer testimony by their own expert witnesses. 

All of this evidence then becomes the basis for the decision by the five 
commissioners. 

General rate cases are by far the most common mechanism for a utility 
to obtain a rate increase. When a utility files an application for a general 
rate increase, it prospectively chooses a test year level of demand for a 

future year (usually the next year) on which to base its financial projections 
in determining its revenue requirements for that test year. The first step 
of this prospective process is to establish the utility's rate base-the value 
of the utility's plant and equipment devoted to public use (CPUC [1987]). 
Generally, the rate base is calculated by adding up the original cost of 
all capital equipment purchased by the utility and then substracting the 
accumulated depreciation on this equipment to date. The next step is the 
determination of the utility's rate of return, expressed as a percentage of the 
rate base. The commission then determines the estimated operating expenses 
for the utility in this prospective test year. The sum of the utility's operating 
costs and the return on its rate base is its revenue requirements. The final 
step involves taking the total revenue requirements and test year demand 
level and computing a price structure for the utility which sets total revenues 
equal to total costs at this test year demand level. As emphasized in many 
CPUC documents, the utility is not guaranteed to earn the rate of return on 

its rate base that was used to construct its test year revenue requirements. 
Consider, for instance, the following statement, 

Does this mean the utility is guaranteed a profit? No, it only means that the 
company is entitled through prudent management and efficiency, to recover 
the approved revenues and to try to earn the authorized rate of return (CPUC, 
1987, p. 9). 

This prospective nature of the regulatory process and the fact that it is 
concerned with setting prices, with no guarantee to the utility that it will 
receive the CPUC authorized rate of return, favor the BARON and MYERSON 

[1982] view of price regulation which only uses prospective information to 

set prices for the utility. However, this is not say that the LAFFONT and TIROLE 

[1986] view which also uses ex post cost observations does not have some 
support. In certain extraordinary circumstances, the CPUC can issue Orders 
Intituting Investigations (Olls) which can result in rate revisions because 
of new information not available at the time of the regulatory proceedings. 
However, these rate revisions occur because of such events as unexpected 

energy input price increases or unexpected increases in the technological 
efficiency of production by the utility, and hence primarily occur in the 

electric utility and telecommunications sector. Because water delivery is 

low rate of productivity change production technology which is not very 

energy intensive, these rate revisions rarely occur in the water utility industry. 
In fact, none occurred during our sample period. Nevertheless, because of 
the possibility of Olls, exploring the empirical implications of the LAFFONT 
and TIROLE [1986] view of the regulatory process is a worthwhile topic for 

future research. 

We are now in a position to discuss our reasons for choosing labor 

efficiency as the source of the utility's private information. The difficulty in 
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assigning a dollar measure to the utility's capital stock points to using it as 
the source of unobserved heterogeneity. However, from our reading of the 
rate cases and discussions with both the staff of the CPUC and management 
of several water utilities, it appears that both sides in the utility versus 
regulator interaction are equally puzzled as to how to properly put a dollar 
value on the physical assets used to deliver water and how to charge off the 
costs associated with maintaining these assets over time. Nevertheless, both 
sides are extremely familar with the technological parameters associated with 
each piece of physical capital and concerned with ensuring that the utility 
undertakes the amount of investment necessary to service its customers 
properly. The CPUC staff makes several site visits to the plant to inspect 
the capital equipment and compares this equipment with that available at 
other plants. A major source of conflict in most of these rate hearings is 

over the necessity of investing in new capital. Here all of the economic 
and technological merits of the proposed investment are debated in great 
detail before it can be given the CPUC's Certificate of Public Convenience 
and Necessity (CPCN) as a "prudent" investment. Consequently, although 
both sides have extreme difficulty assigning a single dollar magnitude to the 
utility's capital stock (because several of the assumptions necessary for the 
perpetual inventory method of capital accumulation may in fact not be valid), 
its appears that both sides are equally informed about the physical size and 
technological capabilities of the utility's capital stock. Consequently, there 
appears to be little justification for the utility's capital stock to be the source 
of its private information advantage relative to the regulator. 

On the other hand there is considerable heterogeneity in the quality of 
labor employed in the California water utility industry. A major reason is 
the sheer size of the state. This leads to substantial climatic and geographic 
diversity within the state. There is also a large amount of variability in the 
funding devoted to education and other local services. One would expect the 
utility and its management to have a more intimate knowledge of these local 
conditions than the regulator. Consequently, we select the utility's labor as 
the source of its private information advantage. 

2.2. Description of Production and Cost Technologies 

The water delivery production process can be classified into four stages: 
(1) withdrawal, (2) pumping, (3) treatment, and (4) transmission and 
distribution 3. Withdrawal is the catch-all for the process of finding the 
necessary water to deliver to the utility's final customers. Pumping expenses 
are incurred both in transporting the water from the source to the treatment 
plant and from the treatment plant to the final customers. Treatment refers 
to the process of filtering out impurities in the water before the final stage 
of distributing it to the utility's customers. There are four primary inputs to 
the water delivery process: (1) capital, (2) labor, (3) electricity (to power 
the water pumps) and (4) a source of water. For the purposes of this paper 

we consider the utility's source of water to be a part of its capital stock. All 

of the utilities in our sample own a substantial portion, if not all, of their 

3. DZURIK [1990] provides a useful introduction to the water delivery production process. 
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water sources in the form of wells or reservoirs and these water sources 
are listed on their balance sheet as part of their capital stock. However, a 
small number buy a portion of their water from other sources, such as local, 
state, or federal water agencies. In these instances the assumption implicit 
in our model is that the price charged for this water yields the owner of the 
resource the current rate of return on capital for the utility purchasing the 

water. For the purposes of our modeling effort, we represent the production 
function for utility i as 

(1) Qi = f (Ki, L* , Ei, Eq (i) I 

where Ki denotes capital (physical plant and water sources), L* labor, 
and Ei electricity. The variable Eq (i) is a stochastic disturbance to the 
ith utility's production process which is realized after the utility makes its 
capital stock selection for the period but before it produces. The utility 
knows the distribution of Eq (i), which is independently and identically 
distributed over time and across utilities. Finally, 3 is a parameter vector 
describing the technical coefficients of production. It is known to both the 
regulator and utility, but is unknown to the econometrician. Consistently 
estimating this parameter vector is the goal of our analysis. 

One aspect of this production function deserves special mention; that is 
the source of the utility's private information. To this end we make the 

distinction between, L*, the amount of labor actually used in the production 
process, and Li, the observed physical quantity of labor input which is 
implied by the utility's total labor costs. These two magnitudes are related 

by the equation L* = Li/d (0i), where d (0) is a known increasing function 
of 0, and 0i is what we define as utility i's labor efficiency parameter. Higher 
values of 0 imply more inefficiency. The econometrician and regulator 
observe the utility using the quantity of labor Li, but the actual amount of 

"standardized" labor available in the production process is L* 

The utility's observed costs are 

(2) wi Li + ri Ki + pei Ei, 

where wi is the wage rate, ri is the price of capital, and pei is the price of 

electricity. As discussed above, the variable Li included in the utility's costs 
is not the same as the L* = Li/d (0i) entering into the production function. 

From the viewpoint of the econometrician, 9i is an unobservable random 

variable in the same sense as, for example, Eq (i). Nonetheless, 9i plays a 

central role in the model development to follow because it is the source 

of the potential asymmetry of information between the utility and the 
regulator. In particular, we distinguish between two cases. In the first, the 
symmetric information model (S), the regulator is assumed to observe 0i 
together with the utility. In the second model the regulator only knows its 
distribution, F (0) which has compact support on the interval [01ow Ohigh]* 

We call this the asymmetric information model (A). As we show below, 
these two information structures between the utility and regulator lead to 

different rate structures and input choice decisions. For both models the 
econometrician must estimate F (0). We also assume that conditional on all 
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observable characteristics of the utility and its customers the distribution of 
0- is independent of the other stochastic disturbances included in the model. 
This assumption embodies the intuition that the utility's labor efficiency 
parameter is independent of any shocks to the regulatory environment. 

2.3. Assumptions Underlying Utility Behavior 

For both models, we assume the utility chooses its input mix to maximize 

expected profits (because of demand and production uncertainty) given its 
private information 4. Each utility faces a demand function Qi (Pi) Ed (i) 
for its product, where Ed (i) is a positive, mean one stochastic shock to 
the utility's demand which independently and identically distributed across 
time and utilities. Once p is set, the demand shock for the period is realized 
and output produced is determined from this demand function which we 
assume is known both to the regulator and the utility, up to the stochastic 
disturbance Ed (i). 

Because its price (equivalently, its total revenue and output) and capital 
stock are set before the utility produces each period, for both models A and 
S, the utility's desire to maximize expected profits will lead it to minimize 
total operating costs for a fixed level of output and capital stock. This 

minimum operating cost mix of variable inputs for a type 0 utility is the 
solution to: 

(3) min w L + pe E subject to Q = f (K, L, E, 0, eql/3). 
L, E 

Optimization problem (3) yields the minimum variable cost factor demand 
functions for E and L conditional on K and Q. Because Eq is known by 
the time the utility chooses L and E, it enters into both input demand 
functions. Substituting both of the variable factor demand functions back 
into the expression for total operating costs yields the conditional (on K) 
variable cost function CVC (pe, w, 0, K, Q, Eq, rL, IJE I /3), where ?lL and 

71E are mean one disturbances introduced into the model to allow, from 
the viewpoint of the econometrician (but not the regulator or utility), the 
first-order conditions for the optimal choice of L and E to hold only in 
expectation 5. Note that the utility's private information 0 enters into this 
variable cost function. Using this expression for variable costs, we can 
re-write utility i's total observed costs as: 

(4) TC = CVC (pe, w, 0, K, Q, Eq, 71L, TIE 3)+ ri Ki. 

4. These utilities are privately-owned companies that must be concerned with earning the highest 
return possible on their equity in order to attract shareholders so that the assumption of profit 

maximization seems reasonable. 

5. In Appendix A we derive the parametric form of the unconditional variable cost function, 
including where the structural disturbances enter, for the functional forms used in our empirical 

analysis. We also discuss the necessity of including these disturbances in our econometric 
model. 
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2.4. Description of Models of Regulation with Private 
Information 

We now present our conception of the regulatory process for the two 
models of regulator-utility interaction with private information. Both models 
of the regulatory process involve the following steps. First, the utility 
chooses its capital stock for the coming period. After observing the utility's 
choice, the regulatory commission mandates rates for the coming period. 
The commission sets two rates. One is the fixed charge each consumer 
must pay to access the system, assuming that N, the number of consumers 
desiring access is known. In the aggregate, this becomes a known transfer 
from consumers to the utility, which we denote T = N t, where t is the 

access fee each consumer must pay 6. The second rate is the marginal price 
p each consumer must pay for an additional unit of the utility's service. 
Finally, the utility satisfies all demand forthcoming at these rates. 

Our approach attempts to parallel the following two aspects the actual 
regulatory process. First, the utility is required by law to produce all that 
is demanded at the regulated prices. Second, the CPUC exercises a large 
degree of control over the utility's capital stock, although it does not 

explicitly set the level. Generally, in order to make any increment to the 
capital stock a utility must apply for and obtain a Certificate of Public 

Convenience and Necessity. Although, as described above, both sides of 
process have considerable difficulty summarizing the utility's capital stock 
with a single dollar magnitude, they are both very familar with capabilities 
of all of the utility's capital equipment and any additions to this stock are 

highly scrutinized. For these reasons, capital appears to serve as a screening 
variable in the actual regulatory price setting process as well, in that more 

efficient firms are allowed to invest more. For these reasons, we use capital 
as a screening variable in our theoretical model. 

For the symmetric information case, the regulator is assumed to know 

utility i's private information, its labor efficiency parameter Oi. Given this 

information, the regulator sets prices to maximize some measure of expected 
total welfare (in our case consumer surplus) subject to the constraint that 
the utility earns zero expected economic profit. The utility is aware of 
the regulator's objective function and therefore knows the price and fee 

the regulator will implement, so that it chooses a capital stock consistent 

with minimizing the total cost of producing the welfare maximizing output 
level. The regulator could wait until the utility sets its capital stock before 

setting rates. However, in this symmetric information model, both agents 
have access to the same amount of information about the utility's production 
function and this is common knowledge to both agents, so the utility's capital 
stock selection does not convey any information to the regulator. In this 

case, the timing of the regulatory process described above is unimportant 
to its success. 

6. Because we allow for the presence of fixed transfers, this model can be extended to case in 

which this fixed charged excludes some consumers and thus has a social cost as discussed in 

LAFFONT and TIROLE [1983], Chapter 2. 
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For the asymmetric information case, the timing of the process is crucial 

to its success. Here, the regulator does not know the utility's private 

information parameter, only the distribution F (0) of possible values it 
can take on. Consequently, the regulator announces price and fee schedules 

as a function of the utility's capital stock selection. These schedules are 

chosen to maximize expected total welfare, in our case consumer surplus 
(where the expectation is taken with respect to the distribution of 0 as well 

as with respect to the distribution of the production and demand shocks 

facing the utility), subject to the constraints that the expected profits for all 

possible utility types are nonnegative and that all types of utilities (indexed 
by 0) find it in their best interest to truthfully reveal to the regulator their 
private information through their capital stock selection. 

These two models differ in what the regulator knows about the utility's 
labor efficiency in production, as measured by 0, and how it incorporates 
this knowledge into the rate-setting process. The asymmetric information 

model (A) assumes that the regulator does not observe 0 and cannot 

verify the utility's reported 0. However, the regulator is aware that the 

utility has an incentive to misreport its 0 value, understating its efficiency 
(overstating 0). Therefore, the regulator designs incentive-compatible capital 
and rate schedules which cause a profit-maximizing utility to reveal its 0 

value through its capital stock selection. Because the regulator only knows 
the distribution of this private information 0 and not its true value, for all 

but the least efficient utilities there are informational rents that must be paid 
to induce them to truthfully report. This results in welfare losses relative to 

the symmetric information regulatory outcome 7. At the opposite extreme, 
the symmetric information model (S) assumes that the regulator can observe 

0, so that the regulator can choose the utility's rates as a function of its 0, 
and therefore implement the first-best welfare maximizing optimum. 

Our description of the regulatory process has a number of features 

which deserve comment. First, consider our assumption that the regulator 
maximizes consumer surplus. It is possible that regulators have a concern 
for more than just aggregate consumer surplus; they may also be concerned 
about producer welfare, and, among consumers, may distinguish between 
different consumer groups. In addition, the regulatory body's preferences 
among these groups may depend on political factors, such as which political 
party currently controls the branch of the state government exercising control 
over the regulatory body. BARON [1989] discusses many of these issues. 
Our model can be modified to allow for these kinds of considerations in 
the regulator's preference function. All that is required to implement our 

modeling framework is that the regulator possesses a stable preference 
function that it is known to the utilities it regulates. 

However, one may also question whether regulatory commissions 
maximize any specific objective function. Traditionally, these bodies have 
spoken in terms of guaranteeing utilities a "fair rate of return" on their 

rate base-hence the widespread popularity of the AVERCH and JOHNSON 
[ 1962] model (see also BAUMOL and KLEVORICK [1970]. This suggests 

7. FEINSTEIN and WOLAK [1991] describe aspects of the regulatory environment which determine 
the magnitude of these losses. 
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that a mechanical fair rate of return guaranteeing regulator may be a 
more appropriate model of regulator behavior. However, JOSKOW [1976] 
very persuasively argues that the Averch and Johnson model has caused 
economists to place an excessive emphasis on the rate of return model of 
regulation. He presents evidence supporting the view that although regulators 
are concerned about guaranteeing utilities a "fair" rate of return on their 

capital stock, the setting of this rate of return is only an intermediate step 
in the final goal of setting nominal rates for the utility's output. As shown 

above, this view is consistent with the behavior of the CPUC in regards to 

the California water utilities we study. 

Another shortcoming of our approach is that it does not explicitly model 
the various steps which occur in an actual regulatory review-in particular, 
the utility's submission of its proposed rates, the CPUC staff's proposed 
rates which respond to the utility's proposed rates, expert testimony and 
testimony from other interested parties, and then the commission's final 
decision 8. For this reason we view the equilibria arising from our models 
in the same manner as a standard Walrasian market equilibrium: a reasonable 

description of the prices and quantities observed which provides, at best, a 

stylized model of how these magnitudes are arrived at. 

Furthermore, once we acknowledge the existence of asymmetric 
information between the regulator and the utility there are many possible 
equilibria between these two agents that could arise from this interaction 
which satisfy individual rationality (the participation constraint that the 
utility expects to earn nonnegative economic profits). Our model A has 

the attractive property of being the optimal second-best regulator-utility 
equilibrium for the regulator objective function we have specified. The 

widespread belief in the existence of informational asymmetries between 
the utility and regulator and its second-best optimality properties makes 
the model A equilibrium a logical first choice for empirical implementation 
and for comparison with estimates of model S, which assumes the full 

information regulator-utility equilibrium. 

Because our theoretical model is explicitly static, we focus our 

econometric modeling efforts on utilizing the across-firm differences in 

observable variables to identify the parameters of economic interest while 

allowing for some dependence over time in economic magnitudes from 

the same utility. Favoring this approach is the fact that our dataset is 

primarily cross-sectional in nature, with many more utilities than time 

periods. Nevertheless, we do have multiple observations on the same utility, 

although in most cases these observations are not contiguous in time. 

Consequently, the dynamics of the regulatory interaction is one aspect of 

the data generation process that our theoretical and empirical modeling 
framework fails to address. LAFFONT and TIROLE [1988] present a two-period 

model of the regulatory interaction with private information. This is a topic 
we hope to pursue in future research. 

8. JOSKOW [1972, 1973] are the most prominent examples of models of the actual rate-setting 

process. JOSKow and SCHMALENSEE [1986] surveys much of the recent work studying the 

regulatory process. 
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3 Derivation of Model Solutions 

In this section we derive the equations which define the solution to each 
of the models described in Section 2. First we consider the symmetric 
information model, then the asymmetric information model. 

3.1. The Symmetric Information Model 

In this case the regulator observes each utility's true 0 and sets the fee 
(T) and price (p) to maximize expected consumer surplus subject to the 
constraint that the utility's expected profits (with respect to the distributions 
of eq and Ed) equal zero, knowing that the utility will choose its inputs 
to maximize profits. This implies that the regulator will solve for the p, 

T, and K which maximize expected consumer surplus for the utility's 
consumers in deciding the optimal p, K and T for that utility. Although the 
regulator does not explicitly set K, it will set prices so that the utility finds 
it in its profit-maximizing interest to choose the capital stock which arises 
from the solution to the regulator's welfare maximization problem. 

Let Si (p) = Ed (Ed (i)) j Qi (s) ds denote expected consumer surplus 

for the ith utility, where Ed (.) denotes the expectation with respect to the 
distribution of Ed. In terms of our notation, the regulator solves: 

(5) max Si [p (0i)] - T (0i) subject to 
p, T, K 

Eq, d (7r (0i)) =Eq, d [P (0i) Q [P (0i)] Ed (i) + T (0i) 
- CVC (pe, w, 0i, K (0i), Q (0i) Ed (i), Eq (i), i (i) I 13)] 

+riK(0i) = 0. 

where Eq, d (') is the expectation with respect to the distribution of both 
EP and Ed and ri (i) = (T1L (i), WE (i))' is the vector of optimization errors 
from the conditional variable cost function problem (3). The first-order 
conditions for this problem imply: 

(6) P Eq,d [CVC (pe, w, Oi, K (fi), Q 
(Oi) 

Ed (i), Eq (i), J (i) 3)] 

(7) ri - aEq,d [CVC (pe, w, Oi, K (0i), Q (0i) Ed 
(i), Cq (i): q (i) 1/3)] 

aK 

Note that equations (6) and (7) are completely deterministic given 71 (i), so 
that if we selected the correct functional form for both the utility's demand 
and production function, using the observed pi, Ki and Ti these equations 
should hold as identities. To allow for the fact that (6) and (7) will not hold 
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exactly for any empirical dataset or functional form we might select, we add 
a mean one, positive, multiplicative disturbance, 1K and r1p respectively, to 
each of the first-order conditions. Equations (6) and (7) become: 

(8) aEq,d [CVC (pe, w, Oi, K (0i), Q (Oi) Ed (i), (q (i) i) J 3)] (i) 
DQ 

(9) - DEq, d [CVC (pe, w, Oi, K (Oi),Q (fi) ?d (i), 6q (i), r (i) W 3)] (i) 
OK 

where these disturbances are independent and identically distributed over 
time and utilities. Consequently, (8) and (9) hold only in expectation because 

E (p (i)) = 1 and E(71K (i)) = 1. 

The fixed fee, T (0i) is set so that expected profits are zero at the K (0i) 
and p (0i) which solve (8) and (9). The final equation needed to solve for 

the equilibrium magnitudes is Qi (Pi) Ed, the demand function. The observed 
input demands for Ei and Li can be derived from the factor demand functions 
arising from the solution of the minimum variable cost problem (3). 

3.2. The Asymmetric Information Model 

Our asymmetric information model (A) takes as a starting point the 

theoretical models of regulator-utility interaction described above, in 
particular, BESANKO [1985]. In Besanko's model, the utility possesses private 
information about its labor efficiency which directly affects production costs, 
and indirectly, the utility's optimal mix of inputs. Under our conception of 
the asymmetric information problem, the regulator cannot observe 0 directly 
and must condition the utility's rates on its capital stock choice. The 
regulator recognizes that the utility may have an incentive to misreport 0 
as higher than it really is (the utility claims to be less efficient than it 
really is). Consequently, the regulator constructs incentive-compatible rate 
schedules (as a function of 0) such that given these schedules, the utility 
truthfully reports its private information 0 through its K selection. Hence, 
in this model, expected (with respect to the distributions of 0, Ed, and 
eq) consumer surplus is maximized subject to the incentive-compatibility 
constraint that the utility truthfully reports, and the constraint that expected 
profits are nonnegative for all types of efficiencies, as indexed by 0, that 
a firm can have. 

To derive our model A equilibrium, we follow the approach in BARON 

[1989]. First, we follow his four-step procedure for characterizing the set 
of feasible mechanisms. We then solve for the optimal regulator-utility 
equilibrium subject to differentiable local incentive compatibility constraints. 
Finally, we verify that the solution to this local problem lies in the set of 

feasible mechanisms so that it is an optimal second-best equilibrium. 
The first step is to derive the global truth-telling constraints in terms of the 

profit function. Note that a utility with true parameter 0i which reports Oj 
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earns expected profit 

(10) Eq, d [ (0j, 0i)] 

=Eq, d [P (9j) Q (P (0j))Ed -CVC (Oi, K (0-), Q (0j))] 

-rK (0j) + T (O), 

where we suppress the dependence of the minimum variable cost function 

(CVC) on pe, w, Eq, Ed, E and 3. Consequently, for any two arbitrary 
values 0 might take for a given utility, say 0O, and Oy, incentive compatibility 

requires Eq,d [7r (0x, 0x)] > Eq,d [7r (Oy, Ox)]. The usual approach is to first 

specify a local approximation to this global constraint, which in the present 
case is: 

(11) dEq,d [7 (0)] OEq,d [CVC (O, K (0), Q (0))] 
dO 00 

for all 6. Equation (11) is a local incentive compatibility condition which 

quantifies how rapidly the regulator must raise the expected profits of a 

utility as its true 0 value falls (the utility becomes more efficient) in order 

to encourage truthful revelation. The second step of the process involves 

integrating (11) to obtain the expected profit function. This allows us to 

show that the expected profit function is locally decreasing in 0 so that the 

individual rationality constraint which requires the firm to earn nonnegative 
expected profits for all values of 0, can be replaced by the single constraint 

that Eq, d [7r (Ohigh)] > 0. 

The third step involves demonstrating that the price function p (0) can be 

implemented by choosing a fixed charge function T (0) which induces truth 

telling by the utility. Step four involves deriving conditions on the price, 
capital stock and fixed fee functions which guarantee a globally incentive 

compatible equilibrium. We derive these conditions in Appendix A. If the 
solution to the regulator's problem yields price, capital stock, and fee 

schedules which satisfy these restrictions then this solution is the optimal, 
second-best regulator-utility equilibrium under this asymmetric information 

structure. 
In light of our four-step process of characterizing the set of feasible 

mechanisms, the regulator's optimization problem is 

O 6high 

(12) max I [Si [p (0)] - T (0)] f (0) dO subject to 

Eq, d [7r (0)] 

Eq, d [p (0) Q (p (0)) CVC (0, K (0), Q (0))-r K (0) + T (0)] 

dEq, d [r (0)] _ OEq, d [CVC (0, K (0), Q (0))] 
dO aO 

Eq,d [I7r (Ohigh)] >0 
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Although we do not explicitly include the restrictions implied by the 
global truth-telling constraints, in Appendix A we derive restrictions on 
the regulatory environment and distribution of 0 necessary for the price, 
capital, and fixed fee functions to satisfy the constraints derived in step 4 
for our parametric econometric model of (12). 

Note that the formulation in (12) refers specifically to the ith utility 
regulator pair. Because the regulator does not know utility i's efficiency 
parameter, he must set rates over the entire support of 0 for each utility. 
Consequently, the regulator must solve this problem for each utility that 
it regulates. 

To determine the regulator's rate and fee schedules, we form the 
Hamiltonian 

(13) H =S [p (0)] f (0)-T (0) f (0) 

(&) aEq, d [CVC (0, K (0) Q (0))] 

+ p (0) (Eq, d {(0)} -[Eq, d {P (0) Q (P (0)) Ed 

- CVC (0, K (0), Q (0))}-r K (0) + T (0)]), 

where ,u (0) is the costate variable associated with the incentive compatibility 
constraint, and p (0) is the multiplier associated with the expected profit 
constraint. 

The first-order conditions associated with equation (13) are: 

(14) Hp == O s (p ())f (0) 
op 

&)2Eq,d[CVC(0, K(0),Q(0))] aQ 
ao OQ <p 

-p([) [{ 0 + Q (p (0)) }Ed (Ed) 

aEq,d [CVC (0, K (0), Q (0))] 9Q1 

aQ pa. 

(15) HK 0 () Oa 

+15) K=O= Eq,(0) [ [CVC (0I K (0)I Q (0))] 

+P (0) [AK ] 

(16) HT == f (0) P (0) 

(17) - HEq, d [XI P (0) /-t (0), 

where Hz denotes partial differentiation of the Hamiltonian with respect 
to Z. Although we do not explicitly include it in the Hamiltonian, we must 
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also impose the constraint that Eq, d [7r (Ohigh)] > 0 in order to complete our 

characterization of the solution. 
From equation (16) we deduce that p (0) = -f (0). Using this 

equation and equation (17), we have u (6) = F (0). Because AS/Op 

-Q (p (0)) Ed (Ed), we can simplify the first and second equations to: 

(18) p(9) [Eq,d [CVC (6, K (6), Q (6))] 
OQ 

F (0) O2 Eq,d [CVC (6, K (0), Q (0))]1 

?f(0) 00aQ T/P 

(19) r [OEq,d [CVC (6, K (0), Q (0))] 
aK 

F (0) O2 Eq, d [CVC (, K (0), Q ())] 1 

f (0) 00AK aKh 

where rp and rK are the mean one multiplicative disturbances defined 
above and added for same reasons as given in the discussion of the model S 
solution. These two equations determine the amount of capital stock K (0) 
a utility of type 9 will purchase, and the price p (0) it will be directed 
to charge. 

The demand function Qi (p) and equations (18) and (19) determine the 
two regulatory variables K (0) and p (0). The access charge T (6) is given by 

(20) T(0*) Eq,d[l(0*)] -Eq,d[P(0*)Q(P(0*))Ed 
+ CVC (0* K (6*), Q (*))] + rK (9*) 

for a utility of type 0*. Once a utility's K is chosen and its p and T are 

set, its demands for L and E can be determined from the solution to the 
minimum operating cost problem (3). 

Although these rate schedules are functions of the utility's labor efficiency 
parameter 0, as mentioned above, the regulator can transform these rate 
schedules to depend on the utility's capital stock selection. The logic for 
constructing these schedules proceeds as follows. As shown in Appendix A, 
one of the restrictions required for feasability of the price and capital 
mechanisms is that K (0) is increasing in 0. Therefore we can construct the 
inverse function 4 (K) = 6 which gives the utility's true 0 as a function of 

the capital stock arising from the regulator's expected welfare maximization 
problem (12). Substituting 0 = 4' (K) into p (0) and T (0) yields p (K?) 
and T (K0), where KO is the utility's observed capital stock selection. By 
construction, when faced with these rate and fee schedules (which depend 
on its capital stock selection), a utility with private information 9* will find 
it in its best interest to choose the capital stock K (0*). Its rates will then be 

p (0*) and T (0*), where 0* = 4' (K0) and K0 = K (0*). Therefore, under the 
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assumptions of our econometric modeling framework given in Appendix A 
the rate setting process can be thought of as based on either: (1) the utility's 

capital stock selection or (2) its private information announcement. 
In closing this section we note that both of these models reduce to the 

conventional minimum cost function with no private information on the part 
of the utility in the special case that S. and all of the q 

- (j = L, E, K, p) are 
identically equal to one for all utilities, and this is known to the regulator and 

utility, as well as the econometrician. Under this assumption both models 
lead to the regulator setting rates to maximize expected consumer surplus, 
subject to the constraint that the utility earns zero expected-profit. The utility 

will produce its output in an expected total cost minimizing fashion so that 
conventional simultaneous equations cost function estimation techniques 
which result from the application of duality theory yield consistent estimates 
of the parameters of the utility's production function. 

4 Econometric Modeling Framework 

In this section we specify the functional form for our production function 
Qi = f (Ki, L*, Ez, Eq (i) I /) and derive the corresponding cost function 

which we use to recover an estimate of the parameter vector 3. We then 

specify distributions for the structural disturbances introduced into the model 
and derive the implied likelihood function we maximize to compute our 

parameter estimates. There are three types of disturbances to our econometric 
model: (1) shocks which the agents optimize against (6q and Ed), (2) 
optimization errors which allow agents' first-order conditions to only be 
satisfied in expectation (1, j L, E, K, p), and (3) the utility's private 
information 0. Each of the composite errors to our estimating equations are 
functions of these structural disturbances. 

Because our focus is on estimating these models accounting for the 

utility's private information, we choose a fairly simple functional form for 
our production function. This functional form still has sufficient flexibility 
to illustrate several important empirical distinctions between model S, 

model A, and conventional estimation procedures. We choose the Cobb 

Douglas production function 

(21) Q = /O KOK (L/d (0)):L EQE eq, 

where d (0) = Q(3L+/E)//3L. The demand function for the utility's output is 

Qd _ fexp (Z b) p Ed if p < Pmax 
d .0 if p > Pmax 

where Z is a vector of utility service area characteristics assumed to shift 

demand, b is a parameter vector associated with Z, ri is the elasticity of 
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demand for water, and Pmax is the price beyond which demand for the firm's 
output is zero9. This form of the demand function simplifies the imposition 
of the regularity conditions required for our theoretical model and allows 
us to simplify a computationally intensive estimation problem. Appendix A 
presents the derivations of all of the results described in this section. 

Solving the minimum operating cost problem (2.3) for this production 
function yields the following (conditional on K) variable cost function: 

(22) CVC (pe, w, K, Q, 0, E I 3) 
IE _ L 

OKL_ ( /3L L+E (3L ) L+OEl 

OL __ _E 
X WI3L+13E pefL+LE QOL+OE U d L+E 

where u takes the form given in equation (A.4) in Appendix A in terms 

of our previously defined disturbances L and 7E and parameter vector f. 
Recall that the disturbances rlL and E are multiplicative disturbances to the 
conditional factor demand functions arising from the conditional minimum 
variable cost problem (3), which imply that the first-order conditions for the 
minimum cost L and E selection are satisfied only in expectation. 

Taking the partial derivative of the expected value (Eq, d [CVC]) of 
this cost function with respect to K and inserting it into the first-order 
condition for the symmetric information regulatory outcome with respect 
to K [equation (9)] yields the following unconditional variable cost (VC) 
function: 

(23) VC (S) = D* r' wa 0(1-a) pe(1-a-7) Q6 v. 

Expressions for D* and v in terms of the underlying parameters of the model 
are given Appendix A. The parameters ce, ry and 6 are defined as follows: 

a 
! AA+3L E 

(24) { 1 

l OK + AL + /E 

The only difference between this unconditional variable cost function and 
the usual Cobb-Douglas unconditional variable cost function is the presence 
of the utility's private information, the efficiency parameter 0. Consequently, 
setting 0 equal to one for all utilities implies that our symmetric information 

9. We assume the existence of this maximum price, so that consumer surplus is a well-defined 

concept for this constant elasticity demand function. Because there are substitutes for residential 
water service-backyard wells or bottled water-it is reasonable (as well as essential to the 

mathematics) to assume the existence of a very high price which induces zero demand. This 

price can be set to any positive finite number so that economically this assumption should be 

of little consequence. 
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regulatory outcome gives rise to the standard unconditional minimum 
variable cost Cobb-Douglas cost function. 

We should emphasize that because it excludes capital costs, (23) is the 
utility's unconditional minimum variable cost function conditional on 0, not 
the minimum total cost function. Although it is straghtforward to derive the 
utility's minimum total cost function from the first-order conditions given 
in (9), for the following reason, we depart from the tradition of estimating 
a total cost function. Operating or variable costs are measured with little if 
any error, whereas, capital cost (the missing ingredient necessary to compute 
total production costs) is extremely poorly measured. Rather than complicate 
our analysis with potentially substantial measurement error, we instead use 
the unconditional variable cost function given in (23) to estimate the same 
parameters of the utility's production function that can be recovered by 
estimating a total cost function. 

To derive the asymmetric information cost function, we substitute the 
partial derivative of the expected value of the variable cost function 
(Eq, d (CVC)) with respect to K into the first-order condition for the optimal 
capital stock given in equation (19). Simplifying this expression gives the 
following cost function: 

(25) VC (A) = D* H (0)- 0 r' w' pe Qd v, 

where H (0) = [0 + F (09) J. The parameters a, -y and 8 are as defined above. 

We now specify distributions for all of the stochastic shocks to our 
econometric model. This is necessary to derive the likelihood function for 
the variable cost functions under the two information structures. We require 
that v be lognormally distributed with In (vit) N (1,.,, a') independent 
across time and utilities. In Appendix A, we give distributional assumptions 
for %L, 7E, 77p, n7K, Eq' and Ed sufficient for these results to hold for v. Taking 
the natural logarithm of both sides of (23) gives the following symmetric 
information logarithm-of-operating-cost equation: 

(26) In (VC (S)) =(* + (I1-al) In (0) + -y In (w) 

+aln(r) + (1- a - y)ln(pe) +?ln(Qd) +( 

where I In (D*) + tLv and I In (v) - v. Therefore, ( is N (0, a2), 

where a= a2. Repeating this procedure for equation (25) yields the 
asymmetric information log of variable costs equation: 

(27) In (VC (A)) =* ln (H (0)) + -y ln (w) + a In (r) 

+ (1- a --y)ln(pe) + 61n(Qd) + In(0) +( 

We now proceed to define the likelihood function for each information 
structure. First we define notation which simplifies the presentation. Let 

= ( *, a, Y, 5)'. Define X = (In (r), In (w), ln (pe))', q = In (Qd), and 
Y = In (VC). In this notation we can abbreviate equations (26) and (27) as: 

(28) Y = Qy (X, q, r*, ) + 
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and 

(29) Y = Ty(X q, r*, )+ 

where Qy (X, q, F*, 9) is the right hand side of (26) excluding C and 
Py (X, q, F*, 9) is the right hand side of (27) excluding (. We now derive 
the likelihood function and discuss our estimation procedure for the case of 

model S. Following this discussion, we describe the additional complications 
introduced by model A. 

In Appendix A we solve the first-order condition for the optimal price 
given in (8) to obtain an expression for this price in terms of X and Qd. 

Using the market demand function, we then solve for Qd as a function 

of X and Z and the disturbances to the model. This yields the following 
equation for q under model S: 

(30) q = (Z', X', ln (0)) A* + ? 

where A* is the vector of coefficients associated with (Z', X', ln (0)) 
and 4 is the composite disturbance defined in Appendix A. Comparing 
the expressions for 4 and C in terms of the structural disturbances 
given in Appendix A shows that q is correlated with C and hence a 

single equation estimation technique for (28) will not yield consistent 
structural parameter estimates. Under our distributional assumptions, 4 is 
N (0, o- ). Let p(, denote the correlation between ( and 4. Finally, define 
A = (A*', or,, p2P,)'. Conditional on the value of 0, equations (28) and (30) 
make up a triangular system of simultaneous equations. The Jacobian of the 

transformation from ((, 4)' to (Y, q)' is one, so that the joint density of 

(Y, q)' conditional on 0, X and Z is: 

(31) hs (Y, q I ln (0), F, A) = 2 7 2 (1 1/2 

x exp{ 2(1_ 2 [ ) 

- 2 PC, (or/(o or() 
+ 

((/07()2] 

where F = (F *, ok)'. Note that 0 enters both (26) and (30) only through 
ln (9) so that without loss of generality we can express hs( ,) as a 
function of ln (0). 

Because 0 is unobservable, to construct the likelihood function in terms 
of the observable variables, we must compute the density of (Y, q) given X 
and Z only. To obtain this density we integrate the conditional density (31) 
with respect to the density of 0. Rather than assume that Oit is independently 
and identically distributed across utilities (i) and time (t), we assume 
following distribution for Sit 

(32) 9it (ait) = B (rWit)ait, 
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where B > 0 is a constant scale factor, ait is independently and identically 
wit 

distributed across time and utilities, rwit = it, W is the nominal wage 
CPzt 

paid to labor at utility i in year t, and cpit is the consumer price index for 

year t. The ratio it is the real wage received by employees of utility i 

in year t. 

This specification for 0 has the attractive feature of allowing for 

temporal dependence into the values of Oit for firm i based on observable 

characteristics of the utility. Each draw of 0it is independent of the value 

of 6i, for s $ t conditional on the values of rw t and rwi,. Because 

rwit and rwi, are not independent (real wages are correlated over time), 

Oit and Oi, should be unconditionally dependent. This specification also 

embodies the notion that differences in labor efficiencies across utilities and 
time should be partially reflected in different real wages paid to labor. This 
form of Oit makes ait the elasticity of 0 with respect to the real wage. 

We expect ait to take on values less than zero, or at least that its mean 

should be negative, because small values of Oit imply greater efficiency. We 
could allow the distribution of 0 to depend on other characteristics of the 

utility. Experimentation with other variables determining differences in the 
distribution of 0it, such as observable physical characteristics of the utility's 
service area (e.g., number of meters or number of miles of pipe), resulted in 

little change in the structural parameter estimates 10. Because of its intuitive 

appeal we settled on the specification given in (32). 

Substituting the logarithm of (32) into (26) yields 

(33) In (VC (S)) = + a (1 -al) In (rw) + -y In (w) 

+ aln(r) + (1- a - -y)ln(pe) + ln(Qd) + (, 

where ( = * + (1 - a) ln (B). Note that (* and B are not separately 

identified. Later we will show this result holds for model A as well. 

Therefore, we must choose a normalization for 0 in order to separately 

identify these two parameters. Because it is an efficiency parameter, we 

choose B such that E (0) = 1 for the model A parameter estimates and rwit 
set equal to its sample mean. 

Conditional on rwit, variability in the unobserved source of heterogeneity 

depends solely on ait. Integrating (31) with respect to 
d() 

m (a), 

the density of a, yields: 

(34) g(Y, qIX, Z, r, A, M) 
ahigh 

I j hs (Y, q I X, Z, ln (B (rw))a, F) dM (a), 
alow 

10. Our description of the regulator-utility interaction in the California Water utility industry in 

section 2 describes our reasons for selecting labor as the source of unobserved heterogeneity 

in the regulatory process. 
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where ak ln (Ok/B)/rw for k = high, low. The density 
g (Y, qlX, Z, F, A, M) is a member of the general class of mixture 
distribution models. The major complication in estimating these types of 
models is that the parameter space is infinite dimensional. In particular, 
the likelihood function depends on M (a), the distribution function of a. 

Equivalently, the ait are nuisance parameters whose numbers grow with 

the sample size. Within the context of these models, M (a) is called the 

mixing distribution. These models have a long history in both econometrics 
and statistics beginning with NEYMAN and SCOTT [1948] and KIEFER and 

WOLFOWITZ [1956]. The latter paper proved the consistency of the maximum 

likelihood estimates of F and M (a) for the case that X and rwit do not 

appear in hs (YIX, In (B (rwit))a, F) and F is a scalar. 

In a series of recent papers, LINDSAY [1981, 1983a, 1983b and 1983c) 
considers more general forms of the mixture models and derives large 

sample results for classes of models not considered by KIEFER and WOLFOWITZ 
[1956]. In addition, extending the work of LAIRD [1978], he derives an 
algorithm for nonparametrically estimating the mixing distribution M 1 . 

Lindsay's procedure for estimating M (0) involves approximating it by a 
step function, with no more steps than the number of distinct observations. 

However, our theoretical models are derived under the assumption that 0 is 

a continuously distributed random variable, rather than a discrete random 
variable (as is implicit in Lindsay's estimation procedure for any finite 
sample size). Consequently, his estimation procedure does not yield an 
estimate of M (a) that is consistent with our theoretical models for any 
sample size. Consequently, we choose a procedure for estimating F (0) 
that explicitly acknowledges that 0 is continuously distributed. We utilize 
a kernel estimator of m (a), the density of ait. The generic form for the 
kernel density estimator is 

(35) mJ (t) = E w[j 
K 

j) 

where the parameters of this density are T = (71, ..., Tj)', h = 
J 

(hi, , hj)', w = (wi, ..., wJ)', Wk = 1) and J. The function 

K (z) is any kernel with compact support. The reason we must choose a 
kernel with compact support is that the assumption of our theoretical models 
require F (0) to have compact support. For our empirical application we 
choose the Epanechnikov kernel 

(36) K (z) = 
4I (1?5 _ V Z z I < , 

and is zero for all Izi > V5. Even for small J, the functional form given 
in (35) is extremely flexible, allowing a wide range of distributional shapes. 

1 1. HECKMAN and SINGER (1982 and 1984) have applied these nonparametric mixture distribution 
estimation methods to modeling individual heterogeneity in the analysis of duration data. 
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Substituting (35) for dM (a)/da in (34) gives the following integral 

(37) g(Y,qIX,Z,F,A,A) 
ahigh 

= / hs (Y, q Ix Z, ln (B (rw))s, F) 
alow 
J 

x ( whjK (sh j) ds) 

where A = (r', h', w')'. Equation (37) is the likelihood function value for 
a single observation. Selecting a value of J completes the specification of 
the likelihood function 12 

The log-likelihood function for N observations is: 

N 

(37) L (F, A, A)-E ln (g (Yi, qi j Xi, Zi, F, A, A)). 
i=l1 

Once maximum likelihood estimates of r, A and A have been obtained, 
the matrix of the sum of the outer products of first-partial derivatives of 
ln (g (Yi, qi I XiIZ%, 

F, A, A)) evaluated at the ML parameter estimates of 

can be used to obtain consistent standard error estimates. 
Given our ML estimate of mj (a) we can transform this into an estimate 

of the distribution of Sit, as follows: 

(38) f (0) mi (ln (9/B)/rwit) 
rwit 0 

The construction of the likelihood function for the asymmetric information 
case proceeds in an analoguous fashion, with the major complication being 
the presence of H (0), which is a function of both f (0) and F (a) in both 

regression equations. The conditional density of (Y, q)' given 0, X and Z 
under model A takes the same form as for model S with equation (26) 

replaced by equation (27) and output equation (30) replaced by the following 
equation: 

(39) q= (X', Z/, ln (0), ln (H (0))) ? +4, 

where 4 is the vector of coefficients associated with (X', Z', 
ln (0), ln (H (0))'). Appendix A derives expressions for the elements of 1 
in terms of our structural parameters. In Appendix A, we also show that 
restrictions of our structural model imply that ln (0) should not enter 
the output equation. We test this exclusion restriction in our empirical 
application. 

12. We perform our analysis conditional on the value of J. It is chosen to yield a sufficiently 

flexible mixing distribution relative to the amount of data at hand. 
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Under our specification of 0it, the function H (0) can be simplified as 
follows: 

(40) Hit (0) 0 H* (0) = 0 1 + (0)r 
t1 [it+mi (In (0/B)/rwit 

where Fit (0) = fit (s) ds. Utilizing the logarithm of (32), we can 
9low 

express (27) in terms of H* (0) and 0 as: 

(41) ln (VC (A)) =- 
- 
aln (H* (0)) + y ln (w) + a ln (r) 

+ (1- a -'y)ln(pe) + ?ln(Qd) 

+ a (1 - a) ln (rw) + (, 

where ( is as defined earlier. Note that for model A we are also unable to 

separately identify (* and B. Comparing (41) to (33), we can see that the 

only difference between the asymmetric and symmetric information variable 
costs is the term -aln(H* (0)). 

The conditional distribution of Y and q given Z, X, and 0 for this 

information structure, hA (Y, q I X, Z, 0), depends on 0 through both ln (0) 
and ln (H* (0)). To construct the likelihood in terms of only observables, 
we integrate this conditional density with respect to fit (0) over the interval 

[0low, Ohigh]. We compute standard errors for these estimates in the same 

fashion as for the symmetric information estimates. 

5 Data Sources 

In this section we describe our dataset and the construction of the variables 
used in the empirical analysis. All of our cost data are obtained from the 
water district annual reports submitted annually to the CPUC. These reports 
break down the utility's costs by stages of production and by the three 

inputs used in the production process. The CPUC prepares a transcript of 
each of the rate hearings for each of the districts. Besides a summary of the 
proceedings, these transcripts list the rates set for the utility, and usually 
both the rate of return it is allowed to earn on its capital and the price it 
must pay for electricity. 

We have collected annual reports and rate case transcripts for a sample 
of Class A water utilities for the period 1980 to 1988. From this data we 
have obtained the information necessary to estimate our cost functions for a 
sample of water utility districts. The only data not available from either of 
these sources is information on wages in the water industry. This information 
is derived from unpublished data provided by the California Employment 

REGULATOR-UTILITY INTERACTION 37 



Development Department (EDD), Employment Data and Research Division. 
This agency collects information on wages at the county level for SIC Code 
494 (Water Supply) on a quarterly basis. The annual average of the quarterly 
wages is used as our wage variable. 

We now describe the variables used in our model. Total water delivered 

is our output measure. The price of capital is computed by a user cost of 

capital approach using rorit, the rate of return on capital set by the CPUC 

in the rate hearing, as the rate of return for period t for utility i. Using 

equation (23) of JORGENSON [1989], the price of capital services for firm i 
in period t is given by: 

-rt = PA, t-1 rorlt + A PA, t - (PA, t - PA, t-1), 

where PA, t is the acquisition price of capital goods in time period t and A is 

the annual rate of the depreciation for utility capital equipment as given in 

Table 1.2 of JORGENSON [1989]. For PA, t we utilize the Whitman, Requardt 
& Associates Index of utility construction costs for the Pacific region for 
year t. We assume a single type of labor. Ideally, we would like to divide 

the utility's labor force into two types of workers: (1) maintenance and 

(2) supervisory. However, we are unable to obtain wage data for the water 

industry at this level of job detail. Although wage differentials between 
maintenance and supervisory labor may vary across districts and over time, 

based on discussions with CPUC engineers it appears that the variations in 

these differentials are dominated by variations in the level of the average 

wage for all water industry workers over time and across districts. Hence 
our assumption of a single type of labor, although restrictive, should not 

seriously alter our results relative to a supervisory labor and maintenance 

labor model. 

Because we focus our attention on estimating an operating cost function, 

rather than a total cost function in order recover the parameters of the 

utility's production function, we do not have to confront the question of 

properly measuring the utility's capital stock or capital service costs. The 

proper construction of these variables plagues all work estimating production 
or total cost functions. Because of the irregular availability of our annual 

report data for single districts, a time series of investment for each district 

is not available 13. Even if all observations for the period 1980-1988 were 

available for each of the districts we would still have the problem that 

the vast majority of each district's capital stock was already in place by 
1980. Our approach to estimating the parameters of the firm's technology 
concentrates on specifying a model in terms of variables that we are confident 

are measured with very little error, and hence avoids the problems inherent 

in constructing a single index representing the utility's capital stock 14. 

13. These annual reports were often in use by the CPUC staff or simply missing from the CPUC 

archives and therefore unavailable to our data collection efforts. 

14. In Appendix B, we describe three approaches to estimating capital cost and capital stock using 

our data. These capital cost measures are used to estimate a total cost function under the 

standard cost-minimization, no private information assumptions. 
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6 Empirical Results for California 
Water Utility Industry 

In this section first we present the results of the standard approach to 
estimating unconditional variable cost and total cost functions to recover 
the parameters of the utility's production function for three measures of 
capital service costs. Then we present our estimates of the symmetric 
and asymmetric information models. We compare these estimates to those 
obtained using conventional estimation techniques. We then explore several 
implications of the two private information models of the regulatory process. 
In particular, we compute an estimate of the expected change in both the 
variable and total costs of producing a given level of output under the 
symmetric information relative to the asymmetric information regulatory 
equilibrium. 

As mentioned earlier, models A and S reduce to the standard minimum 
cost full-information Cobb-Douglas cost function if 0 = 1 and H (9) = 1. 

Imposing these restrictions yields: 

(42) ln (TC) =(TC + ?Y ln (W) + al n (r) 

+ (1 -a -y)ln(pe) + ln(Q) + v, 

as the utility's total cost function, with E (v) = 0 and E (v2) = o2. For 

comparison, the model S and model A total cost functions are given in 
Appendix A in equations (A.17) and (A.18). In terms of the unconditional 
variable cost function, imposing these restrictions yields: 

(43) In (VC) =(* + -y ln (w) + a ln (r) 

+ (1- a - -)ln (pe) + 6 In (Q) + v, 

If 0 and H (9) are equal to one for all districts and time periods, 
the parameters of models (42) and (43) can be consistently estimated by 
ordinary least squares (OLS). For example, a Cobb-Douglas cost function 
with only capital and labor is estimated by OLS in CRAIN and ZARDKOOHI 
[1978] for a nationwide cross-section of public and private water utilities. 

Table 1 contains the OLS estimates of (42) for our three definitions of 
capital service costs described in Appendix B. For all of the capital cost 

measures, there are several problems with these parameter estimates. First, 
these estimates imply a negative value of /BE in the water delivery production 
function, or equivalently a negative cost elasticity with respect to the price 
of electricity, i.e., increases in pe reduce the cost of water delivery. Second, 
the estimates imply an very small cost elasticity with respect to the price 
of labor. For two of the models, the point estimates imply elasticities less 
than 0.20, implying a 1 percent increase in the wage increases TC by no 

more that 0.2 percent. 
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TABLE 1 

Ordinary Least Squares Estimates of Total Cost Function a 

Number of Degrees of Freedom = 297, Number of Observations = 301 
(No Time or District Dummies) 

Model REGC UTILC MPGC 

Constant ................ -0.377 -1.189 -0.013 

(1.417) (1.497) (1.381) 
Wage ............ .. .. . . 0.191 0.290 0.170 

(0.154) (0.162) (0.150) 
Price of Capital ....... . . . . . 0.236 0.214 0.251 

(0.229) (0.056) (0.051) 
Price of Electricity . . . . . . . . . . - 0.552 -0.620 - 0.495 

(0.197) (0.208) (0.191) 
Output . . . . . . . . . . . . . . . . . . 0.751 0.729 0.755 

(0.028) (0.029) (0.027) 
R2 ..... ... 0.797 0.774 0.808 

TABLE 2 

Ordinary Least Squares Estimates of Total Cost Function a 

Number of Degrees of Freedom = 289 

(Time Dummies) 

Model REGC UTILC MPGC 

Constant ................ 0.957 1.630 1.246 

(2.046) (2.151) (1.993) 
Wage . . . . . . . . . . . . . . . . . . - 0.097 - 0.028 - 0.083 

(0.169) (0.178) (0.165) 
Price of Capital ....... . .... . 0.443 0.035 0.376 

(0.415) (0.434) (0.401) 
Price of Electricity . . . . . . . . . . -0.880 -0.995 -0.818 

(0.212) (0.223) (0.206) 
Output ................. . 0.777 0.756 0.777 

(0.028) (0.029) (0.027) 
R2 .......................... 0.808 0.788 0.816 

Definitions: REGC = Regulator's Definition of Captal Costs, UTILC =Utility's. 

Definition of Capital Costs, and MPGC =Modified Pakes and Griliches (1984) 

Definition of Capital Costs. See Appendix B for the details of the construction of these measures. 
a Standard Error Estimates in Parentheses Below Coefficient Estimates. 

The final problem is the large scale economies estimates embodied in the 
elasticity of cost with respect to output coefficient estimates. Transforming 
these output elasticity point estimates into the parameters of the Cobb 

Douglas production function implies substantial scale economies. We define 
our scale economies estimates in terms of the Cobb-Douglas parameters as: 

SCE = OK + ?L + 3E = 1/6. 

For the MPGC capital cost model, which yields the smallest scale economies 
estimate, a 10 percent increase in output leads to only a 7.55 percent increase 
in costs, or equivalently a 2.45 decrease in average costs. Nevertheless, 
these scale economies estimates are consistent with the results of CRAIN and 

ZARDKOOHI [1978]. We interpret this agreement of results as evidence that 
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our data is similar to that used by these authors, rather than as confirmation 
of the validity of the full-information, total-cost minimization estimation 
technique. Based on these estimates it would appear that many of the 

districts are operating quite far from the minimum efficient scale for water 
delivery. 

In an attempt to salvage the full-information total cost-minimization 
model, we estimated the model with time dummies, a complete set of 
district dummies and both time and district dummies. The regression with 
time dummies is given in Table 2. Unfortunately, time dummies only seem 
to exacerbate the problem with the elasticity of cost with respect to the price 
of electricity. In addition, the elasticity of total cost with respect to the wage 
turns negative. However, the returns to scale estimates do become slightly 
smaller. Table 3 contains the model with district dummies. Here the labor 
elasticity is larger and the capital elasticity smaller than in the previous 
tables. All of the cost elasticity with respect to input price estimates are 
positive and not totally implausible. Unfortunately, the cost elasticities with 
respect to output become extremely small (implying unbelievably large scale 
economies estimates). Finally, for the case of time and district dummies, the 
input price elasticity estimates are positive (with one exception) but small in 

magnitude. In this case, the scale economies estimates are impossibly high. 

Table 5 presents estimates of the unconditional minimum variable cost 
function (43) for the four estimation scenarios considered in Tables 1-4. 
In terms of the input price and output elasticity estimates, the results (in 
column 1) for the case of no time or district dummies are very similar 
to those from the total cost function estimates in Table 1. The impact 
of adding different fixed effects-time, district, and combination time and 
district-produce the same pattern of differences between the four columns 
of Table 5 as occur across the total cost function estimation scenarios in 
Tables 1-4. 

Under the more general assumptions of our private information structural 
models of the regulatory process, models (42) and (43) are misspecified for 
two reasons. First, the presence of 0, the private information parameter, in 
the regulatory process implies that all equilibrium magnitudes including the 
output level of the utility, should depend on 0. However, 0 is also part of the 
disturbance to the cost function when OLS is applied to either (42) or (43). 
For these equations, the disturbance and a regressor (qit) are correlated so 
that OLS will lead to biased and inconsistent structural parameter estimates. 
Second, even if 0 were not in the model, the presence of any unobservable (to 
the econometrician) variables in the firm's production function which both 
the utility and regulator condition their decisions on introduces correlation 
between qit and the disturbance to the cost function. In our case, the vector 
of structural disturbances r and the structural disturbances to the production 
and demand functions, Eq and Ed, all enter into the disturbance to both the 

variable and total cost functions as well as into the determination of qit. 
This induces correlation between qit and the OLS disturbance to both cost 
functions despite the absence of 0 from the model. 

To provide an alternative metric for judging our parameter estimates, 
Table 6 gives the sample mean of the total input cost shares for our three 
capital cost measures. Under the assumption of full-information and cost 
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minimizing behavior, by the logarithmic form of Shepard's Lemma, these 
cost shares should equal the elasticity of total cost with respect to input 
price for each of the inputs. The model with the district dummies comes 
closest to matching the sample means of these cost shares. Unfortunately, 
these models have the very unsatisfactory feature of yielding extremely 
large economies to scale estimates. 

Given the unsatisfactory results obtained using the conventional full 
information minimum cost estimation procedures, we now consider our 
private information cost function models. For both of the private information 
models estimated we set J, the number of kernels used to approximate the 

TABLE 3 

Ordinary Least Squares Estimates of Total Cost Function a 

Number of Degrees of Freedom = 247 
(District Dummies) 

Model REGC UTILC MPGC 

Constant . . . . . . . . . . . . . . . . 0.366 2.496 - 0.676 

(0.835) (1.699) (0.890) 
Wage .0.774 0.877 0.661 

(0.063) (0.128) (0.067) 
Price of Capital .0.087 0.067 0.115 

(0.012) (0.025) (0.013) 
Price of Electricity .0.226 0.236 0.196 

(0.069) (0.141) (0.073) 
Output .0.454 0.220 0.625 

(0.045) (0.092) (0.048) 
R2 ..... 0.995 0.982 0.995 

TABLE 4 

Ordinary Least Squares Estimates of Total Cost Function a 

Number of Degrees of Freedom = 239 

(Time and District Dummies) 

Model REGC UTILC MPGC 

Constant ................ . 8.125 9.421 6.867 

(1.039) (2.63) (1.099) 
Wage . . . . . . . . . . . . . . . . . . 0.111 0.313 0.148 

(0.087) (0.221) (0.092) 
Price of Capital .0.212 0.186 0.083 

(0.070) (0.178) (0.091) 
Price of Electricity .0.007 -0.097 0.002 

(0.058) (0.149) (0.062) 
Output .0.294 0.024 0.403 

(0.038) (0.098) (0.040) 
R2 0.997 0.985 0.997 

Definitions: REGC = Regulator's Definition of Captal Costs, UTILC =Utility's. 

Definition of Capital Costs, and MPGC =Modified Pakes and Griliches (1984) 

Definition of Capital Costs. See Appendix B for the details of the construction of these measures. 
a Standard Error Estimates in Parentheses Below Coefficient Estimates. 
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TABLE 5 

Ordinary Least Squares Estimates of Variable Cost Function a 

Number of Observations = 301 

Model NTDD TD DD T & DD 

Constant . . . . . . . . . . . . . . . . -2.794 - 1.394 - 1.408 6.320 

(1.516) (2.211) (0.933) (1.280) 
Wage .0.422 0.185 0.794 0.161 

(0.164) (0.183) (0.071) (0.108) 
Price of Capital .0.181 0.242 0.091 0.139 

(0.056) (0.446) (0.013) (0.086) 
Price of Electricity . . . . . . . . . . -0.359 -0.647 0.210 0.010 

(0.210) (0.229) (0.077) (0.072) 
Output .0.774 0.794 0.534 0.374 

(0.029) (0.030) (0.051) (0.047) 
R2 0.793 0.800 0.995 0.997 

Definitions: NTDD = No Time or District Dummies, TD = Time Dummies, DD = District 
Dummies, and T & DD = Time and District Dummies. 

a Standard Error Estimates in Parentheses Below Coefficient Estimates. 

TABLE 6 

Sample Averages of Input Cost Shares a 

Number of Observations = 301 

Input REGC UTILC MPGC 

Capital . . . . . . . . . . . . . . . . . 0.341 0.318 0.414 

(0.005) (0.007) (0.005) 
Labor . . . . . . . . . . . . . . . . . . 0.540 0.560 0.481 

(0.007) (0.009) (0.006) 
Electricity .0.119 0.122 0.105 

(0.004) (0.004) (0.003) 

a 
Sample Standard Errors in Parentheses Below Mean Shares. 

density of 0, equal to two. Increasing the number of kernels led to very little 
change in the structural parameter estimates or the shape of the estimate 
of fit (0). 

First we consider the symmetric information model. Table 7 contains 
the estimates of the model S unconditional variable cost function. These 
point estimates provide a drastically different picture of the water delivery 
production process than do those in Tables 1-5. All of the m, m = K, L, 
and E, implied by these parameter estimates are positive. Perhaps the most 
interesting aspect of these results is the large change in the scale economies 
estimate. The point estimate implies slight diseconomies to scale (1/E < 1). 
In fact, based on the standard error estimate we can reject the hypothesis 

H : S = 1 in favor of the alternative K : 6 > 1, implying statistically 

significant, but economically small, diseconomies to scale. 
These estimates imply that the districts are operating very close to the 

minimum efficient scale for the water delivery technology. These scale 
economies estimates appear far more consistent with the stylized facts 
regarding the current state of the California water delivery technology 
-that total costs of supply grow roughly in proportion to the expansion 
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TABLE 7 

Symmetric Information Model Estimates Controlling for Unobserved Heterogeneity 
Unconstrained Estimates (301 Observations) 

Parameter Value Standard Error 

Parameters of Variable Cost Function 

. .. . . . . . . . . . . . . . . . ........ -5.413 0.698 

Wage ............. .. .. .. .. . . 0.457 0.123 

Price of Capital . . . . . . . . . . . . . . . . . 0.274 0.023 

Price of Electricity ........ . . . . . . . 0.139 0.074 

Output ...................... . 1.051 0.018 
.. . . . . . . . . . . . . . . . . . . . .... . 0.124 0.015 

pC, , .. . . . . . . . . . . . . . . . ....... . 0.949 0.015 

Parameters of Reduced Form Output Equation 

A1 . . ............ . .. .. .. .. . 4.140 1.129 

Wage ............. .. .. .. .. . . 0.866 0.153 

Price of Capital ........ . . . . . . . . . -0.268 0.040 

Price of Electricity . . . . . . . . . . . . . . . - 0.364 0.122 

# of Meters in Service Area . . . . . . . . . . 0.231 0.028 

Total Feet of Pipe ........ . . . . . . . . 0.407 0.024 

Meters * Pipe ......... . . . . . . . . . -0.024 0.001 

ln(0) ............. .. .. .. .. . . -0.691 0.047 

UV, . . . . . . . . . . . . . . . . . . . . . . . . . 0.328 0.018 

Parameters of Mixing Distribution t ln (O/B)/ln (rw) (J 2) 
r . . . . . . . . . *. . . . . . . . . . . . . . . -0.269 0.166 

T2 . -0.114 0.168 
hi . . . . . . . . . . . . . . . . . . . . . . . . . 0.071 0.005 

h2 *-.- - ........................ 0.224 0.010 

WI . ....................... . 0.726 0.038 

Likelihood Function Value . . . . . . . . . . . - 375.456 

of output. A recent memorandum sent to all water utilities in California 

provides informal evidence for the close to proportionate increase in costs 
associated with expanding output. This memorandum describes the CPUC 
June 15, 1983 service improvement policy, which requires water companies 
to provide public notice of proposed plant additions. "If customer consensus 
is a desire to retain poor quality (but not unsafe) service rather than pay 
for improvements, the Commission may decide not to allow the proposed 
improvements in the rate base", (Public Utilities Commission Memorandum, 

November 30, 1983). While there are certaintly other reasons why the CPUC 
would institute such a policy, one of the reasons, which is mentioned in this 

memorandum is the high cost of making these improvements and servicing 
the improved capital stock. These sorts of statements seem consistent with 
a technology that is characterized by constant or slight decreasing returns 
to scale, not one characterized by the large returns to scale implied by the 

estimates in Tables 1-5. 

Table 8 presents the model S estimates imposing the restriction that 
the unconditional variable cost function is homogeneous of degree one in 

the input prices. Homogeneity implies the restriction that the sum of the 

input price elasticities equals one. This imposes one equality restriction. 
The Wald statistic (constructed from the Table 7 estimates) for this null 
hypothesis is 1.349. The likelihood ratio (LR) statistic (constructed from 
the likelihood function values given at the bottom of Tables 7 and 8) is 
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TABLE 8 

Symmetric Information Model Estimates Controlling for Unobserved Heterogeneity 
Constrained Estimates-Input Price Homogeneity Imposed (301 Observations) 

Parameter Value Standard Error 

Parameters of Variable Cost Function 

. . . . . . . . . . . . . . . . . . . . . . . . . . -6.380 0.384 
Wage ............ .. .. .. .. .. . 0.582 0.048 
Price of Capital . . . . . . . . . . . . . . . . . 0.340 0.014 

Output . ... .. . . .. . . . . . . . ...... 1.080 0.011 
.. . . . . . . . . . . . . . . . . . . . .... . 0.103 0.010 

PC, 0 .. . . . . . . . . . . . . . . . . ...... 0.965 0.009 

Parameters of Reduced Form Output Equation 

A1 . . ................ . .. . .. . 4.891 1.132 
W age . . . . . . . . . . . . . . . . . . . . . . . 0.737 0.141 
Price of Capital ........ . . . . . . . . . -0.322 0.041 
Price of Electricity . . . . . . . . . . . . . . . -0.285 0.123 

# of Meters in Service Area ...... . . . . 0.226 0.026 
Total Feet of Pipe ........ . . . . . . . . 0.391 0.023 

Meters * Pipe ......... . . . . . . . . . -0.023 0.001 
In (0) . . . . . . . . . . . . . . . . . . . . . . . - 0.603 0.037 

. . . . . . . . . . . . . . . . . . . . . . . ... 0.336 0.015 

Parameters of Mixing Distribution t In (9/B)/ln (rw) (J 2) 
Tr . . . . . . . . . . . . . . . . . . . . . . . . -0.599 0.093 

T2 . . . . . . . . . . . . . . . . . . . . . . . . -0.284 0.092 
h, . . . . . . . . . . . . . . . . . . . . .....0.094 0.004 

h2 . . . . . . . . . . . . . . . . . . . . .....0.226 0.007 
w . .. . . . . . . . . . . . . . . . . . ...... 0.799 0.033 
Likelihood Function Value . . . . . . . . . . . - 376.065 

1.218. Both statistics possess a X2-distribution with 1 degree of freedom 
under the null hypothesis, so that for either test statistic the null hypothesis 
of homogeneity cannot be rejected at any reasonable level of significance. 
Imposition of this contraint leads to elasticity of cost with respect to input 
price estimates which are very close to the average factor shares given in 
Table 6. The output elasticity estimate still implies slight diseconomies to 
scale in the production technology. 

Table 9 presents the model A estimates. The major difference between the 
model S and model A estimates are the larger cost elasticity with respect 
to labor and smaller cost elasticity with respect to capital for the model A 
estimates. In addition, the value of ao for model A is almost three times 
smaller than the corresponding estimate of ac for model S. This vdifference 
in magnitude of ao across the two models implies that model A attributes 

much of the variability in variable costs over time and across utilities to 
differences in the regulatory distortion function H (0), defined in section 3. 
Both model A and model S allow costs to be affected by changes in 0. Only 
model A allows for variability in H (0) to explain variable cost movements. 
As the relative magnitude of the ua across the two models shows, H (0) 
possesses substantial explanatory power in the unconditional variable cost 
function. This increased explanatory power also shows up the substantially 
higher value of the likelihood function for model A relative to model S. 

Table 10 presents estimates of model A under the assumption that the 
variable cost function is homogeneous of degree one in input prices. From 
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TABLE 9 

Asymmetric Information Model Estimates Controlling for Unobserved Heterogeneity 
Unconstrained Estimates (301 Observations) 

Parameter Value Standard Error 

Parameters of Variable Cost Function 

. . . . . . . . . . . . . . . . . . . . . . . . . . - 3.945 0.450 
Wage ............ .. .. ... . .. . 0.653 0.088 

Price of Capital ........ . . . . . . . . . 0.123 0.011 

Price of Electricity ....... . . . . . . . . 0.119 0.046 

Output ...................... . 1.052 0.012 

ac ............... .. ... .. .. . 0.021 0.003 

pC, 
. .. . . . . . . . . . . . . . . . . ..... . 0.236 0.415 

Parameters of Reduced Form Output Equation 

. . . . . . . . . . . . . . . . . . . .. . . ... 2.274 1.479 
Wage ............ .. .. .. .. .. . 1.010 0.153 

Price of Capital ........ . . . . . . . . . -0.164 0.049 

Price of Electricity . . . . . . . . . . . . . . . -0.310 0.148 

# of Meters in Service Area ...... . . . . 0.237 0.031 

Total Feet of Pipe ........ . . . . . . . . 0.396 0.030 

Meters * Pipe ......... . . . .. . . . . -0.024 0.001 

ln (H (9)). ............ . . . . -0.300 0.022 

.r ....................... . 0.413 0.021 

Parameters of Mixing Distribution t = ln (9/B)/ln (rw) (J = 2) 
.1 .- . . . . . . . .. . . . . . . . ......-0.841 0.115 

T2 . -0.549 0.118 
h, . . . . 0. 0 . . . . . . . . . . . . . . ......0.073 0.003 

h2 . . . - . . . .....................0.172 0.004 
w l .. . . . . . . . . . . . . . . . . . ....... 0.855 0.022 

Likelihood Function Value ...... . . . . . -336.411 

the likelihood ratio function values given at the bottom of Table 9 and 10, 
likelihood ratio test statistic for homogeneity is 2.62. The Wald test based 
on the estimates in Table 9 is 2.15. Both test statistics imply that the null 

hypothesis of homogeneity cannot be rejected. 
We also tested the model given in Table 10 against several less restrictive 

alternatives. The first was whether or not In (0) should enter the reduced form 

output equation. As shown in Appendix A, under the assumptions of our 

structural model, 0 should effect observed output of the utility only through 
H (0). To test this hypothesis we -stimated model A with homogeneity 
imposed, but included the term In (0) in the reduced form output function. 

The Wald statistic for the null hypothesis that the coefficient on In (0) is 

zero in the output equation is 1.93 and the likelihood ratio statistic is 1.6. 

Neither statistic leads to rejec . of this exclusion restriction implied by 
our structural model. A second less restrictive model was considered which 

did not impose homogeneity of the variable cost function in the input prices 
or the constraint that -a equals the coefficient on In (H (0)) in the variable 

cost function but did not impose the above exclusion restriction on In (0) in 

the output equation. The likelihood ratio statistic for this two-dimensional 

joint null hypothesis implied by our structural model is 4.34, which is 

smaller than 5.991, the a = 0.05 critical value from a X2 -random variable. 

Both of these hypothesis tests yield encouraging evidence in favor of the 

validity of the restrictions implied by model A. 
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TABLE 1 0 

Asymmetric Information Model Estimates Controlling for Unobserved Heterogeneity 
Constrained Estimates-Input Price Homogeneity Imposed (301 Observations) 

Parameter Value Standard Error 

Parameters of Variable Cost Function 

. . . . . . . . . . . . . . . . . . . . . . . . . . -4.204 0.493 

Wage ............. .. .. ... .. . 0.746 0.073 

Price of Capital . . . . . . . . . . . . . . . . . 0.113 0.018 

Output ...................... . 1.044 0.021 
.. . . . . . . . . . . . . . . . . . . ..... 0.036 0.009 

PC, . .. . . . . . . . . . . . . . ......... 0.680 0.120 

Parameters of Reduced Form Output Equation 

.1 ....................... . 2.238 1.448 

W age . . . . . . . . . . . . . . . . . . . . . . . 0.988 0.148 

Price of Capital . . . . . . . . . . . . . . . . . -0.162 0.049 

Price of Electricity . . . . . . . . . . . . . . . -0.333 0.149 

# of Meters in Service Area ...... . . . . 0.237 0.031 

Total Feet of Pipe ........ . . . . . . . . 0.400 0.030 

Meters * Pipe ......... . . .. . . . . . -0.024 0.001 

ln (H (0)). . . . . . . . . . . . . -0.309 0.023 

Oro 
.. . . . . . . . . . . . . . . ......... 0.397 0.020 

Parameters of Mixing Distribution t I in (9/B)/ln (rw) (J 2) 
Irl . . . . . . . . . ... . . . . . . . . . . . . . . -0.927 0.105 

T2 ......... -0.646 0.105 

hi .. . . . . . . . . . . . . . . . ........ 0.074 0.004 

h2 ......................... 0.170 0.006 

W I .. . . . . . . . . . . . . . . . . ....... 0.869 0.023 

Likelihood Function Value . . . . . . . . . . . - 337.722 

We should note here that both of our private information models 

determine the various cost elasticities controlling for the different unobserved 
efficiencies across observations, but each does this under a different assumed 

model of the regulator-utility interaction. Therefore, we can think of the 
cost elasticity estimates obtained from both the symmetric and asymmetric 
information models as determining the percentage increase in a utility's total 

production costs as a result of a 1 percent increase in the price of that input, 

given that model's assumed regulator-utility interaction. The cost elasticities 
differ across the symmetric and asymmetric information models precisely 
because the different models of utility-regulator interaction imply different 
responses by the utility to input price changes. 

We now compare the implications of the two models of regulatory 
interaction with private information. All of the calculations presented below 
are based on the model S estimates in Table 8 and the model A estimates in 

Table 10 which impose all of the restrictions implied by our two structural 
models. 

First we must address the issue of the scale of 0 for models S and A. As 

shown in section 4, B, the constant determining the scale of 0 in equation 

(32), cannot be separately identified from the constant in the variable cost 
function for either model A or S. In order recover an estimate of B, we 

must normalize 0 in some manner. We normalize 0 to have an expected 

value of one when evaluated at the sample mean of rw-t for the model A 

parameter estimates. We choose the same value of B for both models A 
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and S so that the efficiency levels [values of 0 and d (0)] implied by the 

model A and model S parameter estimates are directly comparable. The 

sample mean of rwit is 5.42, which implies a value of B of 81.18. For 

these values of rwj1 and B, the mean of 0 for model A is, by construction, 

one, and the mean of 0 for model S is 9.84. Based only on a comparison 

of means of 0, model S implies a much greater average level of labor 

inefficiency than does model A. This occurs because model A allows an 

additional source of variability in variable costs, the differential regulatory 
distortion embodied in ln (H (0)). On the other hand, model S must attribute 

all unexplainable variability in variable costs not accounted for by variability 

in vit to variability in Oit alone, whereas model A has both Oit and H (Oit) 

to explain movements in variable costs. 

Figure 1 presents a plot of the density of 0 implied by our model A and S 

estimates for the value of B we have selected and for rwjt set to it sample 

mean. Both the model A and S estimates of f (0) exhibit substantial positive 

skewness, indicating that the vast majority of draws of 0 for any observation 

(utility and time period) lie below the mean value of that observation. For 

example, for model A approximately 83 percent of the time 0 lies below its 

mean value. However, 0 takes on very large values with small probability 
so that the expectation of 0 is one. For model S, the same general results 

hold, approximately 86 percent of the time 0 lies below 9.84, the mean of 

0 under model S. A comparison of the two densities reinforces our above 

conclusions made based only on mean values. For every value of t, the 

probability that 0 is less than t is greater for model A than for model S. In 

other words, because it allows for regulatory distortions, model A estimates 

each utility's absolute labor efficiency to be substantially higher than the 

estimate coming from model S. 
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Figure 2 plots the density of d (0) for the model S and model A parameter 

estimates with rw-t set equal to its sample mean. Because (1 - c)/-y is 

very close to one (d (0) = 0(1-a)/Y), these plots closely resemble the plots 
of 0 given in Figure 1. Figure 3 presents a plot of the density function 
of a, the elasticity of 0 with respect to rwit for both models S and A. 

Figure 4 presents the density of the elasticity of d (0) with respect to rwit 
for the two models. Table 11 gives the expected values associated with 

the densities given in Figures 3 and 4. The major conclusion to emerge 

from the comparison of densities and expected elasticities is that the model 
A parameter estimates imply that labor efficiency is substantially more 
responsive to changes in the real wage (rwit). In fact, for model A the 

expected elasticity of d (0) with respect to rwit is essentially -1.0, which 
implies that a one percent increase in rw-t leads to a one percent increase 
in the labor efficiency deflator (d (0)). The model S results imply that labor 

efficiency is substantially less sensitive to changes in rwit. 
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Model A, .... Model S. 

To give the reader some idea of the degree of heterogeneity inherent in 

any utility' s labor efficiency parameter, we computed equal-tailed confidence 

intervals for both 0 and d (0) for both sets of parameter estimates and for 

its various size confidence intervals setting rwit equal to its sample mean. 

These confidence intervals are equal-tailed in the sense that if 1 - T is 

the size of the confidence interval, then 1/2 T of the probability lies below 

ZL, the lower bound, and 1/2T of the probability lies above ZH, the 

upper bound. Two conclusions emerge from Table 12. First, for any size 

confidence interval, the ratio ZH/ZL is always much larger for model S 
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versus model A. The second conclusion, is that for values ofTr< 0. 15, the 

degree of heterogeneity in labor efficiency (0) for the model A parameter 
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TABLE 11 

Expected Values of Elasticities of 0 and d (0) with respect to rw 

Regulatory Process E (dln (9)/dln (rw)) E (dln (d (9))/din (rw)) 

Model S . . . . . . . . . . . . . . . . . . . . . . -0.54 - 0.61 

Model A . . . . . . . . . . . . . . . . . . . . . . -0.89 - 1.06 

TABLE 12 

Confidence Intervals for 9 and d (9) 

Regulatory Process Parameter ZL ZU prob [ZL,ZU] 

Model S .9.......... . .. . . H 1.3 80.3 0.95 

Model S .9.......... . .. . . H 1.5 45.5 0.90 

Model S . . . . . . . . . . . . . . . . 0 1.7 17.7 0.80 

Model A .9.......... . .. . . 0 0.27 6.2 0.95 

Model A .9.......... . .. . . 0 0.29 3.5 0.90 

Model A .9.......... . .. . . 0 0.33 1.3 0.80 

Model S ........... . .. . . d(9) 1.1 143.1 0.95 

Model S . . . . . . . . . . . . . . . . d(S) 1.5 75.6 0.90 

Model S . . . . . . . . . . . . . . . . d(0) 1.8 26.1 0.80 

Model A ........... . .. . . d(9) 0.21 8.6 0.95 

ModelA ........... . .. . . d (0) 0.22 4.4 0.90 

ModelA ........... . .. . . d(a) 0.26 1.3 0.80 

estimates appears to be within the realm of plausibility. For example, for the 
80 percent confidence interval, ZH is approximately 4 times larger than ZL. 
These results suggest that model A, may yield a more plausible description 
of the actual utility-regulator equilibrium. 

We now more directly address this issue. Because the same parameters 
enter into both models A and S, neither model is nested within the other, 
so that a conventional nested hypothesis test cannot be used to assess 

which model provides a superior description of the data. Both models do 

specify the form of the joint distribution of q and In (VC) using different 
functions of the same set of exogenous variables, so that we can take 

advantage of recent theoretical work by VUONG [1989] and perform a non 

nested hypothesis test of model A versus model S. The null hypothesis for 
Vuong's test is that both model A and model S are equally far from the true 

data generating process (DGP) in terms of Kullback-Liebler distances. The 
alternative hypothesis is that one model, in our case model A is closer to the 

true DGP. Table 13 presents the test statistic, which is asymptotically N(0,1) 
for this null hypothesis. We find very substantial evidence in favor of the 
alternative hypothesis that model A is closer to the true DGP. A comparison 
of the likelihood function values given at the bottom of Table 8 and 10 

shows that the value for model A is substantially larger, and the non-nested 
hypothesis test confirms that this difference is statistically significant. 

We now examine the validity of one final implication of our structural 
model. As discussed in section 3 and shown in Appendix A, if H (0) is 

monotone increasing in 0 then the solution to the model A regulator's 
problem (12) will yield price, capital, and fee schedules which lie within 
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TABLE 13 

Non-nested Test of Model A versus Model S 

H: Model A and Model S equidistant from True Model 

K: Model A closer to True Model than is Model S 

Test Statistic ........... 4.30 
a = 0.01 Critical Value ..... ...... 2.58 

the set of feasible (globally incentive compatible) mechanisms. Figure 5 
presents a plot of H (0) for the model A parameter estimates. The estimated 

value of H (0) in monotone is 0 so that our model A estimates will yield an 

optimal second-best regulator-utility equilibrium. This upward sloping plot 
of H (0) is an additional specification check for model A. Although it is not 

required for the validity of the model S solution, those parameter estimates 
also yield an upward sloping H (0). 
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As discussed above, model A and model S each provide a different 

rationalization of the same observed regulator-utility equilibrium. This 

observation leads is to ask the following question. Suppose that model A is a 

true description of the observed data, so that the regulator-utility interaction 

is characterized by asymmetric information, and somehow the regulator 
manages to implement the the optimal second-best equilibrium-the model 

A equilibrium or something very close to it. How much less would it 

cost to produce the same level of output under the symmetric information 
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regulator-utility equilibrium assuming the same input prices and distribution 
of 0? Using the parameter estimates from our structural models we can 
compute estimates of both the change in variable and total costs in moving 
from the asymmetric to the symmetric information equilibrium. For example, 
taking the ratio of VC (A) given in (25) to VC (S) given in (23) yields: 

(44) VC (A)/VC (S) = [H* (0)]` 

for H* (0) as defined in equation (40). In Appendix A, we solve for the 
total cost function for models A and S as a function of the input prices and 

output level. Taking the ratio of total costs yields: 

(45) TC (A)/TC (S) = [H- (0) [((1 - a)/a) + H* (1)] 

under the assumption that r7K = 1 and 

- Ed lEq 
} = E 

[EdlEq 
} -]. 

By examination of equation (40) we can see that [H (0)/0] will always 
be greater than zero and less than one. Hence, equation (44) implies that 
to produce the same level of output at the same input prices under the 
asymmetric information regulator-utility equilibrium requires less variable 
costs than it does under the symmetric information equilibrium. However, 
we can show that under these same restrictions on a, the ratio of total costs 
under the two equilibria will always be greater than one. The cost of the 

informational asymmetry is the substantially larger capital costs (relative 
to the symmetric information equilibrium) that must be paid by all but the 

most inefficient utilities. All other utilities must overinvest in capital in the 
asymmetric information equilibrium because of the signaling role that a 
utility's capital stock plays in this equilibrium. 

Figure 6 contains a plot of these two ratios for all of the observations 
in our sample for the model A parameter estimates. Each ratio is evaluated 
at the expectation of Sit for that observation so that rwit, the real wage 
for (i, t) th observation, enters into the computation of E (Oit) rather than 
the sample mean of the real wage. These plots show that in terms of total 

production costs, the informational asymmetry between the regulator and 
utility implies 5 to 12 percent higher total production costs, with an average 
increase of approximately 8 percent. On the other hand, variable costs are 8 
to 13 percent lower under the asymmetric information equilibrium. Implicit 
in these cost differences is the fact that under the model A equilibrium the 
firm's optimal capital stock is substantially higher it would be under the 

model S solution, hence the higher total production costs under model A. 
For comparison, in Figure 7 we compute this same plot for the model S 

parameter estimates. In this case the increase in total costs ranges from 
50 percent to 150 percent, with an average of about 100 percent. The 

variable cost is approximately 50 percent less under model A versus 
model S. These estimates of the cost of asymmetric information are clearly 
excessive. This is not surprising given that the parameter estimates on 

which they are based assume the data is generated by model S. We 
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include these estimates to show that for seemingly reasonable parameter 

estimates, unbelievable estimates of the cost of asymmetric information can 

be obtained. 
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The costs of asymmetric information obtained from the model A parameter 
estimates do not seem large when viewed in terms of a percentage of the 

model S total costs. Nevertheless, given the large dollar magnitude of total 
production costs for each utility, summing these production costs over all 
of the utilities in our sample and multiplying by 8 percent yields a very 

large dollar magnitude. 
The calculations shown in Figures 6 and 7 measure the increased 

production costs for the same level of output under the two information 
structures. However, given the same set of primatives-input prices, demand 
and production functions and the value of 0-for a given utility, the level 

of output produced will differ under the two information structures. Taking 
the ratio the two reduced form output equations given in Appendix A, 
equations (A. 11) and (A. 15) respectively, yields 

(46) Qd (A)/Qd (S) = H* (0)I (1-&) 

where , (1 - oa) t is the coefficient on In (H (0)) in the reduced form 
output equation. Equation (46) gives the ratio of output produced under 
the two information structures for the same set of economic primatives. 

From this calculation we can assess the welfare impacts to consumers of 

asymmetric information. Figure 8 plots this ratio for all observations in the 

sample evaluated at Oit = E (Oit). This output reduction due to informational 

asymmetries as computed using our model A parameter estimates ranges 

from 32 to 23 percent. These estimates imply sizeable welfare losses to 

consumers due to asymmetric information at this value of Sit. However, at 

the sample median of 0it this range drops to an 8 to 12 percent reduction 

in output. Thus, the major cost of asymmetric information in the regulatory 
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process appears to be the welfare loss to consumers from higher prices (and 

therefore reduced output) under the model A versus model S solution. 
Our final set of graphs plots several observable magnitudes associated with 

each observation as function of that observation's expected value of 0 for 
the model A parameter estimates. Figure 9 contains the plot of the expected 
value of 0 against that observation's output. From this plot it appears that 
there is a positive relationship between efficiency (lower values of 0) and 
total output. Figure 10 plots total variable costs and finds the expected 
relationship given the results of Figure 9-higher costs are associated with 
greater efficiency, because the more efficient utilities tend to produce more 
output. Finally, Figure 11 shows that the more efficient utilities also tend 
to have larger absolute returns to capital, as measured by the difference 
between total revenues and variable costs. 
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Summarizing our results, there are three implications of our private 
information model estimates for the California Class A Water Utility 
Industry. First, once all factors of production are allowed to vary, returns 
to scale in the industry are slightly decreasing. Second, the increased 
cost of production due to the existence of informational asymmetries 
are significant, although by no means excessive. The major impact of 

asymmetric information is the higher prices and lower output, rather than 
the increased production costs for given level of output. Finally, among the 
two private information models, model A appears to provide a statistically 
significantly superior description of the actual regulator-utility equilibrium 
for the functional forms for production and demand we have chosen, despite 
estimating the same number of parameters as model S. 
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7 Conclusions and Caveats 

In this paper we presented two models of the utility-regulator interaction 
when the utility possesses private information about its production process 
which is either known or unknown to the regulator, but always unknown to 
the econometrician. We solved for the utility-regulator equilibrium for both 
of these models and derived the form of the utility's unconditional variable 
cost function for both of these models. We then assumed a parametric 
functional form for the utility's underlying production technology and 
derived the parametric form of the variable cost function in terms of 

the parameters of the utility's production function. Using assumptions on 
the distributions of the three kinds of underlying structural disturbances, 

we derived a procedure to consistently estimate the parameters of the 
utility's production function taking into account this unobservable private 
information possessed by the utility and the assumed utility-regulator 
interaction. 

The parameters of the water delivery technology estimated using our 
proceedure were quite different from those obtained using conventional 
full-information cost function approaches. We found far less economies 
to scale in the production technology. In fact, our estimates indicate the 

water delivery production process exhibits very slight decreasing returns to 
scale, whereas conventional techniques implied substantial scale economies 
as well as nonsensical elasticities of total cost with respect to input prices 
for most of the conventional models estimated. On the other hand, for both 

the symmetric and asymmetric private information models, all of the cost 

elasticity estimates are within the realm of economic plausibility. 

Comparing the symmetric information model to the asymmetric 
information model we concluded (based on the production function 
parameter estimates and the estimated distributions of the unobserved labor 

efficiency parameters) that the regulator-utility equilibrium implied by the 
asymmetric information model led to more reasonable estimates for both of 
these magnitudes. In addition, a non-nested hypothesis test led to rejection 
of the equality of models A and S in terms of proximity of the true data 

generating process in favor of the superiority of model A. Our modeling 

framework also allowed us to compute a model-based estimate of the 

increased production costs borne by producers due to the presence of 

asymmetric information versus full-information in the regulatory process. 
In addition, we also computed an estimate of the output reduction due to 

informational asymmetries in the regulatory process. Although we did find 
noticeable increases in production costs due to informational asymmetries 
at the expected value of 0it for each utility, the greatest impact seems to be 

the welfare loss to consumers in the form of higher prices and lower output 
under the asymmetric information equilibrium. 

As with any structural econometric model estimation exercise, there are 

numerous caveats associated with our results. First is the choice of the 

specific behavioral assumptions for each of the agents. Second is the 

selection of the specific functional forms used. Although we can by no 
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means test our model against all possible unrestricted alternatives or examine 

the validity or reasonableness of all possible implications of our structural 
model, we have tried to address both of these major caveats associated 

with our modeling effort by presenting various specification tests or checks 
throughout the empirical analysis. 

In light of the results presented here, we do feel that our model 
has substantial promise as an economic-theory-based methodology for 
incorporating into an econometric model of the utility-regulator equilibrium 
the distortions from cost-minimizing behavior due to informational 
asymmetries. Although our stylized description of the regulatory-utility 
interaction cannot describe the actual regulatory review process, our 
econometric model based on the assumptions of model A appears to yield 

a satisfactory characterization of the observed economic magnitudes arising 
from this economic interaction. In addition, these structural models have 
the useful feature of recovering estimates of the increased production costs 
and reduced output which arise from the asymmetric private information 
possessed by the utility in the regulatory process. 

The telecommunications industry appears to be a particularly promising 
future application of this private information econometric modeling 
framework 15. All previous econometric studies of the structure of 
technology in this industry have used the standard duality theory approach 

which assumes cost-minimizing behavior on the part of the utility to 
recover estimates of the characteristics of its underlying production 
technology. Examples of this work are CHRISTENSEN, CUMMINGS and SCHOECH 
[1983] and EVANS and HECKMAN [1983 and 1986]. This research has 
focused on estimating of economies of scale and scope in the supply of 
telecommunications services to answer the question of whether the industry 
exhibits the characteristics of a natural monopoly. CHARNES, COOPER and 

SUEYOSHI [1988] have also addressed this question of subbaddivity using an 
alternative modeling approach. In addition, in a discussion of the divergence 
between the results in EVANS and HECKMAN [1983] and those in CHARNES, 
COOPER and SUEYOSHI [1988], EVANS and HECKMAN [1988] question the 
assumption of cost minimization embodied in the use of Shepard's Lemma 
to recover the characteristics of the Bell System's production technology. 

Given the large differences in the returns to scale estimates obtained using the 

private information modeling framework versus the conventional minimum 
cost framework in this study and the necessity of consistent estimates of an 

industry's underlying technology to deciding the question of the presence 
of natural monopoly, the present modeling framework may provide useful 
input into deciding this important question. 

15. I am grateful to an anonymous referee for suggestioning this application. 
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APPENDIX A 

Introduction 

This appendix derives the conditional (on the capital stock selection) 
variable cost function for the Cobb-Douglas production function used to 
estimate the parameters of the water delivery production process. Using 
this conditional variable cost function, we then derive the the unconditional 
variable cost function and reduced form representation for the total output 
produced for both the symmetric information and asymmetric information 
utility-regulator equilibria. These are the two equations we estimate for both 
the symmetric and asymmetric equilibria to the recover the parameters of 
the water delivery production process. Next, we derive the form of the 
total cost functions for both model S and model A for our relative cost of 
asymmetric information calculations in section 6. We then derive the set 
of feasible (incentive compatible) mechanisms that satisfy the individual 
rationality constraint and can be implemented by the regulator for our 
econometric model. We then derive a necessary condition on the parameters 
of our econometric model which guarantees that the optimum of (12) lies 
in this set of feasible mechanisms. 

Conditional Variable Cost Function 

Simplifying equation (21) yields the following form for the water delivery 
production process: 

(A. 1) Q -o0 06(LE ) KfK LAL EfE q 

The first-order conditions from solving (3) subject to (A. 1) yields the 
following conditional factor demand functions: 

(A.2) E f_3- /(1L+f3E) o K K/(3L+0E) 

[/OL pe ]L 
/ 

L/ ++/E) 
x Q-/+E 

61(LO)71E 
L 3EW wj 

(A.3) L =-1/(L +?E) 0 K -K /(L + 3E) 

/l31E / (1L +/E) 
x 

OL pe Q1/(03L+OE) E-1/(/3L+OE) r/L 

LE W 
q 

The disturbances T/L and WE are non-negative multiplicative mean-one 
random disturbances which have been added to the model to allow the first 
order conditions from (3) to hold only in expectation from the perspective 
of the econometrician. These disturbances are assumed to be known by both 
the regulator and the utility, but are unknown to the econometrician. This 
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assumption implies that the two agents in the interaction are setting their 
first-order conditions exactly to zero, and the econometrician observes these 
same first-order conditions up to mean-one multiplicative errors. There 
are disturbances of the form Ik, where k indexes the choice variable in 
the optimization problem, included in all first-order conditions to both the 

model A and model S solutions to allow for fact that the value of a choice 
variable can deviate from that predicted by our model. For the case of (A.2) 
and (A.3), these errors allow for the fact that the factor demand functions 
for E and L do not predict the observed E and L without error for all 
observations for any values of the parameters. Accounting for presence of 
these errors is necessary to obtain an internally consistent statistical model 

which captures all sources of randomness in the actual underlying data 
generation process. 

Substituting (A.2) and (A.3) back into the expression for variable cost 
given in (3) yields the conditional (on K) variable cost function given 
in (22) and the composite disturbance 

(A.4) =(L)+E/(OL+OE) (!3)-3L/(1L+3E) ( )1 

We assume that Eq. IL and a* + b* (2k) are lognormally distributed, where 

(A.5) a* = (/3 )/(3L L+/) and b*E=(IL )L/(/3L+/E) 

These assumptions imply that the composite disturbance u is lognormally 
distributed, so that the product of u and 61/(/K?13L) is also lognormally 
distributed. 

Unconditional Variable Cost Function 

Using this conditional variable cost function, we now derive the 
unconditional variable cost function and the reduced form expression for the 
output level of the utility. The first-order conditions for the optimal capital 
stock selection yield the variable cost function. The first-order condition for 
the optimal price in combination with the output demand function yield the 
reduced form expression for the output produced. 

As described in Section 3, both the utility and regulator are assumed 
to know the distribution of both Eq, the post-capital-stock-selection shock 
to the utility's production function, and Ed, the post-capital-stock-selection 
stochastic portion of the utility's demand for output. Consequently, the utility 
optimizes against these shocks, so that in formulating (5), the regulator takes 
this fact into account when solving for the optimal fee and price schedules. 

We assume that the disturbances L and nE are known to both the regulator 
and the utility, but are treated as random variables by the econometrician 
so that the actual value of u must carried through in the computation of the 
unconditional variable cost function and output equation. 
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Solving (9) using the expression for the conditional variable cost function 
given in (22) yields the expression given in (23) with 

(A.6) D = W 
[3 ) [Eq,d { (Ed/qE) ] a 

6 bac 

(A.7) 1- -a Eq ^ 

for S and a as defined in (24). 

To derive the reduced form expression for ouput demanded (and 
produced), we use the variable cost function (22) and the first-order condition 
for the optimal selection of p given in (8). This yields 

(A.8) p = Cr'a w-pe 1- - Q-l 01-a h 

where 

(A. 9) C=-3j75 [Eq,d {(Ed/Eq)?a }]1c (/a) {Ed (Ed)} (a/(1 -)) 

and 

(A.1I0) h = u-" 71-aqaq El 6 

Recall that the observed output of the utility is Qd = exp (Z' b) p- Ed. 
Using this equation and (A.8) yields the following expression for Qd in 
terms of only exogenous variables and disturbances: 

(A. 1 1) Qd = C" exp (t (Z' b)) w ' rytK peK (1-y-cek) l') hK Et 

where t = 1/(1 + ', - v.6). Comparing (A.11) to (30), we can define 4 in 

terms of the all of the disturbances to the regulatory process as: 

(A. 12) 0 = nt In (h) + t In (Ed) -E [nt In (h) + t In (Ed)] 

Taking the natural logarithm of both sides of (A.8) and substituting the 
logarithm of (32) for ln (9) gives: 

(A. 13) In (Qd) =C* + (Z' b) t + r,-yt ln (w) + rat ln (r) 

+? (1 - -y - a)tln(pe) +ai,(1 - a)tln(rw) +,O, 

where C* = rtC In (C) + E [rt In (h) + l In (Ed )] + r, (1 -a) t In (B). Equa 

tion (A. 13) defines the elements of A* in terms of the parameters of the 
demand function and production function. Both 4 and ( = ln (v) - p, are 

each linear functions of the same normally distributed random variables, 
ln (Ed), ln (77K), and ln (u), in addition to other structural disturbances which 
are not common to the two composite disturbances. Consequently, we would 
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expect nonzero correlation between b and 4 (p 0 7 0), which we allow for 
in our estimation. 

To derive the variable cost function and output demand equation for 
the asymmetric information solution we proceed in the same fashion as 
the symmetric information case. Solving (19) using the expression for the 
conditional (on K) variable cost function given in (22) yields the expression 
given in (25). 

To derive the reduced form expression for output demanded (and 
produced), we use the variable cost function (22) and the first-order condition 
for the optimal selection of p given in (18). This yields 

(A. 14) p = C r' wt pe 1-a- Q6-1 H (0)1- h 

where H()= [0 + ()]. The main difference between symmetric 

information and asymmetric information solutions is the presence of H (0) in 
both the unconditional variable cost function and the price function (A. 14). 

To derive the reduced form expression for the utility's output, we utilize 
the demand function facing the utility and equation (A. 14) to derive the 
following expression for Qd in terms of only exogenous variables and 
disturbances: 

(A. 15) Qd = C" exp (t (Z b)) wKt r rot 

x per' (l--y-) 
t 
H (0)K (1-e) L hrt Ed 

Taking the natural logarithm of both sides of (A. 15) and utilizing 
expressions (32) and (40) gives: 

(A. 16) ln (Qd) = C* + (Z'b) t + wcyt ln (w) 

? 'aw Iln (r) + r, (1 - -a) ln (pe) 

+ - (1- a) t ln (H* (0)) + a r1 - a) t ln (rw) + ?. 

This equation defines the elements of 4 given in (39) in terms of the 
parameters the production function and demand function. As discussed in 
section 6, 0 enters the logarithm of output function only through ln (H (0)), 
or equivalently ln (H* (0)) and ln (0) have the same coefficient in the 
logarithm of output equation. 

Model S and Model A Total Cost Functions 

To derive the total cost function for model S we substitute the expression 
for the optimal capital stock selection arising from the solution of (5) into the 
expression for total costs given in equation (4). Performing this substitution 
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and re-arranging yields: 

(A. 17) TC (S) =p0 6 0"w'Y _ w 1-)-i] 

x Q6 71Kc ul- [E (6dlEq) xI-R ]e 

LrK E [(Ed/Eq) ] a 

The total cost function for model A is derived using the expression for 
the optimal capital stock selection from the solution of (12). Following this 
procedure we obtain: 

(A. 18) TC (A) =:0 (61- [H (0)/0]- wa r pe'- 
- 

x Q 71K U1o [E (Ed/6q) 1-i] 

(edi/eq)' 
a 

L( E [(d/edq) I) 
a 
- ] 

Taking the ratio of (A.18) to (A.17) under the assumption that 
6 

( (ed/?q) 
-c = 

WK E [(Ed /6q ) 1 
-aI] 

gives the expression in equation (45). 

Characterization of Set of Feasible Mechanisms 

To derive the set of feasible (globally incentive compatible) mechanisms 
we follow the four step procedure given in BARON [1989]. Section 4 presents 
the first three steps of this procedure. 

Step four involves deriving restrictions on the capital function K (0) and 

the parameters of our model which yield globally incentive compatible price 
and fixed fee schedules, p (K) and T (K). 

Consider the utility's capital stock choice problem given the regulator's 
announced price and fee functions (which depend on its capital stock choice), 
p (K) and T (K). We denote the utility's expected profits in this case as: 

(A.19) Eq,d [7r (p (K), T (K), K, 0)] 

= p (K) Q (p (K)) Ed (Ed) + T (K) 

-Eq,d[VC(K, Q (p(K)) Ed, 0, eq, u)] -rK 
= Eq, d [R (p (K))] 

-Eq,d [VC (K, Q (p (K))Ed, 0, Eq, u)] -rK, 

where R (p (K)) is the utility's total revenue function. We can now apply the 

results of Theorem 2.15 HOLMSTROM [1977], which in our case states that if 

(A.20)~~~~~ -0[aEq, d [7r] /p ] > ? (A.20) > 0 
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then if K (0) is nondecreasing, the resulting price function and fixed fee 

functions p (K) and T (K) are globally incentive compatibile. The theorem 
also states that if (A.20) holds and the price and fee functions are globally 
incentive compatible then K (0) must be nondecreasing. 

To apply the results of this theorem to our econometric model we must 

derive restrictions on the primatives of our economic environment (e.g., the 
utility's production function, demand function, and distribution of 0) which 
guarantee that the solution to (12) will yield a nondecreasing K (0) and 

expected profit function which satisfies (A.20). 
To derive the restrictions necessary for a nondecreasing K (a) function 

we differentiate the first-order conditions for the regulator's optimal p (0) 
and K (0) functions given in (18) and (19) with respect to 0 and solve for 

K' (0), utilizing the deterministic portion of the utility's demand function 
Q (p) = exp (Z'b) p-. Although it is difficult to provide conditions on 

the regulatory environment which guarantee a nondecreasing K (0) for a 

general production function, we are able to derive a sufficient condition 

for the Cobb-Douglas production function and constant elasticity demand 

function used in our empirical work. 

In particular, if the density function f (0) is such that 

(A.21) H(0) f (0) 

is nondecreasing in 0 and the following condition holds 

(A.22) i,> -1, 

then the optimal K (0) from solving (12) will be nondecreasing in 0 and 

equation (A.20) will hold for all 0. As we show in Figure 5, the model A 

estimated H (0) is montone increasing in 0. The restriction (A.22) implies 
that the demand for water cannot be too elastic. Given the nature of most 

goods produced by public utilities (in our case water), assuming i, > -1 

is not unreasonable. 
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APPENDIX B 

This appendix describes the construction of the three capital stock and 
capital service costs measures used in our conventional cost function 
estimation. The district annual reports give several measures of the capital 
stock, accumulated depreciation and the amount of investment expenditures. 
The first two measures are simply sums and differences of several of these 
magnitudes. The first measure of the capital stock takes the ending balance of 
the district's balance sheet capital stock and substracts the ending balance of 
the sum of all its accumulated depreciation to date. To construct the capital 
service costs associated with this measure, we simply multiply that period's 
rate of return on capital by this capital stock measure. This capital cost 

measure is then added to the utility's total operating expenses (available in 
the annual report) to yield the utility's total costs for that period. Because 

this measure of the capital stock closely tracks the utility's rate base, and 

multiplying its rate base by the required rate of return on capital yields 

the utility's capital stock servicing revenue requirements, we refer to this 
capital cost measure as the regulator's definition and abbreviate it REGC. 

Our other measure uses the same definition of the capital stock, but uses a 

different measure of capital service costs. This measure, what we call the 

utility's measure, uses the difference of ending accumulated depreciation and 
beginning accumulated depreciation plus current investment expenditures. 

We abbreviate this measure UTILC. 

The final measure we use builds on the work on PAKES and GRILICHES 
[1984]. Following their lead, for each time period we look for the 

linear combination of the beginning and ending capital stocks (ENDBAL 
and BEGBAL), and beginning and ending accumulated depreciation 
stocks (DENDBAL and DBEGBAL), which best explains total revenues 

(REVTOT) less total operating expenses (TOTOPEX). Presumably, the 
difference of total revenues and total operating costs is the return to capital; 
we would expect that the linear combination of these four variables which 

best explains this return to capital is the best measure of capital service 

costs for that year. This best linear combination is found by regressing 
RETCAP=REVTOT-TOTOPEX on ENDBAL, BEGBAL, DENDBAL, and 
DBEGBAL interacted with a full set of time dummies (from 1980 to 1988), 
without a constant term. This model implies that the exact linear combination 

of the four capital variables which aggregate to give total capital service 

costs varies over titne, but remains the same across districts for a given 
time period. This model takes the form: 

1988 

(B.1)RETCAPit S (bit ENDBALit + b2t BEGBALit 
t=1980 

+ b3t DENDBALit + b4t DBEGBAL-t) YEARit + eit 

= rit Kit + eit 

where Kit is the ith utility's true but unobserved capital stock in year t as 

assumed by this measure, and the bkt (k = 1, ..., 4) (t = 1980, ..., 1990) 
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are the time-varying coefficients which aggregate the capital stock 
measures into a measure of capital service costs. Finally, YEAR1t 

(t = 1980, ..., 1988) is a set of dummy variables which take on the 

value 1 for observations from that year and zero otherwise. To recover 
an estimate of Kit for each observation, we divide the fitted value from 
this regression, RETCAP (FIT), by that observation's rate of return on 
capital. The logic for this process is that RETCAP (FIT) is an estimate of 
rit Kit, so that dividing these costs by the required rate of return yields the 
capital stock which gave rise to those capital costs. We call this measure 

the modified Pakes and Griliches capital stock measure (MPGC). 
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