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This paper considers a general nonlinear econometric model framework that 
contains a large class of estimators defined as solutions to optimization 
problems. For this framework we derive several asymptotically equivalent 
forms of a test statistic for the local (in a way made precise in the paper) mul- 
tivariate nonlinear inequality constraints test H: h(1) > 0 versus K: 1 E RK. 
We extend these results to consider local hypotheses tests of the form H: 
hI(1) ? 0 and h2(3) = 0 versus K: 1 E RK. For each test we derive the 
asymptotic distribution for any size test as a weighted sum of x2-distributions. 
We contrast local as opposed to global inequality constraints testing and give 
conditions on the model and constraints when each is possible. This paper also 
extends the well-known duality results in testing multivariate equality con- 
straints to the case of nonlinear multivariate inequality constraints and com- 
binations of nonlinear inequality and equality constraints. 

1. INTRODUCTION 

This paper develops three local (in a way to be made precise) asymptotic tests 
for a set of nonlinear inequality restrictions on the parameters of nonlinear 
econometric models from the general class of models considered by Bur- 
guete, Gallant, and Souza [10] and Gallant [19], henceforth abbreviated as 
the BGS class of estimators. Models contained in this class are all of the least 
mean distance estimators and method of moments estimators. See Gallant 
[19, chap. 3] for a listing of all of the estimators in this class. The results are 
extended to devising local large-sample tests for combinations of multivar- 
iate nonlinear inequality and equality constraints. For the sake of exposi- 
tional ease and brevity, we present our results for one member of this class: 
the maximum likelihood (ML) model. Modifications necessary for these pro- 
cedures to apply to the BGS class of models are stated later in the paper. 
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This section continues with a summary of the nonlinear inequality con- 
straints testing framework and includes a short discussion of the local nature 
of these hypothesis tests. Next we chronicle the history of this type of work 
in mathematical statistics. A discussion of recent related work in the theo- 
retical econometrics literature follows. Next we describe potential uses of this 
hypothesis testing framework in current applied econometric research. 
Finally, the remainder of the paper is outlined. 

For /3, the parameter vector from a model in the BGS class of estimators, 
we would like to perform the hypothesis test 

H: h(f) ?0 versus K: /3 E RK. (1.1) 

An asymptotically exact size test of the null hypothesis that / E C-- 
Ix h (x) - 0, x E RK I is not in general possible for reasons discussed later 
in the paper. An asymptotically exact test for general nonlinear inequality 
constraints is the local test: 

H: h(/) > 0, 3 E Nb, (/30) versus K: / E RK, for all n, (1.2) 

where N6, ( 30) is a 6,A-neighborhood of /0 , h (/0) = 0, 6, = O(n- 12), and 
n indexes the sample size. Asymptotically, Eq. (1.2) reduces to a test of 
whether or not /, the mean of a N(/,H(/0)I(30)-1H(/30)') random vari- 
able, is contained in the cone of tangents of C at /0, where C is the set 
defined above. (The appendix contains the definition of the cone of tangents 
of S at x0 for any arbitrary set S.) In contrast, despite the nonlinearity of 
the model in the parameters /, we can perform an asymptotically exact test 
of the form: 

H: /-?0 versus K: / e RK. (1.3) 

This follows because the cone of tangents to C at /0 for this problem is the 
positive orthant: the set defining the null hypothesis. More importantly, 
/0 = 0 is the unique value for the entire vector / which satisfies all of the 
inequalities as equalities. In general, a global inequality constraints test is 
possible only for testing the entire parameter vector for as many linear 
inequalities as there are elements of the vector, because the values assumed 
for the parameters not being tested will in general affect the distribution of 
the inequality constraints test statistic. A detailed discussion of these issues 
is given in Section 4. 

The existence of large sample test results for Eq. (1.3) implies that the 
complications which arise in deriving a framework for testing nonlinear 
inequality constraints are primarily caused by the nonlinearity of the param- 
eters in the inequality constraints. Although nonlinearity in the model alone 
is also problematic, the greater difficulties caused by nonlinear constraints 
differ from the case of testing multivariate equality constraints where both 
nonlinearity of the model in the parameters or constraints only allows the 
computation of local power functions because of the degenerate nonnull dis- 
tribution for fixed alternative hypotheses. In this vein, Stroud [38] discusses 
the general lack of a large-sample approximation to the power function for 
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fixed alternative hypotheses for nonlinear multivariate equality constraints 
tests. Stroud [37] presents general conditions under which the null and local 
nonnull distributions of the multivariate equality constraints test statistic 
exist for a large class of asymptotically normal estimators. 

Our three test statistics resemble the likelihood ratio, Wald and Lagrange 
multiplier test statistics for multivariate equality constraints given in Bur- 
guete, Gallant, and Souza [10] and Gallant [19]. The current paper can be 
thought of as an extension of this work and the work of Wald [40], Aitchi- 
son and Silvey [1], and Silvey [35] to the case of multivariate nonlinear 
inequality constraints and combinations of nonlinear equality and inequal- 
ity constraints. Recent work by Kodde and Palm [261 presents a distance test 
approach to testing multivariate inequality constraints and combinations of 
multivariate inequality and equality constraints. The present work, derived 
independently of theirs, integrates the distance test approach with a likeli- 
hood ratio-based approach to testing inequality constraints. Wolak [42] 
points out several complications that arise because their framework does not 
explicitly take into account the local nature of the nonlinear inequality con- 
straints testing problem. The present paper focuses on precisely this issue and 
discusses the severe limitations of global inequality constraints tests. This 
paper rigorously illustrates what is meant by a local nonlinear inequality con- 
straints test. It also states the exact distribution hypothesis test which is 
asymptotically equivalent to each of the local hypothesis tests involving 
inequality constraints presented here. Finally, this paper extends the classi- 
cal large-sample duality result in testing multivariate equality constraints to 
the nonlinear inequality constraints and combinations of nonlinear equality 
and inequality constraints testing frameworks. 

Although testing nonlinear inequality constraints has not been explicitly 
dealt with in the statistics literature, work related to this problem has been 
ongoing for some time. Chernoff [11] examined the asymptotic distribution 
of the likelihood ratio statistic when the true value of the parameter (0G) is 
a boundary point of both the set defining the null hypothesis (WI) and the 
set defining the alternative hypothesis (W2). In Chernoff's framework, the 
sets defining the null and alternative hypotheses need not be hyperplanes as 
is the case in standard equality constraints hypothesis testing problems. Feder 
[15] generalized Chernoff's results to the case where the true value of the 
parameter (00) is near the boundaries of the sets wi and W2 in the sense that 

00 = 00 + o(1), where 0o E co,l n?2 and ail denotes the closure of WI. Both 
Chernoff's results and Feder's results for d(0?,wi) = 0(n-l2), i = 1,2 
(where d(6, w) is the Euclidian distance from the point 6 to the set w) are uti- 
lized in the derivation of our results. 

The multivariate one-sided hypothesis testing literature is related to the 
work presented here. This literature is concerned with testing H: ,u = 0 versus 
K: yi 2 0, where A is the mean of a multivariate normal random vector with 
a known covariance matrix. Bartholomew [6,7,8] considered a related prob- 
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lem: testing homogeneity of independent normal means versus ordered alter- 
native hypotheses concerning these means. Kudo [27] first considered this 
multivariate analogue of a one-sided test. Perlman [32] generalized these 
results to the case of testing H: I E PI versus K: i E P2 where P1 and P2 
are positively homogenous sets with P1 C P2. A special case of Perlman's 
framework is the hypothesis test H: i E A versus K: I E RK, where A is a 
closed, convex cone in RK. Under certain conditions linear inequality con- 
straints define closed, convex cones in RK; so that his framework is partic- 
ularly useful to our purpose. 

Recently, econometricians have become interested in the multivariate one- 
sided test. Gourieroux, Holly, and Monfort [22], hereafter referred to as 
GHM, have extended the multivariate one-sided hypothesis test to linear 
econometric models. The same authors [21] also considered the test for the 
case of nonlinear models. Farebrother [14] derived exact distribution results 
for the standard linear regression model for combinations of multivariate 
one-sided and two-sided hypotheses on the elements of the coefficient vec- 
tor. Rogers [33] took an alternative approach, not based on the likelihood 
ratio principle to examine multivariate one-sided hypotheses in the ML 
model. He calls his approach the modified Lagrange multiplier test. Dufour 
[13] considers tests for these kinds of hypotheses on the coefficients of the 
linear regression model and derives bounds on the exact null distribution of 
the test statistics. 

Due to the widespread use of inequality constrained estimation in econo- 
metrics, there are many possible applications of an inequality constraints 
testing procedure. Estimation under inequality restrictions in nonlinear mod- 
els has become especially prevalent in the analysis of producer and consumer 
behavior. Lau [29] first discussed estimation under inequality restrictions as 
a way to impose monotonicity, convexity, and quasi-convexity constraints 
on econometrically estimated production, profit, and utility functions. Jor- 
genson, Lau, and Stoker [25] imposed inequality restrictions on the param- 
eters of their model of consumer behavior to ensure that the individual 
indirect utility function is globally quasi-convex in the prices. Gallant and 
Golub [18] utilized this estimation procedure to impose the curvature restric- 
tions implied by economic theory on the flexible functional forms used in 
production and demand analysis. Barnett [4], Barnett and Lee [5], Diewert 
and Wales [12], and Gallant [16,17] either proposed methods to estimate or 
estimated globally regular flexible functional forms by imposing inequality 
constraints on the estimated parameters of their econometric models. The 
widespread use of flexible functional forms in applied econometric work 
shows a clear need for tests of these hypotheses. These tests provide a way 
to empirically verify that the parameters of an econometric model satisfy the 
restrictions implied by economic theory. Possible applications of this testing 
procedure arise, specifically, whenever a flexible functional form is used in 
demand or production analysis, or in general, whenever a researcher esti- 
mates a statistical model and wants to test the empirical validity of a priori 
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knowledge about the signs of two or more functions of the parameters of the 
model. 

An outline of the remainder of this paper follows. Section 2 introduces the 
unconstrained, inequality constrained, and equality constrained estimators 
for the ML model framework. For continuity with previous work, our esti- 
mation framework follows that given in GHM [21]. Section 3 contains the 
derivation of the Kuhn-Tucker, Wald, and likelihood ratio statistics and 
gives conditions under which they are locally asymptotically equivalent. Sec- 
tion 4 shows that the asymptotic distribution of the test statistics for the 
purposes of testing the null hypothesis is a weighted sum of chi-squared dis- 
tributions. In the appendix we discuss the proof of a global monotonicity 
property of the asymptotic power function from the inequality constraints 
test. In this section we analyze the impact of this monotonicity property on 
inequality constraints testing in general. As shown in Wolak [42], straight- 
forward application of the technique used to show this monotonicity prop- 
erty in linear models with linear inequality constraints is not possible. The 
major implication of this discussion is general conditions for global instead 
of local inequality constraints tests. Section 4 also illustrates the asymptotic 
duality relation between the multivariate inequality constraints test and the 
multivariate one-sided test in terms of the vector of dual variables associated 
with the vector of nonlinear constraints. Section 5 extends our results to test- 
ing nonlinear equality and inequality restrictions jointly. If there are no 
inequality restrictions, this framework reduces to the standard ML-based 
framework for testing equality constraints. Section 6 extends these test pro- 
cedures to the BGS model framework. In Section 7 we discuss the compu- 
tation of critical values and probability values for the various hypothesis 
tests. This section also states upper and lower bounds on the null asymptotic 
distribution of the test statistics for hypotheses involving inequality con- 
straints. In Section 8 we contrast our testing framework with the GHM [21] 
hypothesis testing framework. There we point out the local nature of their 
nonlinear multivariate one-sided test and extend their results to consider a 
local combination multivariate one-sided and two-sided hypothesis test. 

2. NOTATION AND PRESENTATION OF THREE ESTIMATORS 

For the sake of brevity and clarity, we first present our results for the well- 
known ML model framework. The notational burden necessary for the gen- 
eral BGS class of models is considerable while no special complications arise 
that are not present in the ML model. The initial use of the ML model 
framework allows us to simplify the exposition and focus on the primary 
purpose of the paper while preserving the essential complexities of testing 
nonlinear inequality constraints in nonlinear models. In addition, the ML 
model framework is used by GHM [21] and some of the results presented in 
this section and in Section 3 were derived by them. So that further justifi- 
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cation for the use of this ML framework is to take maximum advantage of 
their work. 

Before proceeding with the definition of our three estimators, we lay out 
the necessary notation. Denote m-dimensional Euclidian space by R1. Let 
Xi = (Xil,X12,.. .,Xim)' be an observation from a random vector in R' 
with a probability density function f(xi, [), where [ = (fi, [2, * . . )3K), a 
point in RK, represents the unknown parameter vector and the function 
f(xi,, ) is continuous in ,B for all xi. The parameter space which contains ,3 
is 0, a compact subset of RK. The Appendix contains a full listing of addi- 
tional regularity conditions necessary for the validity of our results. 

The nonlinear constraints are represented by a set of continuous, differen- 
tiable functions h: RK -+ RP (P c K), defined by h(f) = (hI ([),h2([), 

,hp(j))', [ CE 0. The partial derivatives, ahi (1)/lafj (i= 1,. . .,P) ( = 

1,... ,K), exist and are continuous for all [3 E 0. Denote by H([) the 
(P x K) matrix of partial derivatives whose (i,j)th element is ahi(3)I/a3j. 
There exists a value of [,[0 = ([0,[3, ,[30)', in the interior of the 0 
such that h ([30) = 0. To avoid degeneracies in the null asymptotic distribu- 
tion, we assume H([0) has full row rank P. Under our local null hypothe- 
sis, [3, the true value of [, satisfies: 

[3 e Kn- txlh(x) >0, xe N ([) for all n. 

Note that (3n - 130) = 0(1) and nl/2([0 -30) = 0(1). 

A point in Rn' denoted by x = (x1,x2,... ,xn)' represents a set of n inde- 
pendent and identically distributed observations of Xi from the density 
function given above. The log-likelihood function L on Rnm x RK is: 

n 
L([) =L(x,[) = ln(f(xi,[3)). (2.1) 

i=l 

For notational ease we suppress x from L(x, [), although the dependence of 
L([3) on x and n is clear. 

Each estimate of [3n? chooses [ to maximize Eq. (2.1) subject to [ remain- 
ing in some compact set. Because this paper is primarily concerned with test- 
ing inequality constraints we will not discuss the computation of the various 
estimates of [32 discussed below, only their existence. The inequality con- 
strained ML estimate of [3, which we denote by [3, is the solution to: 

min - n-'L([) subject to h([) 2 0, [ E 0. (2.2) 

Associated with the nonlinear constraint vector is a set of Kuhn-Tucker mul- 
tipliers, X. The Kuhn-Tucker theorem asserts that none of the components 
of ) are negative. The selection of this form for the optimization problem 
defining the ML estimates (minimizing the negative of the log-likelihood 
function) considerably simplifies the derivation of the null asymptotic dis- 
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tribution of our test statistics. The first-order conditions for this optimiza- 
tion problem are 

-n-' ao (/3) = H((3)'X, hj(G)Xj = 0 (j = 1,... ,P), X> 0 

h(3) ? 0. (2.3) 

The constraint qualification condition stated in the Appendix ensures that if 
j solves (2.2) there exists a X satisfying (2.3). See Bazaraa and Shetty [9, 
chap. 4] for more on this topic. 

The equality constrained maximum likelihood estimate, 3, is the solution 
to: 

min - n-'L(,) subject to h( 3) = 0, f E 0. (2.4) 

Let X denote the vector of Lagrange multipliers associated with the nonlinear 
equality constraints. The elements of this vector are unrestricted in sign. The 
first-order conditions for the equality constrained estimator are: 

-nl ( = H(O3)'X, h(f) = 0. (2.5) 

Finally, the unconstrained maximum likelihood estimator 3 is the solution 
to: 

min -n -IL (fa) subject to 3 Ee 0. (2.6) 

For completeness, we associate a vector of Lagrange multipliers, X, with this 
estimate of 3. This multiplier vector is equal to zero by definition of the 
unconstrained ML estimator. Assuming an interior solution, the first-order 
conditions for this problem are: 

-n- F (f3) = 0. (2.7) 

Gill, Murray, and Wright [20] present a complete discussion of algorithms 
which can be used to solve optimization problems in (2.2), (2.4) and (2.6). 
They also discuss the relative merits of each technique for the various 
problems. 

Several relationships between the various estimators of 00 are useful for 
proving the local asymptotic equivalence of our test statistics and deriving 
their asymptotic distribution. Following the logic given in GHM [21], each 
of the three estimates of 00 satisfies the following equation in 3: 

-n -1/2 aL (/0) + I(/o) [ln /2( -_ /0)] _ n'7/2H(/3)'X, (2.8) 
a9( 
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where I(O3) is Fisher's information matrix (lim n-1Eflo[-a2L(L3)/d aoao']) 
n--+w 

evaluated at ,B = :3 and X is the multiplier vector associated with that esti- 
mate of 132. The symbol _ means that the difference between both sides of it 
converges in probability to zero as n -- oo. For 1 and ,B this equation implies: 

I(13) [nl1/2(13 _ 1)] - n1/2H(4)'. (2.9) 

This relationship is useful for relating : to A. 
The framework derived in Aitchison and Silvey [1] and Silvey [36] implies: 

h(13) H(o 0)(1 - 10 ) and H(1) - H(30) _ 0, (2.10) 

where 1 can be any one of the three estimates of 132. The relations in (2.9) 
and (2.10) for and : imply: 

-n lXh (O)--n l'H(,0)I(,B0)-l H(00)'X. (2.11) 

This equation is useful for relating X, the unrestricted estimate of X, to 1, 
the unrestricted estimate of 132. 

3. THE THREE ASYMPTOTICALLY EQUIVALENT 
TEST STATISTICS 

In this section we derive three locally asymptotically equivalent (for all 13 E 
N6 (130)) likelihood ratio-based statistics to test multivariate nonlinear in- 
equality constraints. We prove that the likelihood ratio (LR) form of the 
test statistic is locally asymptotically equivalent to a generalized distance test 
statistic similar to that derived in Kodde and Palm [26]. This equivalence is 
useful for deriving the asymptotic distribution of the test statistics presented 
in this section. Proof of the asymptotic equivalence of the LR form of the 
inequality constraints statistic to the Wald and Kuhn-Tucker forms is not 
presented here because it parallels the proof given in GHM [21] of the 
asymptotic equivalence of their three analogously defined nonlinear mul- 
tivariate one-sided test statistics. Their work is applicable to proving these 
results because of the asymptotic equivalence, shown in Section 4, between 
the local multivariate inequality constraints test and a multivariate one-sided 
test in terms of the vector of dual variables associated with the constraint 
vector. 

Under the regularity conditions in the Appendix, 13 and / are strongly con- 
sistent estimates of 132. This implies the following relationship for these two 
estimates of 13: 

L(13) _ L(13) + [n-1/2 
(3 (0)1 [nl/2(1 _- )] 

n - - (3 - _0)JI(o0)(0 - 130) (3.1) 
2 

This equation also holds for all 13 e N6 n(10). 
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The likelihood ratio statistic takes the usual form: 

LR = -2[L(/) - L(4)] = 2[L(3) - L(j3)]. (3.2) 

It also arises from the mathematical programming problem 

LR = min 2[L(/) - L(3)] subject to h(/3) ? 0. (3.3) 

By Equations (3.1), (3.3), and (2.10), the LR statistic is equivalent to, for 
large n, the optimal value of the objective function from the following quad- 
ratic program (QP): 

LR _ min 2 [nl/2 (30?)' [n2/2(-3)]- [(o - 30 )'I(/)(4 - 30)] 

-1/2 
[L () l[n1/2( -)] + ( ( 3)I(o ) )J(/)(/3 ) 

subject to / 3 Nb,,(/30) and H(3)(/ -) /0) ? 0. (3.4) 

This QP can be simplified to one similar to the Kodde and Palm [26] dis- 
tance test statistic as follows. Taking the transpose of Equation (2.8) and 
post multiplying both sides of the equality by nll2(3 - 30), we find that: 
satisfies: 

[n 1/2 (/LO)] nl/2(4 _ /0) _ n(4 - /0)'I(/0)(4 - /0). (35) 

Using (3.5), rewrite the objective function of (3.4) in an asymptotically 
equivalent form as: 

min n( - /0)'/I(30)(3 - /30) - 2nl1/2 aL (30)' [nl/2(/3 _ /0)] 

+ n(/ - 30)'I(30?)(/ - /0). (3.6) 

This objective function simplifies to: 

min n( - /)'I(/0)(3-/). (3.7) 

To see this, expand (3.7); add and subtract n/0'I(30)/30 and 2n/3'I(/3)/30 
from it to obtain: 

mi n( -0)'I(/0)( - /30) - 2n1(0)(/3 - /30) + n/3I(/0)/3 

-n,B?'I(,0B0),0 (3.8) 
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Applying equation (2.8) for /, simplifying and collecting terms, gives the 
objective function (3.6). Thus we have: 

LR =_ D = min n(,B- 0)'I(o 0) (, -, 
f3 

subject to 3 EN N (0) and H(0?)(/ - /0) ? 0. (3.9) 

Hence, the LR statistic is asymptotically equivalent to the generalized dis- 
tance statistic, D. 

There are three other asymptotically equivalent forms for the inequality 
constraints test statistic. First is the Wald statistic which measures the mag- 
nitude of the difference between the restricted and unrestricted estimates of 
13 in the norm of the asymptotic covariance matrix of nl/2(4 - 03): 
W = n(/3 - f3)'I(/0) (/3 - /). (3.10) 

The Kuhn-Tucker statistic measures the magnitude of the Kuhn-Tucker mul- 
tiplier vector arising from the inequality constrained estimation procedure: 

KT = nk'H(/3)I(0f)-'H(/)'X. (3.11) 

By (2.9) the KT statistic is asymptotically equivalent to the W statistic. An 
asymptotically equivalent way to that given in (3.10) for writing the Wald 
statistic is: 

W = n(h() - h())'[H(f)I(/30Y'H(f)'V'(h(fl)-h(/3)). (3.12) 

Because the difference between all of these statistics converges in probabil- 
ity to zero as n -o c, they all possess the same asymptotic distribution. 

4. ASYMPTOTIC NULL DISTRIBUTION OF STATISTICS 

Our hypothesis testing problem does not fit into the standard hypothesis test- 
ing framework because our composite null hypothesis does not specify a 
unique value for h (/32). Our problem only requires h (/3) to lie in the posi- 
tive orthant of P-dimensional space. In contrast, for an equality constraints 
test, under the null hypothesis /32 must satisfy h(/3) = 0. As a conse- 
quence, a least favorable value of /3 e K, must be found to construct an 
asymptotically exact size test of the inequality constraints. 

As mentioned in the introduction, we would prefer an asymptotically exact 
test of the null hypothesis / e C -xlh(x) ? 0, x E RKI with our test 
statistics. Wolak [42] showed this is impossible because of the general in- 
determinacy of the least favorable value of /3 E C. The global monotonic- 
ity property of the power function of the test is only able to limit the least 
favorable value of / to the set CE_ xI h (x) = 0, x E RKJ . Unless this set 
contains one element, there will be as many null asymptotic distributions as 
there are elements of CE. This occurs because the matrix H(/), which the 
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asymptotic distribution of the test statistics is functionally dependent on, 
varies with 3 if the constraint vector h (3) is at all nonlinear. There is no way 
to select among these values of ,3 to find the least favorable value besides 
complete enumeration, which is impossible if the set CE is uncountable. For 
a given E e CE, the asymptotic null distribution that obtains depends on 
the geometry of the cone of tangents to the set C at (3 through the matrix 
H(,B). Depending on what a E CE we assume for the true value of A, a dif- 
ferent asymptotic distribution will obtain because H(0) should vary with a 

for nonlinear constraints. Consequently, to obtain a determinant exact null 
asymptotic distribution, we must settle for a local nonlinear inequality con- 
straints test. Our hypothesis test is still h (() > 0 versus ( Ee RK, but it is rel- 
ative to the point (3O. Wolak [42] points out the local nature of hypothesis 
tests involving nonlinear inequality constraints and describes why these prob- 
lems do not arise in the nonlinear equality constraints testing framework. 

We now derive the asymptotic distribution of our three statistics for any 
size test of our null hypothesis. To illustrate the duality relation that exists 
for our testing framework we derive the null distribution in terms of both 
the primal and dual variables. First we deal with the primal approach which 
is in terms of the parameter vector (. As a starting point, consider the 
hypothesis testing problem: 

H: , 0 versus K: it E R' where i= + v, (4.1) 

and It is N(O, S), and X is known and positive definite. Wolak [44], follow- 
ing Perlman [32], shows the likelihood ratio statistic for (4.1) is the optimal 
value of the objective function from the following QP: 

Z = min (it - A)1- (Au - A) subject to It ? 0. (4.2) 

Let Ai denote the solution to QP (4.2). 
We must now choose a least favorable value of A under the null hypoth- 

esis to construct an exact size test of this null hypothesis. The prescribed 
approach to this problem proceeds as follows. For test (4.1), our sample 
space in the Neyman-Pearson likelihood ratio hypothesis testing framework 
is 0 = R'. The positive orthant in P-dimensional space is the subset of 0 in 
which A lies under the null hypothesis. We denote this by OH. Following 
Lehmann [30], let s be the test statistic for our hypothesis test and S the 
rejection region. If 

sup pr,, (s E S) = a, 
IIEOH 

then S is the rejection region for a size a test of our null hypothesis. 
By this logic we will construct a rejection region for a level a test of (4.1). 

A special case of Lemma 8.2 in [32] is given below. 
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LEMMA 4.1. For any tt 2 0 and positive scalar c, the following is true: 

pr,[,I[Z? c2] <pro,2UZ c ] . 

An immediate corollary is: 

sup pr,,Q [Z Z c] = pro,Q [Z 2 c]. 
Ae=OH 

This lemma provides a unique value for i to specify under the null hypoth- 
esis for any size ao test. The following theorem proved in [44] gives the null 
distribution for any size test. 

THEOREM 4.1. Under the hypothesis I ? 0, the likelihood ratio statis- 
tic (4.2), which we denote by Z, has the following distribution: 

p 

sup pr,,,(Z ? c)=pro, - (Z C)= pr(x , c)w(P,P-k,S). 
/1-0 k=O 

This distribution is a weighted sum of chi-squared distributions. The weight, 
w (P, P - k, Z), is the probability that Ai has exactly P - k positive ele- 
ments. Wolak [44] provides a detailed discussion of the computation of 
these weights. 

If we consider h(/) as y and n-'H(/0)I(30)-1H(30?)' as Z in hypothe- 
sis testing problem (4.1), then our local inequality constraints hypothesis test 

H: h(3) - 0, / - N6b,(/30) versus K: /3E RK (4.3) 

is asymptotically equivalent to testing problem (4.1). The logic for this claim 
proceeds as follows. We know n1/2h(/) converges in distribution to a 
N(H(/3)b, H(/0)I(/0)-1H(/30)') random variable for all /32 E Nb,(?), 
where b = lim n 12 (/0 - /0). Therefore, as n - 0o0, the following relation- 

n--oo 

ship holds by a large sample version of Lemma 4.1: 

sup prbI,(,30)-1 (D ? c) = pro j(,3o)-i (D 2 c), (4.4) 
be-B 

where B = WblH(/0)b > 0, b E RKI and D is the asymptotic value of the 
three-test statistics. This relation implies that /3n = /0 (which occurs if b = 

0) is the least favorable value of /32 to select for an asymptotically exact size 
test of (4.3). The distributional results for hypothesis testing problem (4.1) 
derived in [44] and the above intuition yields the following result proved in 
the Appendix. 

THEOREM 4.2. For the local hypothesis testing problem H: h (/) ? 0, 
/3 E N6 (/30) versus K: / E RK, the asymptotic distribution of the KT, LR, 
and W statistics satisfies the following property: 
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p 

sup Prb!(3)-(D ? c) = pr,3o(D-c) = pr(X2 > c)w(P,P-k,fl) 
beB k=0 

where D is the asymptotic value of the three statistics and 11 = [H(f3) 
I(O?)-'H(O?)']. 

An intuitive justification for this result follows by noting that hypothesis 
test (4.3), as n -* oo, is equivalent to the test 

H: d E T(O30) versus K: , E RK (4.5) 

based on b = ,B + v, where v - N(O,H(30)I(30)-'H(/30)') and 

T(O?) _= xIH(f3)(x -0) >- 0, x E RKJ, 

is the cone of tangents of C at j30. The vertex of this cone is /3. So the 
results of Lemma 4.1 imply the least favorable value of 3 to choose for an 
exact size test of (4.5) is j0, the value of /3 which satisfies the linear inequal- 
ities defining T(O?) as equalities. Figure 1 provides a graphic example of 
our nonlinear inequality constraints framework for /3 = (/3i, /2)' and h (/) = 
(h I (/), h2 ())'. The intersection of the two curves h 1 (/) = 0 and h2 (/) = 
O is the point /3. The two rays tangent to the curves at the point /0, RI and 
R2, describe the cone of tangents to the set C at ,30 called T(/0) in the fig- 
ure. Mathematically, the equation for the rays R1 and R2 are the first and 
second rows of the matrix equation H(/0)(3 - /0) >- 0, respectively. 

The null distribution for any size test can also be obtained by the dual 
approach to the testing problem. In terms of X, the true value of the 
Lagrange multiplier vector arising from the equality constrained estimation 
problem, our hypothesis testing problem is H: X = 0 versus K: X> 0, with 
the inequality strict for at least one element of the X under the alternative 
hypothesis. For every n, the true value of X is defined as the value of the 
Lagrange multiplier vector arising from the solution to 

min - Ln (3, Ono) subject to h(/) = 0 (4.6) 

where LW(/,O,no) = E3([ln(f(X,3))]. As stated in the Appendix, the unique 
unconstrained maximum of Ln ( /3, 3) occurs at a = 3?, the true value of /3. 
If /3? is not an element of CE then X will be nonzero. Given X = 0, so that 
/3, e CE, Aitchison and Silvey [1] and Silvey [36] show lim nl/2 X converges 

n--oo 

in distribution to a N(O,[H(0o)I(/3)-'H(/3)']-') random vector under 
the regularity conditions in the Appendix. These results provide an intuitive 
justification for choosing the least favorable value of /3? e Kn such that 
/,?n = /30 in order to construct an asymptotically exact size test of our local 
inequality constraints test. We will find that, for the same size test, the local 
nonlinear inequality constraints test (4.3) and the hypothesis test H: X = 0 
versus K: X>- 0, for X as defined in (4.6), are asymptotically equivalent. This 



14 FRANK A. WOLAK 

sh2 (,B) = ? i2 hi (ft) = ? 

\ ~~~T(fl )_/ 

FIGURE 1. Graphical representation of the inequality constraints set C = 3 h (/3) ? 0, 
3 E R2 } and its cone of tangents T(30?) at /3. 

result extends the large-sample duality relation between the hypothesis tests 
H: h(3) = 0 versus K: h(f) * 0 and H: X = 0 versus K: X * 0, to the case 
of multivariate inequality constraints. 

To discuss the dual approach to our problem, we first consider the much 
studied multivariate one-sided hypothesis testing problem 

H: t = 0 versus K: t 2 O, t E RP, 

where t = t + 71, -q is N(O, ), (4.7) 

and E is known and of full rank. Wolak [44] provides a detailed summary 
of this literature. The LR statistic for (4.7) is the optimal value of the objec- 
tive function from: 

max tS-1 - - I ) subject to 0 2 0. (4.8) 

Let t denote the solution to QP (4.8), so that: 

LR = -1 - _ - = (/(4.9) 
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The second equality follows from the complementary slackness conditions 
for QP (4.8). The null distribution of the LR statistic is given in the follow- 
ing theorem proved in Kudo [27], Nuesch [31], and Perlman [32]. 

THEOREM 4.3. For the hypothesis testing problem (4.7), the LR statistic 
has the following distribution under the null hypothesis: 

p 

prO,(LR ? c) = pr(X, k c) w (P, k, E), 
k=O 

where w(P, k, E) is the probability that t has exactly k positive elements. 

Note that the weights, w(P,k, E)(k = O,... ,P), have the same functional 
form as those in Theorem 4.1. Therefore the considerable literature on the 
computation of these weights in the multivariate one-sided hypothesis test- 
ing literature is available to apply to our inequality constraints testing 
problem. 

We now apply these results to our testing problem. The duality theory of 
quadratic programming applied to QP (3.9) implies the LR statistic, and 
therefore the KT statistic, is asymptotically equivalent to the optimal objec- 
tive function value of the following QP: 

KT max n[X'(H(30)30 - H(30)f) - - X'H(00)I(30)-1H(00)'X] x 4 

subject to X - 0. (4.10) 

Equations (2.10) for / and Equation (2.11) imply optimization problem 
(4.10) is asymptotically equivalent to: 

KT _ max n[X'H(f0)I(f0)-1H(/0)'X - - X'(f0)I(f0)-rH(l0)'X] X 4 

subject to XN- 0. (4.11) 

Finally, we can show that the optimal value of the objective function from 
the following QP is equal to that same value from QP (4.11); so that 

KT = max n[X'H(0)I(00)-'H(00)'X 

-(X* - X)'H(0o)I(0?)-iH(/0o)'(X* - X)] 

subject to X)* > 0. (4.12) 

The value of X* which solves (4.12) is asymptotically equivalent to the 
Kuhn-Tucker multiplier from estimation procedure (2.2). The optimal value 
of the objective function from (4.12) is: 

KT* = nX*'H(flO)I(00)-1H(flo)'X*. (4.13) 

Because 3* _ X, we have KT* _ KT _ W LR. 
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If we replace f by X and E by [nH(O?)I(00)-'H(0])']-' in QP (4.8) 
and recall that for (32 such that h (13?) = 0, X is, for large samples, approxi- 
mately N(O, [nH( 0) I((0) -`H(o 0)'] -). Therefore, the asymptotic distri- 
bution of our three test statistics is equivalent to the null distribution from 
a multivariate one-sided hypothesis test performed on X. We summarize our 
results in the following theorem. 

THEOREM 4.4. For the dualform of hypothesis testing problem (4.3), 
which takes the form H: X = 0 versus K: X - 0, the null asymptotic distri- 
bution of the KT, W, and LR statistics is: 

p 

prdo(Z > c) = E pr(X 2 2 c)w(P,k,A), 
k =O 

where Z is the asymptotic value of the three statistics, and A = [H(30) 
I(O30) 'H(3 0)'] -. 

In [44] the following relationship is shown to hold for the weight func- 
tions: 

w(P,k,Q) = w(P, P-k,aQ-') for k = 0,...,P and a > O. 

Given this result, comparing the null distribution derived in Theorem 4.2 
with that derived in Theorem 4.4 yields the following. 

COROLLARY 4.1. For hypothesis tests of the same asymptotic size, the 
local inequality constraints test, H: h (3) > 0, ( 3E N6, (/30) versus K: 3E 
RK, is equivalent to the multivariate one-sided test, H: X = 0 versus K: X- 
O for X as defined by (4.6). 

Wolak [43] discusses this duality relationship from both the geometric and 
mathematical programming viewpoint and shows that it is a generalization 
of the classical duality result in multivariate equality constraints testing. 

To concentrate on the local versus global inequality constraints distinction, 
we now turn to the hypothesis test H: R( ' r versus K: ( E RK, where R is 
a (K x K) matrix of full rank, and r is (K x 1) vector. Here global hypoth- 
esis tests are possible for the reasons cited in Section 1 and because (30 = 
R-'r is the unique least favorable value of (0 that specifies all of the ele- 
ments of ( under the null hypothesis. Unfortunately, without further restric- 
tions, all of these conditions are necessary for a global inequality constraints 
test in nonlinear models. The null distribution of an asymptotically exact size 
test is: 

K 

pr((D > c) = E pr((X 2 c)w(K,K-k, RI-(d)-R'), 
k=O 

where D is the asymptotic value of the inequality constraints test statistics. 
Consider the case that R has fewer than K rows but is still of full row rank. 
Because there is an uncountable number of ('s that satisfy the equation 
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Rf = r, the fact that I(3) may vary with these values of [ implies an indeter- 
minacy in the null asymptotic distribution. 

Given these results, we now state conditions under which global versus 
local inequality constraints tests are possible. A sufficient condition is that 
H([)I([0)-'H([)' remains constant as [ varies over the set of [ such that 
h([) = 0. Conditions which guarantee this are H([) = R, a matrix of con- 
stants, and I([3) = E, a matrix of constants. Wolak [44] deals with the case 
when these two conditions are satisfied. There a framework is presented for 
testing global linear inequality constraints in linear econometric models. 
The most general linear model considered is the linear simultaneous equa- 
tions model. In the notation of Theil [39, pp. 439-441] this model takes the 
form YT + XB = E. The framework in Wolak [44] allows global linear 
inequality constraints tests on the elements of r and B. See Hendry [23] for 
a discussion of the commonly used linear econometric models which are spe- 
cial cases of this general framework. Linearity in the parameters and the con- 
straints is an easily verifiable sufficient condition for a global inequality 
constraints test. 

The local nature of inequality constraints tests arises even when testing 
whether or not a subvector of [ lies in the positive orthant. Let [' = 

([,' ,['), where the hypothesis test is H: [3 ' 0 versus K: [3 E R'. The deri- 
vation of the null distribution is complicated by the fact that unless the sub- 
matrix of I([3)-1 corresponding to [3 does not depend on [2, the null 
distribution obtained depends on the values assumed for these nuisance 
parameters under the null hypothesis. Consequently if every value of [2 

implies a different submatrix of I(30)-1, this [2 will also imply a different 
null asymptotic distribution of the test statistics. There is no straightforward 
way to find the value of these parameters which yields the least favorable 
null distribution. In this case the hypothesis test must be performed local to 
the point [31 = 0 and [2 = [20, where [? is the value assumed for 2. 

5. JOINT EQUALITY AND INEQUALITY CONSTRAINTS 

In this section we consider local hypothesis tests of the form H: h1([) > 0 
and h2([) = 0 versus K: [ E RK, where h'([) is a vector of the first L 
(L ' P) elements of h([) and h2([) is a vector of the remaining P - L 
elements of h ([3). In this way we jointly test the validity of nonlinear mul- 
tivariate inequality and equality constraints on [. We will derive three as- 
ymptotically equivalent forms of the test statistic used to examine these kinds 
of hypotheses. 

Three estimates of [3 are necessary to discuss this hypothesis testing 
problem. First is the mixed inequality-equality constrained estimate. It is the 
solution to 

min - n-'L([() subject to h1([3) - 0, h2([3) = 0, [ E 0. (5.1) 
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The solution to (5.1) is j3. A vector of multipliers, s' = (X1,X), iS associ- 
ated with the solution. The first subvector, Al, is associated with the 
inequality constraints and is therefore restricted to be greater than or equal 
to zero. The subvector X2 is associated with the equality constraints so it is 
unrestricted in sign. The first-order conditions for this optimization problem 
are: 

-n t ; $ H(/3)'), XI 2- ?, h 0)-, hj(,B)Xj = O 

(j = 1,... ,L) hk() = O (k = L + 1,...,P). (5.2) 

The equality constrained version of this problem is, by construction, the 
equality constrained maximum likelihood problem (2.4). The unconstrained 
version of this problem is the unconstrained maximum likelihood problem 
(2.6). The regularity conditions in the appendix ensure ,B is a strongly con- 
sistent estimate of ,B?. 

The LR statistic is defined analogously to (3.2) as: 

LR = -2[L(3) - L(3)] = 2[L(3) - L(3)]. (5.3) 

The Wald statistic is: 

W = n(,3 - 0)'I(00)( - g). (5.4) 

The KT form of the mixed inequality-equality constraints test statistic is: 

KT = nX'H((3)I(f0)-'H(f)'X. (5.5) 

These three statistics are locally asymptotically equivalent (for all fl E 
N3n (03O)). By logic similar to that used to derive the Wald statistic in (3.12), 
another form of that statistic for this problem is: 

W = n(h(3) - h(,3))'[H(4)I(fl)-1H(3)'1-'(h(4) - h(3)). (5.6) 

By the logic of Equations (3.2) through (3.9), the LR statistic for the 
mixed inequality-equality constraints test statistic is asymptotically equiva- 
lent to the optimal objective function value from the following QP: 

LR -mim n(fn - )'I(f00) -) 

subject to ,B E N(3 0) and H'(f0 )(f3 - ,3) 2 0, H2(f0)(3 - ?3) = 0, 

(5.7) 

where H1(f0) and H2(f0) are the matrices of partial derivatives of h1(130) 
and h2(f30), respectively. These are defined in the same fashion as H(O3) is 
for h (fl0). This statistic is analogous to the generalized distance test statis- 
tic for combinations of inequality and equality constraints discussed in 
Kodde and Palm [26]. 
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To extend the asymptotic duality relation to combinations of multivariate 
inequality and equality constraints, the null asymptotic distribution for these 
statistics will be derived from both the dual and primal viewpoint. First we 
treat our testing problem in terms of the dual vector of constraint multipliers 
because the presentation for this approach is more straightforward given the 
results of Section 4. We will show that the local hypothesis testing problem 
H: h'(3) -0 and h2(3) = 0, 3 E N6,(i30) versus K: f E RK is equivalent to 
H: X = 0 versus K: X1 ' 0 and X1 ?0, where X, is associated with h'(f) 
and X2 is associated with h2(f). 

Kudo [27] considered the hypothesis testing problem: 

H:b=0 versus K:4',?0 (i=l,...,L<P), 0i*0 

(i= L + 1, ... ., P), E E Rp, (5.8) 

where 4' = + w, w is N(0, I), and ' is known and positive definite. The 
likelihood ratio statistic for this problem is: 

M = max 4'"-' - ( - )P'('( - 4) 

subject to 4i ' 0 (i = 1,... ,L). (5.9) 

The null distribution for the M statistic stated below is given in Kudo [27]. 

LEMMA 5.1. For the hypothesis testing problem (5.8) the LR test statistic 
(M) has the following null distribution: 

L 

pro (M > c) = pr(Xp-L+k > c)w(L,k,r) 
k=O 

where r is the submatrix of ' corresponding to 4' (j = 1,... ,L). 

Given these results we derive the null distribution for our statistics. Recall 
that the optimal objective function value of QP (5.7) is asymptotically equiv- 
alent to the mixed constraint LR statistic. The dual of this quadratic pro- 
gramming problem is: 

KT max n[X'(H(10)30 - H(30)f) - X\H()I(-3)-'H(-?)'X] 
x 4 

subject to Xi > 0 (i = 1,... .,L). (5.10) 

The P - L elements of X, Xj (j = 1+L,... ,P) are unrestricted. The dual- 
ity theory of quadratic programming implies that the optimal value of the 
objective function of (5.10) is equal that same value from (5.7). 
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The optimal value of the objective function of QP (5.10) is asymptotically 
equivalent to the same magnitude from the QP: 

max n[X'H(f0)I(30)-fH(30)'X 

(X* - X)'H(/0)I(30)-1H(0)' (X* - X)] 

subject to X7 ? 0 (i = .... ,L). (5.11) 

Similar to the case of only inequality constraints, the value of X* which 
satisfies (5.10) is asymptotically equivalent to the Kuhn-Tucker multiplier 
from the mixed inequality-equality constrained maximum likelihood estima- 
tion procedure, A. The optimal value of the objective function of (5.11) is: 

KT* = nx*/H(G3)I(I3)-'H(fl)'SX* (5.12) 

Because )\* _ ), we know that KT* -KT _ W LR for the mixed con- 
straints testing procedure. 

Replacing 4 by X and 'f by [nH(l0?)I(0Y)-1H(f0)']-1 in testing prob- 
lem (5.8), and noting that lim n172X converges in distribution to a N(0, 

n 

[H(F0)I($0)-'H(30?)']') random vector given ,B? = 30, the asymptotic 
distribution of our three test statistics is equivalent to the null distribution 
of the LR statistic for hypothesis test (5.8) performed on X as defined in 
(4.6). This logic gives the following theorem. 

THEOREM 5.1. For the dualform of the local inequality-equality con- 
straints hypothesis testing problem, H: X = 0 versus K: Xi 0 O (i = 1, . .. , L) 
and Xi i 0 (i = L +.... , P), the null asymptotic distribution of the KT, 
W, and LR statistics is: 

L 

prk3 ((X- c) = pr(XPL L+k ? c)w(L,k,r) 
k=O 

where r is the submatrix of [H(130)I(3) - H(130)']-h corresponding to Xi 
(j = 1, . . . , L) and X is the asymptotic value of any of the three statistics. 

The null asymptotic distribution of the mixed constraints test statistics can 
be obtained in terms of the primal problem by extending Theorem 4.1 in a 
similar fashion to Kudo's extension of Theorem 4.3. By the same logic as for 
inequality constraints alone, as n -* oo, the local inequality-equality con- 
straints hypothesis test is equivalent to the test H: ,3 E T* (U0) versus K: , Ei 
RK, based on b = j + v and v - N(0,H(j0)I(f0)-1H(f0)'), where 

T*(0?) = lxlHI(00)(x - $30) - 0, H2(90)(x - 30) = 0, x E RKJ 

is the cone of tangents to C* at 130 and C*= Ixlh'(x) 2 0, h2(x) = 0, x E 
RKI. Because T*(,B0) is a convex cone and J0 its vertex, the monotonicity 
property of the power function for this exact test implies the least favorable 
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null value of ( is O'. In addition, similar to the local power function results 
of Section 4, we have: 

sup prb I(03o)-l (X 2 c) = pro 1(f0)-1 (X ? c), 

where B* {H1(f30)b ? 0, H2(f0)b = 0, b E RKI. So j3n = 30 for the pur- 
poses of our local mixed constraints hypothesis test. Therefore, we have the 
following theorem. 

THEOREM 5.2. For the local hypothesis testing problem H: h 1(3)0 
and h2(13) = 0, e N6,(i0) versus K: ( E RK, the null asymptotic distribu- 
tion of the KT, W, and LR statistics satisfies the following property: 

sup prb, (I30)- 1 (X > c) =pro(X > c) 

L 

= > pr(X2-L+k ? c)w(L,L - k,J?), 
k=O 

where H is the asymptotic covariance matrix of n 1'2hl (h ). 

We define ( as the equality constrained estimate of (3 calculated by assum- 
ing h2(() = 0. The asymptotic covariance matrix of n'72h 1(,3) is used to 
compute the weights because under our null hypothesis the unrestricted esti- 
mate of ( assumes that h2(() = 0. From Silvey [36], the asymptotic covar- 
iance matrix (avar) of n '2h1(3) is: 

avar(n 12h 1h(f)) = H1(00)I(0)-1H1(0O)/ 

- H 1 (0)I(00)-'H 2(00), (H 2( 00)I(00)-1H 2(00) )-1 
H 2( 00)I(0o) lH (0o)'. 

In partitioned matrix form, the asymptotic covariance matrix of nl/2N is: 

EH1(30)I(0f)-1H1(00)' H1((0)I((0)-'H2((0)' 1-1 

H2((0 )I(00)-1H1(30)' H2((30)I((0)-1H2((0) J 
The element of (H((0)I(00)-'H(0)' )-1 corresponding to H1((00)I((30f' 
Hf1((o0)' is: 

Q = [H1(0?)I(00)-1H1(0) 

- H1((0)I((0)-1H2((0)' (H2((30)I((30)-H2((0) ) 'H 2(30) 

I((30)-'H1 (o(0)/] 
-1 

We just have shown k[avar(n12h (13))P1 = Q, with k > 0, where the 
weights of Theorem 5.2 depend on avar(n 12hh'(/)), and those in Theorem 
5.1 depend on Q. The properties of the weights functions given in Wolak [44] 
yield the following result. 
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COROLLARY 5.1. For hypothesis tests of the same asymptotic size, the 
local combination inequality and equality constraints test, H: h'(() > 0 
and h2(f3) = 0, 3 e N6b,(130) versus K: 3 e RK is equivalent to the combina- 
tion multivariate one-sided and two-sided test, H: X = 0 versus K: X >- 0 
and X2 * 0, where X is as defined in (4.6). 

If L = 0 (the case of testing only equality constraints), our framework 
reduces to that derived by Aitchison and Silvey [1] for testing multivariate 
nonlinear equality constraints. The null asymptotic distribution of our test 
statistics is chi-squared with degrees of freedom equal to the dimension of 
the nonlinear equality constraints vector. 

At this point we discuss the power of these tests. Power calculations are 
extremely difficult, even for the exact distribution multivariate one-sided test 
(4.7), because the weights entering into the computation of the distribution 
of the test statistics depend on the alternative hypothesis considered. This 
well-known problem also arises in the present testing framework. However, 
the local power of this test for our inequality constraints null hypothesis is 
greater against any alternative of the form h (() < 0 than the two-sided test 
H: h (() = 0 versus K: h (() ? 0 because our test takes into account the fact 
for this hypothesis test X is always greater than zero under the alternative. 
For similar reasons, the mixed inequality-equality test statistic should have 
superior local power properties against these types of alternatives (h 1 (() c 
0, h2((3) ? 0) for testing mixed null hypotheses. For the linear regression 
model and multivariate one-sided test, Hillier [24] compares the power prop- 
erties of the classical two-sided F-test, the likelihood ratio test, and a one- 
sided t-test in a particular direction. Based on his calculations, the likelihood 
ratio test is the preferred test. For a further discussion of power for multivar- 
iate one-sided hypothesis tests see Bartholomew [8] and Barlow, Bar- 
tholomew, Bremner, and Brunk [3]. These power discussions and the results 
in Hillier [24] are relevant to our inequality constraints hypothesis testing 
framework because of the precise linkage derived earlier between any size test 
for local multivariate inequality constraints and the multivariate one-sided 
test in terms of the true value of the Lagrange multiplier vector. See Wolak 
[43] for more on this point. 

6. EXTENSION TO BGS ESTIMATION FRAMEWORK 

In this section we outline the extension of the results for the ML model to 
the BGS class of estimators. The notation of this section follows that in Gal- 
lant [19, chap. 3] unless otherwise stated. The value of X that minimizes 
S,(X) subject to the appropriate set of constraints defines the associated 
estimates of X). In this framework, X) is assumed to drift toward X* at the 
rate of n-'Z2. To concentrate on the problem of testing nonlinear inequal- 
ity constraints, model misspecification in the way given in [19] is assumed 
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not to exist. Essentially, this implies that the model generating the data is 
contained within the parametric class of models being estimated. This implies 
that 5 = gJ and 'A = 0 in the notation of [19, p. 239]. Under these condi- 
tions, the statistics for this framework analogous to the LR, W, and KT 
statistics defined earlier are locally asymptotically equivalent. The regular- 
ity conditions necessary for the validity of the results in this section are those 
in [19, chap. 3] and the constraint qualification conditions in the Appendix. 

Two estimators of X? are needed to define the test statistics for this 
framework. The first, the unconstrained estimator (Xv), is the solution to: 

min sn(X) subject to X E A, (6.1) 
x 

where A is the compact parameter space containing X? and *. The second. 
is the inequality constrained estimate, Xn. This estimator arises as the solu- 
tion to: 

minsn (X) subject to h(X) >O, X X A, (6.2) 
x 

where h (X) satisfies the same conditions in X and A* as h (3) in our nota- 
tion satisfies in : and 13. Associated with the vector of inequality con- 
straints is a vector of Kuhn-Tucker multipliers, in,. 

We now define our test statistics for the local hypothesis test 

H: h(X) ? 0, X E Na,,(V*) versus K: X E RP for all n. (6.3) 

The analog of the likelihood ratio statistic is: 

L = 2n(sn (Xn) - Sn ( \n))). (6.4) 

The Wald statistic is: 

W = n(Xn - Xn)q(X,n - X,n) (6.5) 

or 

W = n(h(Xn) - h(Xn))'[H(X*)f-PH(X*)']-l(h(n) - h(A,)) (6.6) 

where H(X) is the matrix of partial derivatives of h (X) with respect to X and 
H(X*) is of full row rank q. The Kuhn-Tucker statistic is: 

KT = nOj[H(X*),q-VH(X*)' ]an. (6.7) 

All of these statistics are locally asymptotically equivalent and their null dis- 
tribution for an asymptotically exact size test is given by Theorem 4.2 where 
H in our notation is [H(X*)9-lH(X*)']. 

For the local combination nonlinear inequality and equality constraints 
test 

H: h'(X) - 0, h2(X) = 0, X E N65(X*) versus K: X EC RP for all n, 

(6.8) 
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we must first define the mixed constraints estimator, Xn, as the solution to: 

min sn(X) subject to h'(X) > 0 and h2(X) = 0, X e A, (6.9) 
x 

for the h (X) partitioned in the same manner as h (/) in Section 5. Also aris- 
ing from this estimation procedure is the mixed constraints multiplier vec- 
tor On 7 For this hypothesis test replace Xn with X, in the definition of the L, 
W, and W* statistics and Orn with 0,n in the definition of the KT statistic. The 
null asymptotic distribution for any asymptotically exact size test is given by 
the results of Theorem 5.1 or Theorem 5.2. In terms of Theorem 5.1, the 
weighted sum of chi-squared distributions depends on r, which in the cur- 
rent notation is the submatrix of [H(X*)q-VH(X*)']-1 corresponding to the 
elements of 0in associated with the vector of inequality constraints h'(X). 
Finally, it is straightforward to show that the duality relations derived for 
the ML model framework carry over to the BGS class of estimators. 

7. APPLYING THE STATISTICS 

The calculation of the critical value for a given hypothesis testing problem 
is no longer as simple as looking up the relevant number in a table because 
the weighted sum of chi-squared distributions determine the critical value. 
The widespread availability of FORTRAN subroutine libraries make the task 
substantially easier. 

For the asymptotic level al test in the pure inequality constraints case, the 
critical value is the solution in x of the following equation: 

p 

= X, pr[ 2 x] w (P, k,), (7.1) 
k=1 

where E = (H(30?)I(0r)-'H(30?)')- in our notation. Problem (7.1) can be 
solved by any method for finding the zero of a univariate function. In addi- 
tion, I(0?) can be replaced by 

-l 2L (O) n- a i n (f (xi, / 0)) a In (f (xi, 0 0)), -n- or n' Z 
@a8N' ~~i=1 3/ a/ 

Both of these expressions converge almost surely to If(/3) under our 
assumptions. To be consistent with our local inequality constraints hypoth- 
esis test, these expressions should be evaluated at /3, the value of / the test 
is local to. However, replacing /3 by any of its consistent estimates (/3, /, 
or f) in these two estimates of I(/3) and in the evaluation of the estimate 
of H(/0) is asymptotically valid under our regularity conditions. Similarly, 
for the general BGS class of models, the estimate of 5 constructed as dis- 
cussed in [19, chap. 3] which is used to compute the weights, should be eval- 
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uated at X = X*, the fixed value of X the hypothesis test is local to, although 
using any of the three consistent estimates of X is asymptotically valid under 
the regularity conditions in [19]. 

For the asymptotic level ae test in the mixed equality-inequality constraints 
case the critical value is the solution in x of: 

L 

?e = p ? [Xx x ] w(L,k,I), (7.2) 
k=O 

where r is as defined in Theorem 5.1. This problem also involves finding the 
zero of a univariate function. The procedures described above for comput- 
ing estimates of S apply to computing estimates of r. 

There is another methodology when iterative procedures are not practical. 
In this case we calculate the probability of getting a value greater than or 
equal to any of the small sample values of our three statistics from a random 
variable with the null asymptotic distribution of our test statistics. If G(x) 
is the asymptotic distribution of our test statistics under the null hypothesis 
we calculate 1 - G(Z), where Z is the value of any of our three statistics. 
For the inequality constrained case: 

p 

-G(Z) = E pr Z Z]w(Pk,S) k . 
k=l 

For the mixed equality-inequality constrained case 1 - G(Z) is: 

L 

1-G (Z) = pr [Xp-L+k Z] w (L, k, r). 
k=O 

The chi-squared probabilities can be calculated numerically or interpolated 
from available tables of the chi-squared distribution. There are also various 
series expansions methodologies for calculating these probabilities (see Lack- 
ritz [28]). In this instance an investigator rejects the null hypothesis if 1 - 
G(Z) < a, where ax is the size of the hypothesis test. 

A final methodology uses bounds on the asymptotic distribution to com- 
pute upper and lower bounds on the critical value similar to the upper and 
lower bounds on the critical value used in the Durbin-Watson test. Follow- 
ing Perlman [32], Kodde and Palm [26] compute these bounds on the asymp- 
totic distribution of their generalized distance test statistic. Their bounds are 
applicable to the testing framework presented in this paper because of the 
asymptotic equivalence shown in Sections 4 and 5 between the two sets of 
KT, LR, and W statistics and the generalized distance test statistics presented 
in [26]. The upper and lower bounds on the size a, critical value from the 
asymptotic distribution of a mixed inequality-equality constraints test statistic, 
are the solution in cU, and cl, respectively, to the following two equations: 
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a = 2 pr[Xp2 Cu] + pr[x2I 2 C.] 2 2 

1 1X and ce = - pr [ XP-L+ I > C/] + 2 pr[XP-L ? C/]. (7.3) 

When there are no equality constraints, these bounds are still valid with L 
set equal to P. Kodde and Palm [26] compute a table of these critical val- 
ues for several values of P, L, and a. Consequently, the asymptotically exact 
critical value must be calculated only in cases when these bounds yields an 
inconclusive test results (i.e., c, > Z > c,). 

8. EXTENSIONS OF GHM FRAMEWORK 

The general case of the hypothesis test considered in Gourieroux, Holly, and 
Monfort [21] is H: h(j3) = 0 versus K: h(f) 2 0, with the inequality strict 
for at least one element of h (f). Their paper considered H: ti = 0 (i = 
1, . . . ,L c K) versus K: j, >- 0 (i = 1, . . . ,L). Before proceeding, we should 
note that the GHM problem in nonlinear models falls prey to the same 
indeterminacy of the least favorable null distribution as occurs in testing 
global nonlinear inequality constraints. Local nonlinear multivariate one- 
sided tests must be resorted to if asymptotically exact size tests are desired. 
Wolak [42] elaborates on this point. The general case of the nonlinear mul- 
tivariate one-sided tests is asymptotically equivalent to the exact test of the 
null hypothesis that j3 is such that H(f30)(3 - 13O) = 0 versus the one-sided 
alternative that j3 lies in the cone of tangents to the set C at 3O, based on 
b - N(f,H(f0)I(30?)-1H(30?)'). In our notation, the local GHM test is: 

H: h(fl2) = 0 versus K: h (G3) 2 0 for all n, 

with f E G Ne,, (f30) under both the null and alternative hypotheses. The null 
asymptotic distribution is: 

P 

prolo(Z 2 c) = E pr( X 2c)w(P,k, 11), 
k=O 

where HI is as defined in Theorem 4.2 and Z is the asymptotic value of the 
three GHM test statistics. 

In this section we expand their framework to consider local hypothesis 
tests of the form 

H: h(132) = 0 versus K: h'(fl2) 2 0 and 
h2(Ono) 

* 0 for all n, (8.1) 

with IB E NMn (j30) under both hypotheses, within the context of our maxi- 
mum likelihood model. Assume the nonlinear constraint vector h (3) satis- 
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fies the same regularity conditions and is partitioned in the same fashion as 
for the mixed constraints testing problem. 

Proceeding in a similar fashion to our mixed inequality-equality con- 
straints testing problem, we define the LR, W, and KT statistics for the test- 
ing problem (8.1). The LR statistic is defined as: 

LR = -2[L(3) - L(3)] = 2[L(3) - L(3)]. (8.2) 

We define ( as the solution to the following inequality constrained maximum 
likelihood problem: 

max n-'L((3) subject to h'(f) 2 0, 3eO. (8.3) 

Associated with this optimization problem is an L-dimensional vector of 
Kuhn-Tucker multipliers for the inequality constraints, X. The first order 
conditions for this optimization problem are: 

aL ^ ^ ^ I ^ - - 
n -a (f3)=H(f3)'X, hj(f3) Xj=O(j=1,...,L), X<O, hI(f3)-O. 

Two forms of the Wald statistic for this hypothesis testing problem are: 

W= n((3 - 3)'I(30)(( -l3) (8.4) 

and 

W = nh (,)' [H(30) I(30)-1H(0)'] -l h (3) (8.5) 

The KT statistic for this hypothesis test is: 

KT = n(X* - X)'[H(I3)I(f3)-'H(l3o)'](X - X) (8.6) 

where X* is a P-dimensional vector whose first L elements are X and last 
P - L elements are zeros. By a straightforward application of the logic used 
in [211, these four statistics are asymptotically equivalent. 

Under our null hypothesis, n 1/2h (() converges in distribution to a 
N(O, H(O)I((0)-'H(0?0)') random vector. Hence, asymptotically, the 
testing problem (8.1) fits into the framework of hypothesis testing problem 
(5.8). We state our result in the form of a lemma. 

LEMMA 8.1. For the local hypothesis testing problem (8.1), the asymp- 
totic null distribution of the LR, W, and KT statistics is: 

L 

pr,o(X 2 c) = E pr(X -L+k 2 c)w(L,k, Y) 
k=O 

where X is the asymptotic value of the three statistics and Y is the submatrix 
of [H((30)I(3) -I'H((0)'] corresponding to h 1 (;). 

The computation of critical values and probability values follows the same 
logic given in Section 7. 
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9. SUMMARY AND EXTENSIONS 

In this paper we devised an asymptotic testing framework for examining 
nonlinear inequality constraints within a large class of nonlinear econometric 
models. We extended these results to consider combinations of nonlinear 
equality and inequality restrictions. We also extended the asymptotic one- 
sided hypothesis testing framework of GHM to consider combinations of 
one-sided and two-sided hypothesis tests. We also illustrated the local nature 
of any testing problem involving nonlinear inequality constraints or a non- 
linear model when the dimension of the test is less than the dimension of the 
parameter vector. Our approach also provided a well-known framework (the 
ML model) to show why a global inequality constraints test is not in general 
possible for nonlinear constraints or models. 

Inequality constraints can be tested locally for an even larger class of mod- 
els. As long as an estimation procedure yields local asymptotic normal esti- 
mators, we can test local nonlinear inequality constraints and combinations 
of local nonlinear equality and inequality constraints following the approach 
in Kodde and Palm [26]. Conditions for local asymptotic normality are that 
n1/2(: _ - ) converges in distribution to N(O, F), where E is fixed and /3 E 

N6, (,30), and N6n (300) and 30 are as defined earlier. These conditions are 
analogous to those presented by Stoud [37] to guarantee the existence of the 
local power function for multivariate equality constraints tests. 

Given a local asymptotic normal estimator, for the hypothesis test 

H: h()?0, 3 N6, (/30) versus K: 3 c RK, (9.1) 

we compute the Kodde and Palm [26] test statistic 

U = min n(h (3)-x)' [H(30) 2H( 3?0)'] -''(h (30) - x) (9.2) 
x 

subject to x 2 0, 

where H(/3) is as defined earlier and [H(f30)FH(I0)'] is the asymptotic 
covariance matrix of n 172h (f). The asymptotic distribution of U for the 
purposes of testing the null hypothesis of (9.1) is given in Theorem 4.2 with 
rI = [H(30)EH(030)']. 

Under the same conditions on the estimator, for the hypothesis test 

H: h'(/3) 2 0, h2(,3) = 0, I3 E N6n(/30) versus K: E z RK, (9.3) 

we compute the Kodde and Palm [26] test statistic 

Z = min n(h() - x) [H(O 0)XH( 0)']-L(h(3) -x) (9.4) 
x 

subject to xl ? 0 and x2 = 0, 

where x1 corresponds to the inequality constraints h1 (3) and x2 corresponds 
to the equality constraints h2(j). The asymptotic distribution of Z for the 
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purposes of testing the null hypothesis is given in Theorem 5.1, with 
I(jO)-3 replaced by E. 
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APPENDIX 

1. REGULARITY CONDITIONS 

This appendix gives a set of regularity conditions, in addition to those at the begin- 
ning of Section 2, necessary for the validity of the results in the paper. With excep- 
tion of the constraint qualification conditions, these conditions are exactly those 
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required for investigating the local power properties of nonlinear equality constraints 
tests. These conditions are stated in the form of assumptions. Because the primary 
concern of this paper is hypothesis testing, these regularity conditions are those most 
useful for that purpose. More general and easily verifiable sets of conditions which 
imply these are cited. The proof of Theorem 4.2 and a discussion of the global 
monotonicity of the power function of the test follows the regularity conditions. 

Assumption 1. For all n, n-'L(3) is a continuous function of ,B. 

Assumption 2. n-'L(13) converges almost surely to a function Lco(,1,, _0) 
E,o[ln(f(X,3))] for all 3 E 0. The function L,(3,i32) _ Efo[ln(f(X,3))] has a 
unique maximum at 132. In addition, as n -+ 00, the function Ln (3,132) converges to 
Loo(f3,(,), which has a unique local maximum at d = 0?. 

Assumptions 1 and the compactness of 0 guarantee the existence with probabil- 
ity one, of the unrestricted and equality, inequality, and mixed inequality-equality 
restricted estimates of 13,. These results follow from the compactness of the set of ( 
over which the likelihood function is maximized for each of the estimation problems. 
Assumption 2 ensures that the four estimates of (, converge almost surely to ,3. By 
applying Lemma 2.2 of White [41], modified for our problem, these results follow 
in a straightforward fashion. Assumptions 1-5 and 6A of Silvey [35] are more readily 
verifiable conditions which guarantee the strong consistency of each of the estimators. 

We now consider assumptions necessary for deriving the asymptotic distributions 
of the various estimators of (n32 

Assumption 3. The partial derivatives dL() = 1,..,K) exist and are continu- 

ous on 0 with probability one. 

a2L(() 
Assumption 4. The second partial derivatives a a (j= 1,...,K)(i= 1,. . .,K) 

exist and are continuous on 0 with probability one. 

Assumption 5. The (K x K) matrix -n-' a converges almost surely and 

uniformly for all ( E 0 to the matrix I(0,03) _ lim n-'E0o[_-2L(0)/a(a(']. noo 

Assumption 6. The matrix I(30,/0) is positive definite. 

By definition, I(,OB) in the paper is 1(O30,30 ). Assumptions 3, 4, and 5 imply that 
Ia2L((3n) for any An that converges almost surely to (0, nI "" converges almost surely 

to I(,B?) as n -* oo. This result is used in the Taylor's expansion of the first deriva- 
tives of n-1L(() used to derive the asymptotic distribution of the estimators and to 
establish the relationships presented at the end of Section 2 necessary to show the 
asymptotic equivalence of test statistics in Sections 3, 5, and 8. In addition, it is essen- 
tial to allowing us to replace I(,B0) by either of its two consistent estimates and 
replacing (30 by any of its consistent estimates in the evaluation of I(,B?) as discussed 
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in Section 7. Note that implicit in these assumptions is the usual result for a correctly 

specified ML model that I(PO) = lim n-'Eo [L(30) aL30)] 
[ ooao ao' 

Assumption 7. The vector n'72 nf (30 E N6(a?), where dn = ?(n 

is asymptotically normal with mean the zero vector and covariance matrix I(30) 
under S?. 

Silvey [35] in assumptions 1-12, with 0* in his notation replaced by f? in our nota- 
tion, provides verifiable conditions which guarantee the satisfaction of our Assump- 
tions 1-7. Conditions RI to R6 of Feder [15] also imply the satisfaction of our 
assumptions. In short, there are many other available sets of regularity conditions 
which ensure the satisfaction of these assumptions. 

We now consider assumptions which are specifically requried for the Kuhn-Tucker 
conditions to be necessary conditions for the existence of a local optimum to an 
inequality constrained mathematical programming problem. These conditions are 
termed constraint qualification conditions. First we require definitions from Bazaraa 
and Shetty [9, chap. 5] modified to our notation. 

Definition. Let S be a nonempty set in RK, and let x E cl(S). The cone of tan- 
gents of S at x, which we denote by T, is the set of all directions d such that d = 

lim Xk(Xk - x), where Xk > 0, Xk E S for each k and Xk x- 
k-cX 

By cl(S) we mean the closure of the set S. In words, d belongs to the cone of tan- 
gents if there is a sequence [xkl e S converging to x such that the directions of the 
cords (xk - 57) converge to d. Figure 1 provides a graphical example of the cone of 
tangents to C at (30 for an arbitrary inequality constraints set. 

We consider the constraint qualification conditions for the mixed inequality- 
equality constraints case because the constraint qualification condition for inequal- 
ity constraints alone is a special case of this more general condition. Let h ((3) be par- 
titioned in the same manner described in the paper, where L is the dimension of 
h l (() and P - L is the dimension of h2(3) . For a given L let 

om= ofn 1jh,(() 
0 O, j = 1,. . . L and hk((3) = 0, k = L + 1,. . . P). 

Let T be the cone of tangents of OM at ,B, where 3 is our mixed constraints estimate 
of An. 

Given a (, define the set J= {i hi () = 0, i = 1, . L . In addition, define the 

following two sets: G = d |1 (f)'d 0 O for i e J} and H= d d, (f)'d = 0 

for i = L + l. P}. The Abadie constraint qualification condition requires the 

following relationship to hold between these sets T, G, and H for any (. 

Assumption 8. Abadie constraint qualification condition: T = G n H. 

From [9, chap. 5], if ( is a local optimum, this constraint qualification condition 
guarantees the existence of a multiplier vector ) that satisfies the Kuhn-Tucker con- 
ditions given in (5.2). 
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For the case of inequality constraints alone, L = P. Consequently, the constraint 
qualification condition for (3 becomes: T = G. In this case, T is the cone of tangents 
to oC - n If31hj(() 2 0, j = 1, . . . ,P1 at (3, and G and J are as defined above 
with L replaced by P. This condition guarantees that if (3 is a local optimum, then 
the Kuhn-Tucker conditions (2.3) are satisfied. These constraint qualification con- 
ditions guarantee that any movement from : along a feasible direction cannot in- 
crease the value of the likelihood function. Bazaraa and Shetty [9] and Avriel [2] give 
detailed discussions of these constraint qualification conditions in their various forms. 
As a final note, these conditions are automatically satisfied for linear constraints 
regardless of the form of the objective function. 

2. PROOF OF THEOREM 4.2 

The full rank of H(,B0) assumption implies that the sets C and C* can be approxi- 
mated by positively homogeneous sets (in our case cones) at (30 in the sense given in 
Chernoff [11, Definition 2]. The cone approximating C at (0 is T(/?) and the one 
approximating C* at (30 is T*(f0). Both of these approximating cones are the re- 
spective cones of tangents at (0 defined in Sections 4 and 5. 

Throughout what follows we utilize the results of (4.4) which imply that the locally 
least favorable value of /3? E K, (or equivalently, b in (4.4)) for an asymptotically 
exact size test of our null hypothesis is (0 (or equivalently, b = 0). Note that there 
may be other values of b * 0 which yield the same least favorable asymptotic distri- 
bution as b = 0 because the favorable value of b must only satisfy H((3) b = 0. 
Conditional of this locally least favorable value of (3T, our proof of the asymptotic 
null distribution follows that of Theorem 1 from [11]. Recall that 

n1/2(_- (0) _ n12((00)-1S(0), (A.1) 

where S((0) n-laL((30)/a(. From Equation (3.1) for ( and Equation (3.5), we 
have the following: 

L(fl) - L((0) + (3 - (30)'I((3)(fl - (0) (A.2) 

Utilizing (A.1) we obtain: 

L(f3) L((30) + - S((30)'I(30)'rS((0). (A.3) 
2 

Let( = I((0)f1S((30) + (0 + -1n, with iin = O(n'-12). Then we have: 

L(() L((30) + - S((30)'I((3 -IS((3) 2 1n30)1 (A.4) 
2 oomolo 

2n 0)n 

Subtracting Equation (A.4) from (A.3) and by an application of Lemma 1 of [111], 
with the origin and 0 in his statement of the lemma equal to (0 and C in our nota- 
tion, we have: 

LR 2[L() -L(S)] n[ min qn<I( 0)-n ] (A.5) 
3CeKn 
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Recall that for sufficiently large n, Kn can be approximated by T(f3) at /3. Given 
the definition of 7,1 

LR n[ minm 77nI(f3J)7n] 
Ce-T(O ) 

= n[ min ((/ -30) - I(/0)-'S(/0))I(/30) ((,3 - 0) - -I 
de T((3?) 

(A.6) 

Define A _ (,B - /). The cone T(/0) becomes T(30) = [AIH(/3)A 2 0, A E 
RKJ. Because T(30) is positively homogenous we have: 

LR n[ min (A - I(O?)-'S(O?))'I(O?)(A - I(O?)-0S(/0))] 
AcT(f30) 

= [ min (A - n '2I(/30)-IS(/0))'I(00)(A - n'12I(00)-1S(00))] (A.7) 
ACT(3 ) 

By Assumption 7, n'X2I(30)-'S(O0) is asymptotically N(O,I(/3)-') under /3 = ,B0. 
This implies that the distribution of our test statistics for the purposes of testing our 
local null hypothesis is the same as the distribution of 

LR*= min (A-A) 'I( A0) (A-A ) (A.8) 
ACT(/3) 

under the assumption that A - N(O,I(O?)-'). This statistic is a likelihood ratio 
statistic for the following testing problem in terms of A and A: 

H: H(/3)A ? 0 versus K: A E RK. (A.9) 

Applying the results of our Theorem 4.1 and noting that H(,B?)A - N(0,H(30)* 
I(O?)-'H(O?)'), we find that the statistic (A.9) has the following distribution: 

p 

pro, (LR* 2 c) = E pr(Xk 2? c)w(P,P - k,I) 
k=O 

where fl = [H(/30)I(/3)-1H(/3)']. This is the asymptotic distribution claimed in 
Theorem 4.2 for our three test statistics. The results of Theorem 4.2 obtain because 
LR* _ LR. U 

If we were not interested in the null distribution for the locally least favorable value 
and instead only required /3 E N6, (/30) for all n, we would be in the domain of the 
results of Feder [15]. In this case, our proof of the asymptotic distribution of the test 
statistics would follow the proof of [15, Theorem 1, Case 1]. Following Feder's logic, 
the asymptotic distribution of our test statistics is the same as the distribution of 
LR* in (A.8) (the likelihood ratio statistic for (A.9)) under the assumption that 
A - N(A,I(/0)-'), where A = lim n012(/32 - /30) In [44] this distribution was 

n -o 

shown to be a complicated weighted sum of noncentral chi-squared distributions with 
noncentrality parameters depending on A and exactly which elements of A, the 
optimal value of (A.8), are positive. In addition, the weights functions will now 
depend on A as well as H(/0)I-H(/30)'. In brief, with the exception of low dimen- 
sion problems, this distribution is extremely difficult to calculate. 
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3. GLOBAL MONOTONICITY OF ASYMPTOTIC POWER FUNCTION 

We now turn to the global monotonicity of the power function for a global inequality 
constraints test. As discussed in the paper and in [42], for this general testing prob- 
lem, there is, in general, no way to establish the least favorable value of ,3. We can 
only show that it must be in the set CE = {xI h (x) = 0, x E RKI. Wolak [42] also 
showed that the method used to prove Lemma 8.2 in [32], contrary to the claim in 
[26], cannot be used to establish this global monotonicity property of the power func- 
tion. In Perlman's notation, the condition that E not vary with A does not hold in 
this case. The matrix H(/00)I(0f)-'H(0D)' is functionally dependent on the value 
assumed for / so that an alternative route must be found to establish this monoto- 
nicity result. 

Although a rigorous proof of this result is possible, it is very tedious. Moreover, 
the intuition behind the result is quite simple. For the sake of brevity, we concentrate 
on conveying this intuition. Rothenberg [34] dealt with estimation under inequality 
restrictions in the ML model and the impact of imposing these restrictions on the 
lower bound for the asymptotic covariance matrix of the parameter vector. His results 
[34, p. 50] state that as long as the restricted parameter space has full dimension, as 
is the case for inequality constraints, the asymptotic covariance matrix of the re- 
stricted estimator is the same as the unrestricted estimator. This argument is valid for 
all parameter values in the interior of the restricted parameter set. For our purposes, 
this implies that all of our test statistics will converge in probability to zero for val- 
ues of / in the interior of C (all of the inequalities are satisfied as strict inequalities), 
because the probability of the event { /3 h() > 0? converges to one as n -x oc. We 
can also rule out values of /3 such that hi($) = 0 for some i and hi($) > 0 for that 
rest of the elements of h (/) by similar logic. Let H denote the set of i such that 
hi (/) > 0. In this case, the probability of the event t / I hi (A) > 0, i E HI converges 
to one as n -* 00, so that the part of our statistics corresponding to these elements of 
h (/) will converge in probability to zero. Therefore, the value of / which maximizes 
the large sample probability that our statistics are greater that any positive constant 
must be from the set CE, where all of the inequalities in h (/) > 0 are satisfied as 
equalities. However, as discussed in the paper and in [42], what value of / from CE 
is least favorable under the null hypothesis cannot in general be determined. Wolak 
[42] discusses these issues. 
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