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In this article we consider the linear regression model y = X,B + a, 
where e is N(O, a21). In this context we derive exact tests of the form 
H: Rft ? r versus K: f E R K for the case in which a2 iS unknown. We 
extend these results to consider hypothesis tests of the form H: Rlf ? 
r1 and R2= = r2 versus K: f E RK. For each of these hypotheses tests 
we derive several equivalent forms of the test statistics using the duality 
theory of the quadratic programming. For both tests we derive their 
exact distribution as a weighted sum of Snedecor's F distributions nor- 
malized by the numerator degrees of freedom of each F distribution of 
the sum. A methodology for computing critical values as well as prob- 
ability values for the tests is discussed. 
The relationship between this testing framework and the multivariate 

one-sided hypothesis testing literature is also discussed. In this context 
we show that for any size of the hypothesis test H: Rf : r versus K: ft 
E RK the test statistic and critical value obtained are the same as those 
from the hypothesis test H: A = 0 versus K: A 2 0, where A is the 
expectation of the Lagrange multiplier arising from the estimation of f 
subject to the equality constraints R,B = r. In this way we link the 
multivariate inequality constraints test to the much studied multivariate 
one-sided hypothesis test, H: i = 0 versus K: u 2 0, where u is the 
mean of a multivariate normal random vector. We also show that the 
test H: R1f 2 r1 and R2f8 = r2 versus K: f E RK has the following 
equivalent test in terms of A, H: A = 0 versus K: Al 2 0, and A2 # 0, 
where Al is the subvector of A corresponding to R1f >? r1 and A2 corre- 
sponds to R2f = r2. Extensions of recent work in one-sided hypothesis 
testing for the coefficients of the linear regression model are also derived. 
For the normal linear regression model we derive exact tests for the 
hypothesis testing problems H: Rf = r versus K: Rf 2 r and H: Rft 
r versus K: R1f >- r1 and R2f 0 r2. 
KEY WORDS: Hypothesis testing; Multivariate one-sided tests; Order- 
restricted inference; Applications of duality theory. 

1. INTRODUCTION 
Tests for multivariate inequality constraints and combi- 

nations of multivariate inequality and equality constraints 
should have wide application in applied research. For ex- 
ample, in econometric modeling, economic theory often 
supplies the researcher with a priori information about 
some or all of the signs of the parameters of the regression, 
as well as information as to whether a coefficient or sum 
of coefficients is zero or not. In other cases economic 
theory provides information about only the signs of several 
linear combinations of the parameters. Conventional two- 
sided multivariate tests are not designed to test these null 
hypotheses implied by economic theory. The tests pro- 
posed here are explicitly designed for these purposes. Pos- 
sible applications of a multivariate inequality constraints 
testing procedure are not confined to econometrics. In 
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general, these testing procedures offer the researcher a 
way to statistically test a priori beliefs about the signs of 
regressions coefficients. 

The comparison of a priori knowledge with the empir- 
ically estimated model is a specific example of a commonly 
performed ad hoc procedure. In this procedure the applied 
researcher has many variables that are believed to influ- 
ence the dependent variable of the model and, for several 
of them, a strong belief about the sign of the parameter 
associated with that variable. In practice, the researcher 
runs the unconstrained model with all of the variables 
believed to influence the dependent variable included. 
Based on the signs of the estimated parameters of the 
model, one of the variables associated with an incorrectly 
signed parameter is deleted from the equation and the 
model is reestimated. If this new estimated equation has 
any incorrectly signed coefficients, then one of the cor- 
responding variables is removed from the regression and 
the model is again reestimated. This procedure is repeated 
until all of the variables left in the equation about which 
the researcher has a priori beliefs have correctly signed 
estimated coefficients. A multivariate inequality con- 
straints test allows the researcher to assess, in a hypothesis- 
testing framework, the validity of this ad hoc procedure 
for deleting variables from the unrestricted model, that is, 
whether or not the data is consistent with true values of 
the parameters satisfying the sign restrictions imposed on 
the estimated coefficients. 

Yancey, Judge, and Bock (1981) discussed tests of the 
null hypothesis that a subset of the parameter vector lies 
in the positive orthant for the special case in which the 
design matrix in the linear regression model is orthogonal 
(X'X = I. the identity matrix), and the covariance matrix 
of the disturbance vector is scalar [E(ee') = a211. Our 
results generalize their results to the case of the arbitrary 
design matrix and general equality and inequality con- 
straints. The first generalization is essential to applying 
this testing procedure, because the case of an orthogonal 
design matrix rarely, if ever, occurs in empirical practice. 

Robertson and Wegman (1978) tested order restrictions 
as a null hypothesis within the context of the exponential 
family of distributions. They considered hypothesis tests 
of the form H: p,1 : .U2 2 K versus an unrestricted 
alternative. Dykstra and Robertson (1983) extended this 
testing framework to cases in which a collection of inde- 
pendent normal means is, in their words, decreasing on 
the average. This allows reversals in the aforementioned 
inequalities over short ranges of the pj (j = 1, . . . , K). 
The general methodology these researchers used to cal- 
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culate the null distribution of their likelihood ratio statistic 
for testing order restrictions can be extended to our prob- 
lem of testing multivariate inequality constraints. 

Gourieroux, Holly, and Monfort (1982), hereafter re- 
ferred to as GHM, within the context of the linear regres- 
sion model, dealt with a problem falling in the general 
class of multivariate one-sided hypothesis tests. They were 
interested in testing the multivariate equality constraints 
null hypothesis Rfl = r against the restricted alternative 
Rfl 2 r. We are concerned with testing the null hypothesis 
of the inequality constraints Rfl - r versus an unrestricted 
alternative. 

The derivation of our test statistics relies heavily on the 
duality theory of quadratic programming. An understand- 
ing of the results of the multivariate one-sided hypothesis 
testing literature is very helpful to understanding our re- 
sults. Perlman (1969) provided an excellent summary of 
this literature. 

The outline of the article is as follows. In Section 2 
we introduce the unconstrained, inequality-constrained, 
equality-constrained, and mixed inequality- and equality- 
constrained estimators of the linear regression model. Sec- 
tion 3 contains the derivation of the two likelihood ratio 
test statistics in their various forms. In Section 4 we take 
two different tacks to show that the distribution of the test 
statistics for the purposes of testing the null hypothesis is 
a weighted sum of Snedecor's F distributions, where en- 
tering into each distribution in these sums is a scale factor 
that is the numerator degrees of freedom of the F distri- 
bution. In Section 5 we discuss the computation of the 
critical value for each test statistic as well as a methodology 
for computing probability values for our testing procedure. 
In Section 6 we derive the conditions under which there 
exists a small sample distribution for the GHM test sta- 
tistics and also extend their testing framework to consider 
two-sided equality constraints in conjunction with multi- 
variate one-sided hypotheses. The Appendix gives the 
available closed-form solutions for the weights used in 
computing the null distribution. 

2. THE THREE ESTIMATORS 

Consider the linear regression model 

y = Xfl + , (2.1) 

where y is a (T x 1) vector, X is a (T x K) matrix of 
rank K, and fi is a (K x 1) vector. We assume that e is a 
(T x 1) random vector that is N(O, a21), where I is an 
identity matrix of rank T. We assume that U2 iS unknown. 

The matrix of constraints, R, is a (P x K) matrix of 
rank P, where P c K. The inequality constraints are ex- 
pressed as Rfl 2 r, where r is a known (P x 1) vector. 
We should note here that throughout the remainder of the 
article, 2, when applied to vectors, implies that 2 applies 
for each element of the two vectors compared. We now 
define the inequality-constrained estimator for the general 
lnear regression model. 
The quadratic programming problem that yields the in- 

equality-constrained least squares (ICLS) estimator is the 

following: 

min(y - Xb)'(y - Xb) subject to Rb ? r. 
b 

There are several methods by which this problem can be 
solved. Gill, Murray, and Wright (1981) provided an ex- 
cellent survey of these methods. We will write the solution 
to this optimization problem as b. The (P x 1) vector of 
Kuhn-Tucker multipliers for the constraints Rb : r is 
represented by A. The unconstrained estimator is the usual 
ordinary least squares (OLS) estimator, which is b - 

(X'X)-1X'y. For completeness, we associate with b a Kuhn- 
Tucker multiplier A, which is identically zero. We also find 
it useful to consider the equality-constrained estimator that 
is the solution to the following optimization problem: 

min(y - Xb)'(y - Xb) subject to Rb = r. 
b 

We will denote the solution to this optimization problem 
by b and its associated Lagrange multiplier by A. 

Using a derivation by Gourieroux et al. (1982) and Liew 
(1976), it can be shown that all three of the estimators 
satisfy the following equation: 

bn = b + (X'X) 1R'AlI2, (2.2) 

where n indexes the unconstrained, inequality-con- 
strained, or equality-constrained estimator. Using this 
equation for the inequality-constrained estimator yields 
the following equation: 

b - b = (X'X)-1R'R12, (2.3) 

which will prove extremely useful in subsequent sections. 
Using the relationship (2.2) for the equality-constrained 
estimator yields the following: 

Rb- Rb = r - Rb = R(X'X)-1R')J2. (2.4) 

This follows from the fact that Rb = r, by definition. This 
implies that 

2(R(X'X)-'R')-'(r- Rb) = A. (2.5) 

We will find this relationship useful in later sections for 
relating A~ to b. 

We can also modify our inequality-constrained estimator 
framework to consider the mixed inequality- and equality- 
constrained estimator, which is defined as follows: 

min(y - Xb)'(y - Xb) 
b 

subject to R1b 2 r1 and R2b = r2, (2.6) 

where R1 is composed of the first L (L c p) rows of R 
and R2 is the remaining P - L rows of R. Correspondingly, 
r1 is the first L elements of r and r2 is the remaining P - 
L elements of r. Associated with the solution of this qua- 
dratic program (QP) is a vector of multipliers i~' = (24, 
24), where 24 is associated with the inequality constraints 
and is hence restricted to be greater than or equal to zero. 
This is a Kuhn-Tucker multiplier. The subvector = iS as- 
sociated with the equality constraints and is hence unre- 
stricted. This is a Lagrange multiplier. By b we will denote 
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the solution to QP (2.6). For our mixed constraints esti- 
mation problem (2.6), the equality-constrained form of 
this problem is, by construction, the equality-constrained 
problem considered previously. The unconstrained prob- 
lem for this case is once again simply OLS estimation. It 
can be verified that the equality (2.2) continues to hold 
for the mixed constraints estimator and its associated vec- 
tor of multipliers. 

Note that all of the estimators and their associated Kuhn- 
Tucker or Lagrange multipliers will be denoted throughout 
the article by the symbols defined here. 

3. DERIVATION OF TEST STATISTICS 

For the regression model (2.1), we first derive the like- 
lihood ratio test for the null hypothesis R,B ? r. The ex- 
tension to including equality constraints follows once we 
have the framework for inequalities alone. Throughout 
this discussion b will denote the maximum likelihood es- 
timate (MLE) that is equivalent to the OLS estimate of fi 
and b will denote the inequality-constrained MLE or ICLS 
estimate, as these two estimates are also equivalent. The 
Kuhn-Tucker multiplier will be denoted by A. Consider 
the likelihood ratio (LR) test, which is defined in the usual 
fashion as 

LR = -2 ln(LIL) = 2(In L - ln L), 
_A 

where L and L are the maximum values of the likelihood 
function under the null hypothesis (R,B ? r) and main- 
tained hypothesis (,B E RK), respectively. 

It follows that if U2 is known the LR statistic takes the 
following form: 

LR = [(y - Xb)'(y - Xb) - (y - Xb)'(y - Xb)]1a2. 

In addition, the LR statistic is also the optimal value of 
the objective function from the following QP: 

min[(y - Xb)'(y - Xb) - (y - Xb)'(y - Xb)]/a2 
b 

subject to Rb ? r. (3.1) 
This QP can be rewritten as follows: 

min[y'X(X'X)-1X'y - 2y'Xb + b'X'Xb]1a2 
b 

subject to Rb : r. (3.2) 
This form will prove useful later, but for the present it 
puts (3.1) into the form of the standard QP: 

min a + c'x + 2x'Qx subject to Ax ? b. (3.3) 
x 

The dual of this standard QP (3.3) can be written in the 
following form: 

max A'(b + AQ-1c) - iA'AQ -A'Al - kc'Q -c + a 
1 

subject to A ? 0. (3.4) 
See Luenberger (1969, chap. 8) or Avriel (1976, chap. 7) 
for a discussion of the duality theory relevant to this con- 
text. If we define problem (3.2) and its equivalent form 

(3.1) as the primal, then the dual of the optimization prob- 
lem (3.1), using (3.3) and (3.4), is 

max[t'(r - Rb) - '(X'X)-'R A]IC 

subject to A 2 0. (3.5) 

We define the Kuhn-Tucker test statistic (KT) as the 
optimal value of the dual problem, QP (3.5), which is 

KT = )'R(X'X)-1R';J4a2. 

From the theory of quadratic programming we know that 
the optimal value of the objective function of the primal 
equals that same value for the dual problem, subject 
to certain regularity conditions (Gill et al. 1981, p. 76). 
Necessary conditions are that (X'X) is nonsingular and 
R(X'X)-'R' is positive definite. As both of these condi- 
tions are true by assumption, we have KT = LR. The 
following two statistics are also equivalent to the KT and 
LR statistics: 

W = (Rb - Rb)'(R(X'X)->RI)-1(Rb - Rb)/a2 (3.6) 

and 

W = (b - b)'(x'x)( _ - b)1a2. (3.7) 

Equation (2.3) multiplied on both sides by R allows us to 
show the equivalence of (3.6) to the KT statistic. Equation 
(2.3) shows that (3.7) is equivalent to the KT statistic. 
Both statistics (3.6) and (3.7) are a form of what we define 
as a Wald statistic for testing multivariate inequality con- 
straints. These statistics are so named for their resem- 
blance to the Wald (1943) test for multivariate equality 
constraints, because they are defined in a similar fashion, 
as the magnitude of the difference between the unre- 
stricted estimate and the restricted estimate evaluated in 
the norm of the covariance matrix of the unrestricted es- 
timate. The W statistic is also the optimal value of the 
objective function from the following QP: 

min(b - b)'(X'X)(b - b)la2 subject to Rb ?-r. 
b 

(3.8) 

This implies that b, the ICLS estimator, is also the value 
of b that solves (3.8). To see this, expand the objective 
function of (3.8) using the fact that b = (X'X)-1X'y and 
note that the objective function of this problem is the same 
as that from QP (3.2) and, therefore, QP (3.1). Hence, in 
the case in which a2 is known, the LR, KT, W, and W 
forms of the likelihood ratio statistic for testing multivari- 
ate inequality constraints are all equivalent. Therefore, it 
is clear that all of these forms of the LR statistic possess 
the same distribution. They will continue to possess the 
same distribution if we use the same estimate of q2 in their 
computation when a2 iS unknown. 

For our estimate of a2 we will use the standard unbiased 
estimate, S2, written in the usual fashion as 

52= (y -Xb)'(y -Xb)I(T -K), (3.9) 

where b is the OLS estimate of fi. We know that s2(T - 
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K)/a2 is distributed as a T-Krandom variable. In addition, 
s2 is distributed independently of bi, for i = 1, ... . K. 
Wilks (1962, chap. 10) provided a detailed discussion of 
the sampling distribution results for the normal linear 
regression model. The likelihood ratio statistic for the case 
in which a2 iS unknown simply replaces a2 with s2 in its 
LR, KT, W, and W forms calculated previously. Theil 
(1971, pp. 141-145) showed that the classical F test for 
multivariate equality constraints when a2 iS unknown may 
be regarded as a likelihood ratio test for the equality con- 
straints null hypothesis. Using similar logic, the LR, KT, 
W, and W statistics can be shown to be equivalent forms 
of the likelihood ratio statistic for multivariate inequality 
constraints. 

For the mixed hypothesis test, for the case in which a2 
is known, the LR form of the likelihood ratio statistic is 
the optimal value of the objective function from the fol- 
lowing QP: 

min[(y - Xb)'(y - Xb) - (y - Xb)'(y - Xb)11a2 
b 

subject to Rlb 2 r, and R2b = r2. (3.10) 

Using the duality theory discussed previously, it can be 
rewritten in terms of the vector of Kuhn-Tucker and La- 
grange multipliers as the optimal value of the objective 
function from the following QP: 

max[A'(r - Rb) - 1i'R(X'X)-1R)iA2 

subject to Al 2 0, (3.11) 

where Al is composed of the first L elements of A. The 
elements of A2, the remaining P - L elements of A, are 
unrestricted. The W and W forms of these test statistics 
are exactly the same as (3.6) and (3.7) except that b is 
replaced by b, where b is the solution to QP (3.10) as well 
as QP (2.6). It follows that the KT form of the statistic is 
the optimal value of the objective function of (3.11). By 
the same logic used for the case of the inequality con- 
straints alone, the optimal objective function value of (3.10) 
equals that from (3.11). Using (2.2) for b and A, we can 
also show that the W, W, KT, and LR forms of the like- 
lihood ratio statistic are all equivalent for this case as well. 
To construct the various forms of our likelihood ratio sta- 
tistic for the case that U2 iS unknown we once again use 
the estimate s2 given in (3.9) in place of a2. 

4. DISTRIBUTION OF TEST STATISTICS UNDER 
NULL HYPOTHESIS 

We first consider the case of only inequality constraints. 
The derivation of the distribution of our test statistic under 
the null hypothesis is complicated by the fact that our null 
hypothesis does not specify a unique value for fi. It only 
requires that fi satisfy a system of linear inequalities. How- 
ever, a monotonicity property of the power function of 
the test and the results of the multivariate one-sided hy- 
pothesis testing literature allow us to derive the null dis- 
tribution of our test statistic for the least favorable con- 

figuration (and, therefore, any size test) of our null 
hypothesis. 

Before proceeding with the derivation of the null dis- 
tribution of our test statistic we first summarize the results 
of the multivariate one-sided hypothesis testing literature 
and modify them slightly to fit our framework. This lit- 
erature deals with the following hypothesis testing prob- 
lem: 

H: =O versus K: O, gE RP 

= 4 + , is a (P x 1) vector that is N(O, o 2A). 

(4.1) 

We assume that A is of full rank P, positive definite, and 
known. For the moment we will assume that a2 is also 
known. This hypothesis testing problem has a long history 
in the mathematical statistics literature. Bartholomew 
(1959a,b, 1961) considered a related problem of testing 
order restrictions between independent normal means. 
Kudo (1963) extended Bartholomew's results to the spe- 
cific case considered in (4.1). At around this same time 
Nuesch (1966) also treated this problem. Perlman (1969) 
dealt with (4.1) as well as several other problems within 
the general class of one-sided multivariate hypothesis tests. 
Perlman considered both null and alternative hypotheses 
where the mean vector of a multivariate normal random 
vector lies in a positive homogenous set. We will use the 
approach of Perlman (1969), as it is the most general of 
all approaches presented. 

Perlman formulated the likelihood ratio test for (4.1) as 
the maximum value of the objective function from the 
following QP: 

maxk4'A-l - (4 - 4)'A1(4 - )/f 

subject to - 0. (4.1a) 

Intuitively, this statistic is the difference between two dis- 
tances: the distance between the unconstrained estimate 
of (, which we have defined previously as c, and its null 
value of 4 (which by hypothesis is zero) and the distance 
between the unconstrained estimate and the positive or- 
thant. All distances are defined in the norm of the covari- 
ance matrix, u2A. Let 4 be the value of 4 that satisfies 
(4.1a). Define the following statistic: 

U= [f'A'& - ( - ))1(4 - /f2 

From Perlman (1969) we have the following: 

Theorem 4.1. Under the null hypothesis H: 4 = 0, the 
distribution of the LR statistic U for any c > 0 is 

P 

Pro,a2A[U ' c] = > Pr[y2 ? c]w(P, k, A). 
k=1 

Pro,r2TTU = 0] = w(P, 0, A). 

Proof. See Kudo (1963), Nuesch (1966), or Perlman 
(1969). 
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The notation PrO,2J[U 2 c] denotes the probability of 
the event [U 2 c] assuming 4 is normally distributed with 
mean 0 and covariance matrix a2A. This notation will be 
used throughout the remainder of the article. The distri- 
bution of U is weighted sum of chi-squared distributions 
ranging from zero to P df. Note that a X2 for k = 0 is 
simply a point mass at the origin. Hence for any c > 0, 
Pr(Xy 2 C) = 0. Thus if we want the null distribution for 
all c 2 0 the summation can begin at k = 0. The role of 
the Xo random variable will become clear in the calculation 
of the critical value for our testing problem. The sum of 
the weights, w(P, k, A), from k = 0 to P is 1. These 
weights, as noted previously, depend explicitly on A and 
are the probability that the P-dimensional vector 4 has 
exactly k positive elements. 

Closed-form solutions for the weights are available for 
the cases in which P c 4 (Kudo 1963). Shapiro (1985) 
provided alternative closed-form expressions for these 
weights for the case in which P = 4. In the Appendix 
these expressions are reproduced using our notation. Var- 
ious numerical methods are available for the cases in which 
P 2 5. Bohrer and Chow (1978) gave an algorithm that 
is designed to calculate these weights up to the case in 
which P = 10. Siskind (1976) computed a Taylor expan- 
sion of the null distribution of the test statistic for Bar- 
tholomew's (1959a,b) hypothesis test for cases in which 
P > 4 and, therefore, avoided the numerical methods 
necessary to compute the weights and critical values for 
this testing procedure. Unfortunately, his technique is not 
straightforward to apply to general problems and it only 
applies to the cases in which P c 7. 

For some special cases of the covariance matrix of 4, 
Robertson and Wright (1983) gave approximations for the 
weights used in the computation of the null distribu- 
tion for Bartholomew's ordered means hypothesis-testing 
problem for various configurations of the relative mag- 
nitudes of the weights. This discussion of the weights shows 
that their computation is a major stumbling block to the 
widespread application, to higher-dimensional problems 
(P 2 8), of this testing framework. 

A final methodology for computing these weights for 
the cases in which P 2 8 is to use Monte Carlo techniques. 
Here the researcher takes, say 1,000 draws from a mul- 
tivariate normal distribution with mean zero and covari- 
ance matrix A. For each draw he computes 4 and counts 
the number of elements of the vector greater than zero. 
In this case w(P, k, A) is computed as the proportion of 
the 1,000 draws in which 4 has exactly k elements greater 
than zero. This technique has the following advantages. 
No expensive numerical integration techniques are re- 
quired. There are no limits on the values of P for which 
it is applicable. Because it is a Monte Carlo technique, 
however, the resulting weights are not exact. Preliminary 
comparisons of this technique with exact techniques are 
very encouraging in terms of the degree of agreement with 
the exact procedure. 

Before considering the null distribution of our test sta- 
tistics from Section 3, we extend Perlman's results for 

conditions closely related to our testing problem. Suppose 
that all of the assumptions of the hypothesis-testing prob- 
lem (4.1) continue to hold except that a2 is unknown. In 
addition, suppose that their exists an unbiased estimate of 
a2, s2, which is independent of 4, such that S2VIa2 is dis- 
tributed as a chi-squared random variable with v df. Using 
this estimate of q2, our test statistic becomes 

U* = ''-14IS2. (4.2) 

As shown previously, the numerator of U* is a mixture 
of chi-squared random variables, which are all indepen- 
dent Of s2. Note that S2/a2 is a chi-squared random variable 
divided by its degrees of freedom. By definition, the ratio 
of two independent chi-squared random variables divided 
by their respective degrees of freedom is distributed with 
Snedecor's F distribution, with its two parameters the de- 
grees of freedom of the numerator and denominator chi- 
squared random variables. Using this definition we state 
the null distribution of U* in the form of a corollary whose 
proof follows from that of Theorem 4.1. 

Corollary 4.1. Consider the case in which a2 iS un- 
known but there exists an unbiased estimate of it distrib- 
uted independently of Z such that S2VIa2 is distributed as 
x2. Under the null hypothesis H: 0 = 0, the distribution 
of the modified LR statistic U* is, for all c* > 0, 

p 

PrO,2J[U* 2 C*] = > Pr[Fk,v 2 c*lk]w(P, k, A), 
k=1 

PrO,2A[U* = 0] = w(P, 0, A). 

Note that the null distribution of U* depends only on the 
elements of A, which are assumed to be known parame- 
ters. We are now able to proceed with the derivation of 
the null distribution of our LR statistic for the case that 
a2 iS unknown. 

To do this we first consider the following testing prob- 
lem: 

H:, 0 versus K: p E RP, = u + v, 

v is a (P x 1) vector that is N(O, a2fk). (4.3) 

We assume that Q1 is of full rank P and known. For the 
moment assume that a2 is also known. For this problem 
our sample space in the Neyman-Pearson framework is 0 
= RP. The positive orthant and its boundary in P-dimen- 
sional space is the subset of 0 in which , lies under the 
null hypothesis. We denote this by 0H, and its relative 
complement under 0 is denoted by 0K. Following Leh- 
mann (1959), let s be the test statistic for our hypothesis 
test and S the rejection region. If 

sup PrA,,2n (s E S) = a, 
,UEOH 

then S is the rejection region for a size a test of our null 
hypothesis. We will now show how to construct a rejection 
region for a level ax test of our testing problem (4.3). 

In Perlman (1969) a related form of this hypothesis- 
testing problem was considered. Using Perlman's logic, 
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the LR test for this problem is the minimum value of the 
objective function from the following QP: 

min(a_ p)- - _ )/a2 subject to p 2 0. 

Denote by , the solution to this QP. Define 

Z (A _ p),f_'(A - j)/U2. (4.4) 
A special case of lemma 8.2 in Perlman (1969) is given 

below. 

Lemma 4.1. For any ,u 2 0 and c E R+ the following 
is true: 

Pr , 24Z 2 c] C Pro,,2n[Z 2 C]. 

Proof. See Perlman (1969, pp. 562-563). Note that this 
lemma continues to hold for the case in which q2 iS un- 
known and is replaced by an estimate of it that is inde- 
pendent of the numerator of (4.4) in the computation of 
the statistic Z. 

As an immediate corollary we have 

sup Pr, 2f4[Z - c] = Pro,,2n[Z 2 C]. 
pEEOH 

We now have identified the unique least favorable value 
of u to specify in order to compute the null distribution 
for a size a test of our composite null hypothesis. This 
monotonicity property gives results similar to those for the 
univariate inequality-constraint test. In that case the least 
favorable value of the mean of a normal random variable 
is zero for a test of the null hypothesis that this mean is 
greater than or equal to zero. We should note here that 
Lemma 4.1 and its corollary continue to hold for any EH 

that takes the form of a convex cone. 
We state the distribution under the null hypothesis of 

our test statistic (4.4) in the form of a theorem whose 
proof is given in Wolak (1987). 

Theorem 4.2. Under the null hypothesis 2 : 0 the 
distribution of the likelihood ratio statistic Z has the fol- 
lowing property for all c > 0: 

sup Pr,,,24[Z 2 C] = PrO,2[Z 2 C] 
pEOH 

- E Pr[k ?2 C]W(P, P - k, 1), 
k=1 

sup Pr,,,24[Z = 0] = Pro,2[Z = 0] = w(P, P, Q). 
pCOH 

The weights, w(P, m, Qk), are of the same functional form 
as those calculated for the multivariate one-sided testing 
problem described previously. 

If we are faced with a case in which a2 is unknown but 
we have an unbiased estimate of it that is distributed in- 
dependently of ,u, we can then apply the same logic used 
to get Corollary 4.1 from Theorem 4.1 to Theorem 4.2. 
Let 

Z*= (/8 - 4j)PQ-1(/8 - ,i)1s2 

be the modified LR statistic for our inequality-constraints 
test. 

Corollary 4.2. Consider the case in which q2 iS un- 
known but there exists an unbiased estimate of it distrib- 
uted independently of such that S2VIa2 (where s2 iS the 
unbiased estimate of a2) is distributed as X2. The distri- 
bution of the modified LR statistic Z* has the following 
property for all c* > 0: 

sup Prp,,24[Z* 2 C*] 
/lEOH 

= Pro,2Z[Z* 2 C*] 

p 

= > Pr[Fk,v 2 c*lk]w(P, P - k, 1Q), 
k=1 

sup Pr,,,2n[Z* = 0] = Pro,,24[Z* = 0] 
/EOH 

= w(P, P, Q ). 

Consider the following special case of our problem (4.3) 
where we define 

=Rf - r, = Rb - r, 

and Q1 = R(X'X)-'R'. (4.5) 

As stated in Section 3, we use 52 = (y - Xb)'(y - Xb)l 
(T - K) as our estimate of a2 used in the computation of 
the LR statistic. In this case our test statistic is 

min(,u - ,u)'[R(X'X)-1R']'( - ,U)/s2 

subject to p 0 O. (4.6) 

Using (3.4) note that the dual of (4.6) is 

max[-A'/ - 4A'R(X'X)-1R'A]Is2 

subject to A 2 0. (4.7) 

By definition - = r - Rb; therefore, we can rewrite 
(4.7) as 

max[A'(r - Rb) - 4A'R(X'X)-1R'R]s2 

subject to A 2 0. (4.8) 

Recall the W form of the likelihood ratio statistic that was 
defined as the optimal value of (3.8). Using (3.4) we can 
show that the dual of (3.8) is also 

max[A'(r - Rb) -A'R(X'X)-1R'R]s2 
2 

subject to A 2 0. (4.9) 

Because the duals of (3.8) and (4.6) are exactly the same 
optimization problem the optimal objective function val- 
ues of (3.8) and (4.6) are equivalent. In addition, because 
the Kuhn-Tucker multipliers from (3.8) and (4.6) are 
equivalent we know that the solution to (4.6) is,ul = R b 
- r, where b is the solution to (3.8) as well as the ICLS 
estimator. Thus our test statistic Z* and the four forms of 
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the likelihood ratio statistic considered in Section 3 are 
equivalent. Hence their distribution under the null hy- 
pothesis Rfl 2 r is equivalent to the null distribution of 
Z*. This distribution is a weighted sum of F distributions 
as given in Corollary 4.2. 

Theorem 4.3. For the case in which q2 iS unknown but 
replaced by S2, under the null hypothesis Rfl 2 r the dis- 
tribution of LR, the likelihood ratio statistic, has the fol- 
lowing property for all c > 0: 

sup Pr/lU2(X X)-l[LR 2 c] 
Rfl-r 

= Prl*,2(X'X)-1[LR - c] 

p 

= Pr[Fk,T-K 2 clk]w(P, P - k, A), 
k=1 

sup Prf,,2(XIX)-l[LR = 0] = Pr*,a2(XIX)-l[LR = 0] 
Rfl-r 

= w(P, P, A), 

where fl* is any value of fi such that Rfl* = r and A = 

[R(X'X) -R']. 
Proof. Given the distributional properties of s2 and b, 

this result follows directly from corollary 4.3 of Wolak 
(1987). 

To relate our testing problem to the multivariate one- 
sided hypothesis test, we now consider our testing problem 
in terms of the vector of dual variables. Recall that, as 
shown in Theorem 4.3, we choose a least favorable value 
of , such that R,B = r for any size test of our null hy- 
pothesis. This implies that for this value of fi the vector 
of multipliers arising from the equality-constrained esti- 
mation of ,B, i is N(0, 4U2[R(X'X)'-R']-1). 

Before proceeding we define some notation. Let v = r 
- Rb. Recall the dual of QP (3.1), QP (3.5), which was 
used to calculate the KT form of the LR statistic. Written 
using our new notation it becomes 

max[A'v - 4A'R(X'X)-'R'A]s2 subject to A - 0. 

(4.10) 

We can complete the square of this objective function by 
adding and subtracting vW(R(X'X)-RR')'s2 into it. We 
can rewrite (4.10) as follows: 

max -[(A - 2(R(X'X)-'R')-'v^)'R(X'X)-RlR' 

(A -2(R(X'X)-'R') '')]14s2+ V'(R(X'X)-'R')'s2 

subject to A - 0. (4.11) 

Recall Equation (2.5). From that we note that 

i = 2(R(X'X)-'R')- 'i. 

This allows us to show the following equivalence: 

A 'R(X'X)-'R'{14 = W'(R(X'X)'1R')'i'. (4.12) 

Using (2.5) and (4.12) we can rewrite (4.10) as 

max AJ'(R (X'X) -1R '))J4S2 
A 

- (A - A)'(R(X'X)-1R')(A - A)14S2 

subject to A 2 0. (4.13) 

If we replace 4 by A and A by 4(R(X'X)-'R')-', then 
the problem (4.13) is exactly the same as problem (4.1a) 
for the case in which q2 iS unknown but estimated by S2. 
Hence our statistic U* from the hypothesis-testing prob- 
lem (4.1) is equal to the four equivalent forms of the LR 
statistic derived in Section 3. The solution to QP (4.13) is 
A, the KT multiplier vector defined in Section 2. Using 
the dual approach to the multivariate inequality-con- 
straints test we can derive the null distribution by an ap- 
plication of the results of the multivariate one-sided hy- 
pothesis test. Because R/B = r for the purposes of computing 
the null distribution for any size test of our inequality- 
constraints null hypothesis, this test procedure results in 
the same critical value as the test in terms of the dual 
variables of the null hypothesis that the true value of the 
Lagrange multiplier is zero versus the restricted alterna- 
tive that it is greater than or equal to zero. The true value 
of the Lagrange multiplier, A, is the expectation of A. Tak- 
ing the expectation of both sides of (2.5) yields A = 
2(R(X'X) - 'R ) - l(r - R,B), so ) is in fact defined in terms 
of fi as well as being the expected value of A. Recall S2, 
our unbiased estimate of a2. From the results of normal 
linear regression theory, s2 iS independent of b and also 
A, as A is N(0, 4a2[R(X'X)'-R']-1) and by (2.5) equal to 
a known matrix times b. Thus our estimate of a2 satisfies 
the requirement of Corollary 4.1. We summarize our result 
about the null distribution of our LR statistics with s2 as 
our estimate of a2 in the following theorem. 

Theorem 4.4. For the hypothesis-testing problem H: 
A = 0 versus K: A 2 0 (which by Lemma 4.1 is equivalent 
to, for the purpose of computing critical values for any 
size test, the testing problem H: Rfl 2 r versus K: fi E 
RK), the null distribution of the LR statistic with U2 re- 
placed by S2 = (y - Xb)'(y - Xb)I(T - K) is 

p 

Pro,4.2A[LR c C*] - E Pr[Fk,T- K 2 c*lk]w(P, k, 4A), 
k=1 

PrO,4,2A[LR = 0] = w(P, 0, 4A), 

where A = (R(X'X)-'R')-l. 

Note that the weights in Theorem 4.3 depend on P - 
k and [R(X'X)-1R'] and those in Theorem 4.4 depend on 
k and 4[R(X'X)-1R']'-. Wolak (1987) showed that w(P, 
k,F ) = w(P, P - k, b1)% b > 0 for k = 0 to P. Hence 
the two null distributions in Theorem 4.3 and Theorem 
4.4 are the same weighted sum of F distributions. Thus by 
either the primal or dual methodology we can show the 
same distribution for our test statistic for any size test of 
our null hypothesis. 

We will now consider the null distribution of our mixed 
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equality- and inequality-constraints test statistics. We can 
construct the null distribution of the mixed constraints test 
statistics in terms of the vector of multipliers using the 
same logic used to construct the null distribution of the 
inequality-constraints LR statistics. Recall our mixed con- 
straints hypothesis-testing problem: 

H: R1/? 2 r, and R2J3 = r2 versus K: ,B E RK. 

(4.14) 

By applying Lemma 4.1 in the same fashion as it is used 
in Theorem 4.3 to the inequality constraints R1lB 2 rl, we 
know that for the purposes of testing our null hypothesis 
we choose a , such that R1lB = r, as well as R2/3 = r2. This 
implies that in terms of A, the expected value of i, fol- 
lowing the logic of Theorem 4.4, the equivalent dual test- 
ing problem takes the following form: 

H: =O versus K:Ai 0, i = 1,.. ., L P; 

Ai =A O, i = L + 1, ... . P, (4.15) 

where A = A + i1 and i1 is distributed as N(O, 4qU2 
(R(X'X)-'R')-'). For the moment, we assume that U2 is 
known. For the inequality constraints, Ai is constrained to 
be greater than or equal to zero with strict inequality for 
at least one element under the alternative. This is a mul- 
tivariate one-sided hypothesis test in terms of the Ai (i = 
1, ... , L). For the equality constraints, Ai is uncon- 
strained under the alternative. In other words, for the 
equality constraints we are considering a two-sided or un- 
restricted alternative for the Ai (i = L + 1, . . , P). 

Recall optimization problem (2.6), which defines the 
mixed equality- and inequality-constrained estimator. By 
following the logic used to derive Theorem 4.4 we can 
show that the likelihood ratio statistic for the mixed con- 
straint case is also the optimal value of the objective func- 
tion from the following QP: 

max A '(R(X'X)-1R') 1/4U2 

- - ;i)'(R(X'X)'-R')(, - A)14 U2 

subject to Ai 2 O, i =1, ... , L. (4.16) 

The remaining elements of A are unrestricted. Denote this 
optimal objective function value by Y. This is the same 
form of the LR test statistic Kudo (1963) derived for the 
hypothesis-testing problem (4.15). Recall that i, the La- 
grange multiplier arising from the equality constrained 
estimation procedure, is distributed as N(O, 4o 2 
(R(X'X)-1R')'-). Kudo also derived the null distribution 
of the LR test statistic for the hypothesis-testing problem 
(4.15). We state his result, which holds for our test statis- 
tics, in the notation of our mixed equality- and inequality- 
constraints testing framework in the following lemma. 

Lemma 4.2. For the hypothesis-testing problem (4.15), 
under the null hypothesis H: A = 0, the LR test statistic 
Y has the following distribution: 

L 

Pr(Y-? c) = E Pr(y2-L+k 2 c)w(L, k, 4'), 
k=O 

where T is the submatrix of (R(X'X) - 'R')-I correspond- 
ingtoAi(i= 1,...,L). 

Proof. See Kudo (1963). 

To extend this result to the case in which a2 is unknown 
we note that A is independent of our estimate of a2, S2. 

Thus if we substitute S2 for a2 in our test statistic (4.16) 
and call this statistic Y* we have the following lemma. 

Lemma 4.3. Consider the hypothesis-testing problem 
H: A = 0 versus Al : 0 and A2 = 0 (which by Lemma 4.1 
is equivalent to, for any size test, the hypothesis test H: 
R ? 2 r, and R2/3 = r2 versus K: ,B E RK). For the case 
in which a2 iS unknown, by replacing it with S2, we have 
the following distribution, for the purpose of testing our 
null hypothesis, of the statistic Y*: 

Pr(Y* 2 d) 
L 

= > Pr[FP-L+k,T-K 2 dl(P - L + k)]w(L, k, P), 
k=O 

where T is the submatrix of (R(X'X) - 1R') - correspond- 
ing to Ai (i = 1, . . . , L). 

We can also consider the null distribution of the mixed 
equality- and inequality-constraints test statistics in terms 
of the primal problem by extending Theorem 4.3 and re- 
calling that the appropriate monotonicity property of the 
power function in fi obtained from Lemma 4.1 continues 
to hold in this case. Using this logic we have the following 
lemma. 

Lemma 4.4. For the hypothesis-testing problem H: Rl,/ 
? r1 and R2fl = r2 versus K: fi E RK, in the case in which 
a2 is known but replaced by s2, the distribution of the LR 
statistic Y* satisfies the following property: 

sup Prfl,,2(X,X)-l(y* 
: d) = Prfl*,2(X,X)-l(Y* 

: d) 
flEB 

L 

= E Pr[FP-L+k,T-K ? dl(P - L + k)]w(L, L - k, H), 
k=O 

where Hl is the covariance matrix of Rlb divided by a2 and 
,B* is any , such that R/B = r. 

We define B as follows: B = {,B I Rl,/ : r, and R2fl = 
r2, ,B E RK}. We define b as the estimate of ,B calculated 
assuming that R2fl = r2. We use the covariance matrix of 
Rlb in the computation of the weights because under our 
null hypothesis the unrestricted estimate of , assumes that 
R2/3 = r2. From Silvey (1970) the covariance matrix of b 
divided by a2 is 

var(b)/U2 = (X'X)'- 

- (X'X) - 'R'(R2(X'X) - 'R') - lR2(X'X) -1. 

This implies that 

var(R,b)1ar2 = (X )-R 

- R,(X'X) - 'R&(R2(X'X) - 'R&) - 'R2(X'X) - 'RI . 
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We have shown that i, the equality-constrained estimate 
of A; that value of A arising from the computation of an 
estimate of ,B given the constraints R1lB = r, and R2/ = r2 
(which means that Rfl = r) has the following covariance 
matrix: 

var(A) = 4Ur2(R(X'X) 'R'). 

Recalling that 

FR2] 

we can rewrite R(X'X) - 'R' as follows: 

ER1(X'X)-'Rl R1(X'X)-'1R2 
R2(X'X)-'R R2(X'X)- 2 

By the partitioned matrix inversion lemma (see Theil 1971, 
p. 18) the element of (R(X'X)-'R')-l corresponding to 
R1(X'X)-'R' is 

Q = (R1(X'X)-'Rl 

- R1(X'X) - 'R'(R2(X'X) - 'Ri) - lR2(X'X) - 'R') -1. 

Note that k[var(Rlb)]' = Q, k > 0. Note in addition that 
the weights of Lemma 4.4 depend on var(R1b)/12 and 
those in Lemma 4.3 depend on Q. As shown in Wolak 
(1987) and claimed here previously, w(J, m, A) = w(J, 
J - m, aA -1) (a > 0). Hence the two weighted sums of 
F distributions given in Lemmas 4.3 and 4.4 are exactly 
the same. Our primal-dual relationship used to compute 
the null distribution for the case of multiple inequality 
constraints continues to hold for the case of combinations 
of multiple inequality and equality constraints. 

We now have the exact null distribution for both the 
inequality-constraints test statistic and the mixed equality- 
and inequality-constraints test statistic. We should note 
here that these results hold for more general forms of the 
covariance matrix of the errors than those of the form ar2I. 
If the covariance matrix of E is a2A where A is known and 
positive definite, then all of our small sample results con- 
tinue to hold for both sets of test statistics modified ap- 
propriately. Note that for the case in which L = 0 our 
mixed inequality- and equality-constraints test reduces to 
the standard multivariate equality-constraints test, the 
well-known F test. 

It is natural at this point to discuss the power of these 
tests. For the case in which the matrix (X'X) = I, the 
identity matrix, the null hypothesis is 2 0, and , E R2; 
power calculations are reported in Yancey et al. (1982). 
The power of this test, for testing our one-sided null hy- 
pothesis, is at least as great in all cases as the two-sided 
test, H: R, = r versus K: Rfl = r, because it takes into 
account the fact in our case that A > 0 under the alter- 
native. One would also expect the mixed inequality and 
equality test statistic to have superior power properties for 
mixed null hypotheses when compared with standard mul- 
tivariate equality-constraints tests, for the same reason. 
For a discussion of power for multivariate one-sided hy- 
pothesis tests see Bartholomew (1961) and Barlow, Bar- 
tholomew, Bremner, and Brunk (1972). Wolak (1987) dis- 

cussed the computation of the power function for the 
multivariate inequality-constraints test. Goldberger (1986) 
provided an excellent study of the comparative power 
properties of multivariate one-sided and inequality-con- 
straints tests. 

At this point we should also note some of the properties 
possessed by our test. As stated in Perlman (1969) for all 
testing problems of this class, the power of the test ap- 
proaches 1 uniformly in a2 and f as the distance, in the 
norm of the covariance matrix of b, between , and where 
it lies under the null hypothesis tends to infinity. The tests 
are not unbiased. The least favorable distribution is ob- 
tained at a , such that Rp = r. The power is smaller for 
values of ,B elsewhere in the region defined by the null 
hypothesis. By continuity of the power function of the test 
statistic, there are values of ,B not in the region defined by 
the null hypothesis where the power is smaller than when 
,B is such that Rp = r. Nevertheless, our tests are consis- 
tent. For values of ,B such that R,B * r the power of our 
test approaches 1 as T tends to infinity. 

5. APPLYING TEST STATISTICS 

Because both test statistics have a null distribution that 
is a weighted sum of F distributions, the calculation of the 
critical value for a hypothesis-testing problem no longer 
is as simple as looking up the relevant number in the tables 
of quantiles of the F distribution. The widespread avail- 
ability, however, of FORTRAN subroutine libraries, such 
as the IMSL library (International Mathematical and Sta- 
tistical Libraries, Inc. 1982), make the task substantially 
easier. 

For the level a test in the pure inequality-constraints 
case the critical value is the solution in x of the following 
equation: 

p 

at = E Pr[Fk K 2 xlk]w(P, P - k, '), (5.1) 
k=1 

where E = (R(X'X)-'R') in our notation. This problem 
can be solved by any method for finding the zeros of a 
univariate function. The IMSL library has several such 
codes available for this purpose. 

For the level a test in the mixed equality- and inequality- 
constraints case the critical value is the solution in x of 

L 

a = E Pr[FP-L+k,T-k 2 XI(P - L + k)] 
k=O 

x w(L, L - k, H), (5.2) 

where II is as defined in Lemma 4.4. This problem also 
involves finding zeros of a univariate function. 

There is another methodology that can be used in cases 
in which the IMSL library or other such subroutine li- 
braries are unavailable. In this case we calculate the prob- 
ability of getting a value greater than or equal to the like- 
lihood ratio statistic from a random variable with the null 
distribution of our test statistic. If G(x) is the distribution 
of our test statistic under the null hypothesis and LR is 
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our test statistic, we calculate 1 - G(LR) as follows for 
the inequality-constrained case: 

p 

1 - G(LR) = E Pr[FkT-K ? LRIk]w(P, P-k, - ). 
k=1 

For the mixed equality- and inequality-constrained case 1 
- G(LR) is 

L 

1 - G(LR) = , Pr[FP-L+k,T-K ? LR/(P - L + k)] 
k =O 

x w(L, L - k, H). 

In calculating these probabilities for the F distributions we 
can either use numerical integration codes or interpolate 
the relevant probabilities from available tables of the F 
distribution. There are also various series expansions 
methodologies for calculating these probabilities (see 
Lackritz 1984). In this instance an investigator rejects the 
null hypothesis if 1 - G(LR) < a, where a is the size of 
the hypothesis test. 

6. CONNECTIONS TO GHM AND MULTIVARIATE 
ONE-SIDED TESTS 

In this section we extend the framework of Gourieroux 
et al. (1982) to consider hypotheses tests combining one- 
sided and two-sided hypotheses. We also detail the con- 
ditions on the covariance matrix of errors such that there 
is a small sample, exact distribution for the various forms 
of their test statistic. 

As mentioned earlier, Gourieroux et al. were concerned 
with the testing problem 

H: R/B = r versus K: RuB ? r, 

with the inequality strict in at least one element, for the 
linear regression model (2.1) with e in our notation N(O, 
2). Gourieroux et al. assumed that 2 is positive definite 
and unknown. They derived three asymptotically equiv- 
alent tests for their problem. If we assume that 2 takes 
the form U2A where A is known and positive definite but 
a2 iS unknown, we can derive the small sample null dis- 
tribution for their test statistics. Replace a2 in their sta- 
tistics with s2 = (y - Xb)'A-l(y - Xb)I(T - K), which 
is derived from the unconstrained generalized least squares 
regression. Different from the results derived earlier for 
testing multivariate inequality constraints, the modified 
statistics presented in this section are not in the strict sense 
LR statistics. As shown in Hillier (1986), for these statistics 
to be considered LR statistics the estimate of U2 used in 
their computation would have to be based on the estimate 
of ,B derived under the alternative hypothesis as opposed 
to the unrestricted estimate of /3. It is unclear, however, 
whether or not the use Of s2 as an estimate of a2 in com- 
puting the test statistic will result in a test with power 
properties inferior to those of the likelihood ratio test. 
Proceeding under this caveat, the LR form of the test 
statistic for their problem in this case is the maximum value 

of the objective function from the following QP: 

max - (y - Xb)'A-'(y - Xb)/s2 
b 

+ (y - Xb)'A-'(y - Xb)1s2 

subject to Rb 2 r, (6.1) 

where b is the equality-constrained estimate of P. The 
solution to this QP is b, the ICLS estimator. The dual of 
(6.1), the KT form of the GHM statistic, is in our notation: 

min(e - i)'R(X'A-1X)'R'(A - ))14S2 

subject to A c 0. (6.2) 

The LR form of their statistic can be rewritten as the 
optimal value of the objective function from the following 
QP: 

max - (b - b)'(X'A1X)(b - b)ls2 
b 

+ (b - b)'(X'Alx)Q - b)1s2 
subject to Rb > r. 

The solution to this QP is b. The Wald forms of the statistic 
for this case of the GHM hypothesis test replaces b by b 
and b by b in Equations (3.6) and (3.7). 

By a straightforward application of Corollary 4.1, the 
modified GHM statistic, which we denote by LR, has the 
following exact null distribution: 

P 

Pr(LR ? c) = E Pr(Fk,T-K 2 c/k) 
k=1 

x w(P, k, R(X'A-1X)-1R'), 

Pr(LR = 0) = w(P, 0, R(X'A-1X)-1R'). 

We can also extend the GHM framework to consider 
two-sided hypotheses in conjunction with their one-sided 
hypothesis for the same covariance matrix structure for 
the errors, as was assumed previously. We are now inter- 
ested in the following hypothesis-testing problem: 

H: R/B = r versus K: R1/3 2 r1 and R2f3 $ r2, 

where R1 and R2 are as defined in QP (2.6) and r is par- 
titioned in the same manner. The LR form of the test 
statistic for this hypothesis test is the optimal objective 
function value from the following QP: 
max - (y - Xb)'A-1(y - Xb)/s2 

b 

+ (y - Xb)'A-l(y - Xb)1s2 

subject to R1b 2 r1. (6.3) 
The KT form of this statistic is the optimal value of the 
objective function of the dual optimization problem, 
min(A - 4)'R(X'A-1X)-1R'( - )14S2 

subject to I. c 0 and 22 = 0, (6.4) 
where A1 corresponds to the one-sided equality constraints 
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and A2 corresponds to the two-sided equality constraints. 
The Wald form of the statistic for this mixed hypothesis 
test replaces b by the optimal value of b from QP (6.3) 
and b by b in Equations (3.6) and (3.7). The four forms 
of the combination one-sided and two-sided statistic are 
all equivalent by the same logic as given previously. By 
LR* we denote the optimal objective function value of 
(6.3), which by duality theory is equal to the optimal ob- 
jective function value of (6.4). The null distribution of 
LR* is 

Pr(LR* 2 c) 

L 

- 2 Pr[FP-L+k,T-K 2 C/(P - L + k)]w(L, k, F), 
k=O 

where F = R1(X'A-lX)--R . 
To calculate the critical values or probability values for 

either the GHM statistic for small samples or the extended 
GHM statistic with mixtures of one-sided and two-sided 
tests we use the same procedure as described in Sec- 
tion 5. 

7. CONCLUSIONS AND EXTENSIONS 

In this article we devised an exact, small sample meth- 
odology for testing general linear inequality restrictions 
within the context of the linear regression model. We ex- 
tended these results to consider equality and inequality 
restrictions. In addition we illustrated the relationship be- 
tween our testing framework and the multivariate one- 
sided hypothesis-testing literature. In the process we de- 
rived the conditions under which the existing multivariate 
one-sided hypothesis-testing framework for the linear 
regression model derived by Gourieroux et al. has exact 
distribution results, as opposed to asymptotic results. We 
also extended this framework to consider both one-sided 
and two-sided hypotheses jointly. 

In Wolak (1986) a framework for testing multivariate 
nonlinear inequality constraints in nonlinear models was 
derived. This framework is also extended to enable testing 
combinations of nonlinear inequality constraints. Asymp- 
totic results for local [as defined in Wolak (1986)] in- 
equality-constraints tests similar to the exact distribution 
results of this article obtain, although several compli- 
cations arise in the derivation of the results because of 
the nonlinearity of the parameters in the constraints and 
model. 

APPENDIX: EXPRESSIONS FOR WEIGHTS 

In this Appendix we give closed-form expressions for the 
weights, w(P, k, E), used in the computation of the null distri- 
butions of our test statistics for dimensions of the multivariate 
inequality constraints test ranging from 2 to 4. Wolak (1987) gave 
an illustrative application of this testing technique to show how 
it is actually implemented. 

Using expressions derived by Kudo (1963) for P = 2 and 3 
and Shapiro (1985) for P = 4, the weights, w(P, k, E), are given 
here. For P = 2 we have 

w(2, 0, E) = kiv' arccos(p12), w(2, 1, E) = 2 

w(2, 2, E) = 2- 22-l arccos(p12), 

where P12 is the correlation coefficient associated with the (2 x 
2) covariance matrix E. For P = 3 we have 

w(3, O, E) = - w(3, 2, E), w(3, 1, E) =2-w(3, 3, 1), 
w(3, 2, 1) 

= Vi-'(37 - arccos(p12.3) - arccos(p13.2) - arccos(p23.1)), 
w(3, 3, 1) 

- 4iv'(2i - arccos(p12) - arccos(p13) - arccos(p23)), 

where p,I is the ijth element of the correlation matrix associated 
with the (3 x 3) covariance matrix E. If X E RP is N(u, E), 
then Pij.k iS the partial correlation between X, and Xj holding Xk 
fixed. Finally for P = 4 we have 

w(4, 0, E) = 2 - w(4, 4, E) - w(4, 2, E), 

w(4, 1, E) = 8r1 (-47r + E arccos(PT.k)) 
i>]: t,jOk 

w(4, 2, E) = -2 E (arccos(p,j))(7 - arccos(pkli)), 
i>j,k>1:k,1#0,j 

w(4, 3, E) = 7v-1 (87 - > arccos(Pj.k)) 
i> : i,jok 

The weight w(4, 4, E) is the probability that X E R4, as defined 
previously, has all positive elements. This probability can be 
obtained by numerically integrating a multivariate normal dis- 
tribution function. The notation Pkl.ij iS the partial correlation 
coefficient between Xk and X1 holding Xi and Xj fixed. The re- 
mainder of the notation is as defined previously for the case in 
which P = 3. Anderson (1984, pp. 35-43) provided a detailed 
discussion of the computation of the partial correlation coeffi- 
cients for an arbitrary covariance matrix E. 

We should note that for the case in which X = u2I the weights 
exist in closed form for all P. They take the following form: 

w(P, k, u2I) = 1 Li = 1 [ k] = w(P, P - k, u2I). 

[Received April 1985. Revised January 1987.] 

REFERENCES 
Anderson, T. W. (1984), An Introduction to Multivariate Statistical Anal- 

ysis (2nd ed.), New York: John Wiley. 
Avriel, M. (1976), Nonlinear Programming: Analysis and Methods, En- 

glewood Cliffs, NJ: Prentice-Hall. 
Barlow, R. E., Bartholomew, D. J., Bremner, J. N., and Brunk, H. D. 

(1972), Statistical Inference Under Order Restrictions, New York: John 
Wiley. 

Bartholomew, D. J. (1959a), "A Test of Homogeneity for Ordered Al- 
ternatives, I," Biometrika, 46, 36-48. 

(1959b), "A Test of Homogeneity for Ordered Alternatives, II," 
Biometrika, 46, 328-335. 

(1961), "A Test of Homogeneity of Means Under Restricted 
Alternatives," Journal of the Royal Statistical Society, Ser. B, 23, 239- 
281. 

Bohrer, R., and Chow, W. (1978), "Weights for One-Sided Multivariate 
Inference," Applied Statistics, 27, 100-104. 

Dykstra, R. L., and Robertson, T. (1983), "On Testing Monotone Ten- 
dencies," Journal of the American Statistical Association, 78, 342- 
350. 

Gill, P. E., Murray, W., and Wright, M. H. (1981), Practical Optimi- 
zation, New York: Academic Press. 

Goldberger, A. S. (1986), "One-Sided and Inequality Tests for a Pair 
of Means," Workshop Series Paper 8629, Social Science Research 
Institute, University of Wisconsin-Madison. 

Gourieroux, C., Holly, A., and Monfort, A. (1982), "Likelihood Ratio, 
Wald Test, and Kuhn-Tucker Test in Linear Models With Inequality 
Constraints on the Regression Parameters," Econometrica, 50, 63-80. 

Hillier, G. (1986), "Joint Tests of Zero Restrictions on Nonnegative 
Regression Coefficients," Biometrika, 73, 657-669. 



Wolak: Multiple Inequality and Equality Constraints Tests 793 

International Mathematical and Statistical Libraries, Inc. (1982), IMSL 
Library 1 (9th ed.), Houston, TX: Author. 

Kudo, A. (1963), "A Multivariate Analogue of the One-Sided Test," 
Biometrika, 50, 403-418. 

Lackritz, J. R. (1984), "Exact p Values for F and t Tests," The American 
Statistician, 38, 312-314. 

Lehmann, E. L. (1959), Testing Statistical Hypothesis, New York: John 
Wiley. 

Liew, C. K. (1976), "Inequality Constrained Least-Squares Estimation," 
Journal of the American Statistical Association, 71, 746-751. 

Luenberger, D. G. (1969), Optimization by Vector Space Methods, New 
York: John Wiley. 

Nuesch, P. E. (1966), "On the Problem of Testing Location in Multi- 
variate Problems for Restricted Alternatives," Annals of Mathematical 
Statistics, 37, 113-119. 

Perlman, M. D. (1969), "One-Sided Problems in Multivariate Analysis," 
Annals of Mathematical Statistics, 40, 549-567. 

Robertson, T., and Wegmen, E. J. (1978), "Likelihood Ratio Tests for 
Order Restrictions in Exponential Families," Annals of Statistics, 6, 
485-505. 

Robertson, T., and Wright, F. T. (1983), "On Approximation of the 
Level Probabilities and Associated Distributions in Order Restricted 
Inference," Biometrika, 70, 597-606. 

Shapiro, A. (1985), "Asymptotic Distribution of Test Statistics in the 

Analysis of Moment Structures Under Inequality Constraints," Bio- 
metrika, 72, 133-144. 

Silvey, S. D. (1970), Statistical Inference, London: Chapman & Hall. 
Siskind, V. (1976), "Approximate Probability Integrals and Critical Val- 

ues for Bartholomew's Test for Ordered Means," Biometrika, 63, 647- 
654. 

Theil, H. (1971), Principles of Econometrics, New York: John Wiley. 
Wald, A. (1943), "Tests of Statistical Hypotheses Concerning Several 

Parameters When the Number of Observations Is Large," Transactions 
of the American Mathematical Society, 54, 426-482. 

Wilks, S. S. (1962), Mathematical Statistics, New York: John Wiley. 
Wolak, F. A. (1986), "Testing Nonlinear Inequality Constraints in the 

Maximum Likelihood Model," Technical Report 21, Stanford Uni- 
versity, Econometric Workshop, Dept. of Economics. 

(1987), "Testing Inequality Constraints in Linear Econometric 
Models," Technical Report 25, Stanford University, Econometric 
Workshop, Dept. of Economics. 

Yancey, T. A., Bohrer, R., and Judge, G. G. (1982), "Power Function 
Comparisons in Inequality Hypothesis Testing," Economics Letters, 
9, 161-167. 

Yancey, T. A., Judge, G. G., and Bock, M. E. (1981), "Testing Multiple 
Equality and Inequality Hypothesis in Economics," Economics Let- 
ters, 7, 249-255. 


	Article Contents
	p. 782
	p. 783
	p. 784
	p. 785
	p. 786
	p. 787
	p. 788
	p. 789
	p. 790
	p. 791
	p. 792
	p. 793

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 82, No. 399 (Sep., 1987), pp. i-iv+705-963
	Front Matter [pp. ]
	Applications
	An Application of Bayes Methodology to the Analysis of Diary Records from a Water Use Study [pp. 705-711]
	Restricted Randomization: A Practical Example [pp. 712-719]
	On Concurrent Seasonal Adjustment [pp. 720-732]
	The Effects of Annual Accounting Data on Stock Returns and Trading Activity: A Causal Model Study [pp. 733-738]

	Theory and Methods
	Empirical Bayes Confidence Intervals Based on Bootstrap Samples [pp. 739-750]
	Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Comment [pp. 751-752]
	Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Comment [pp. 752-754]
	Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Comment [pp. 754]
	Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Comment [pp. 755-756]
	Empirical Bayes Confidence Intervals Based on Bootstrap Samples: Rejoinder [pp. 756-757]
	A Unified Treatment of Integer Parameter Models [pp. 758-764]
	Minimum Norm Quadratic Estimation of Spatial Variograms [pp. 765-772]
	Bayesian Methods for Censored Categorical Data [pp. 773-781]
	An Exact Test for Multiple Inequality and Equality Constraints in the Linear Regression Model [pp. 782-793]
	Time- and Space-Efficient Algorithms for Least Median of Squares Regression [pp. 794-801]
	Minimum Hellinger Distance Estimation for the Analysis of Count Data [pp. 802-807]
	Regression Methods for Poisson Process Data [pp. 808-815]
	Test Statistics Derived as Components of Pearson's Phi-Squared Distance Measure [pp. 816-825]
	Conditioning Ratio Estimates Under Simple Random Sampling [pp. 826-831]
	A Frequency-Domain Median Time Series [pp. 832-835]
	Identifying a Simplifying Structure in Time Series [pp. 836-843]
	Marginal Curvatures and Their Usefulness in the Analysis of Nonlinear Regression Models [pp. 844-850]
	L-Estimation for Linear Models [pp. 851-857]
	A Semiparametric Approach to Density Estimation [pp. 858-865]
	A Comparison of Variance Component Estimates for Arbitrary Underlying Distributions [pp. 866-874]
	Quick Simultaneous Confidence Intervals for Multinomial Proportions [pp. 875-878]
	Model Robustness for Simultaneous Confidence Bands [pp. 879-885]
	Best Median-Unbiased Estimation in Linear Regression with Bounded Asymmetric Loss Functions [pp. 886-893]
	Minimax Regret Simultaneous Confidence Bands for Multiple Regression Functions [pp. 894-901]
	Comparison of Several Treatments with a Control Using Multiple Contrasts [pp. 902-910]
	Influence Analysis of Generalized Least Squares Estimators [pp. 911-917]
	K-Sample Anderson-Darling Tests [pp. 918-924]
	How Much Better Are Better Estimators of a Normal Variance [pp. 925-928]
	Small Sample Properties of Probit Model Estimators [pp. 929-937]
	Parameter Estimation for the Sichel Distribution and Its Multivariate Extension [pp. 938-944]

	Book Reviews
	[List of Book Reviews] [pp. 945]
	Review: untitled [pp. 946]
	Review: untitled [pp. 946-947]
	Review: untitled [pp. 947]
	Review: untitled [pp. 947]
	Review: untitled [pp. 948]
	Review: untitled [pp. 948-949]
	Review: untitled [pp. 949]
	Review: untitled [pp. 949-950]
	Review: untitled [pp. 950-951]
	Review: untitled [pp. 951]
	Review: untitled [pp. 951-952]
	Review: untitled [pp. 952]
	Review: untitled [pp. 952-953]
	Review: untitled [pp. 953]
	Review: untitled [pp. 953]
	Review: untitled [pp. 954]
	Review: untitled [pp. 954]
	Review: untitled [pp. 954-955]
	Review: untitled [pp. 955-956]
	Review: untitled [pp. 956-957]
	Review: untitled [pp. 957]
	Review: untitled [pp. 957-958]
	Review: untitled [pp. 958]
	Review: untitled [pp. 958-959]
	Review: untitled [pp. 959-960]
	Review: untitled [pp. 960]
	Review: untitled [pp. 960-961]
	Review: untitled [pp. 961]
	Review: untitled [pp. 961-962]

	Publications Received [pp. 962-963]
	Back Matter [pp. ]



