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Abstract
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ums and enrollment. We introduce simple dynamics into a standard model of insur-
ance under adverse selection to show that such “initial conditions” can indeed matter.
When firms are price-takers, the market can converge to a Pareto-inferior “bad” equi-
librium if there are at least three equilibria, which we suggest has empirical support.
Strategic pricing eliminates Pareto dominated equilibria but requires non-localized
common knowledge of preference and risk distributions. Changing the fine on non-
participants from a fixed amount to a fraction of equilibrium prices increases the range
of initial conditions consistent with reaching the “good” equilibrium while reducing
the “badness” of the bad equilibrium — all without increasing the fine value in the
good equilibrium. Allowing insurers to quickly change prices can encourage them
to experiment with strategic pricing if market fundamentals are not perfectly known,
increasing the chance of reaching the good equilibrium independently from initial
conditions.
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1 Introduction

The Patient Protection and Affordable Care Act (“ACA” for short) limits the degree to
which insurers can price discriminate based on age and preexisting conditions. Enrolling
healthier people, especially younger individuals, is, therefore, widely regarded as impor-
tant for avoiding high premiums. The government aims for at least 40 percent of enrollees
to be between the ages 18 and 35.

The ACA rollout, however, contains initial conditions that may have discouraged
healthy individuals from enrolling. First, there were several issues with the main website
at launch.1 Second, to prevent adverse selection, the ACA levies a fine (the “shared re-
sponsibility penalty”) on individuals who do not enroll. But the size of that fine is quite
small in 2014, equal to the greater of $95 or 1% of income, even though increasing in fu-
ture years. Third, because some households on the individual health insurance market
lost their coverage, the government announced on November 14, 2013 that it is allowing
individual state insurance commissioners to extend canceled policies by one year.

A potential counterbalancing effect is the fact that, if the initial enrollment deadline is
missed, subsequent enrollment is delayed until the next “open enrollment season” even
when a person gets sick. However, this effect is weakened during the initial year of the
ACA implementation since open enrollment occurs twice in 2014, roughly six months
apart, in order to make its timing consistent with Medicare’s open enrollment season in
future years.2

Numerous media outlets have focused on the importance of getting younger people
to enroll in order to avoid higher prices in the future. Interestingly, this discussion has
been based on the standard terminology from the textbook treatment of adverse selection
going back to Akerlof (1970). For example, remarking on the problems related to the
website, The Economist (November 23, 2013) put it this way:

Insurers have set their premiums on the assumption that lots of young, healthy
people would be compelled to buy their policies. But if it takes dozens of at-
tempts to sign up, the people who do so will be disproportionately the sick
and desperate. Insurers could be stuck with a far more expensive pool of cus-
tomers than they were expecting, and could have no choice but to raise prices

1Many young shoppers with new employers also have to separately submit payroll stubs, re-confirm
their health exchange status at a later time, and then contact the insurer to make payment. These process
breaks may reduce conversions as well, especially for consumers who are not strongly attached to the
outcome.

2For 2014 only, there will effectively be two open enrollment periods, the first one from October 1, 2013
- March 31, 2014 and the second one from October 15 - December 7, 2014 to coincide with Medicare open
enrollment. In future years, enrollments will occur once per year, coinciding with the Medicare dates.
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next year. That would make Obamacare even less attractive to the young “in-
vincibles” it needs to stay afloat. (p. 15)

Similarly, commenting on allowing individual state insurance commissioners to ex-
tend canceled policies, Bloomberg (December 20, 2013) reports that “[i]nsurers said the
exemptions may keep younger, healthier people from buying new coverage through Oba-
macare, a demographic that is needed to bring balance to the new government-run insur-
ance marketplaces.” Or, as the The Economist (November 23, 2013) wrote: “A bigger risk
is that the ‘fix’ harms the rest of Obamacare. The insurance lobby points out that Mr
Obama’s plan will dissuade healthy people from buying more generous, costly coverage
on the exchanges. This will leave insurers with a more sickly pool than they expected.
That could drive up prices for 2015.”

However, the textbook theory of insurance unraveling is not specified in terms of ini-
tial conditions but as the equilibrium of a static system of insurance cost and demand
equations across risk types. Moreover, most of the insurance literature has implicitly fo-
cused on either linear demand and cost curves (see e.g. Cutler and Reber, 1998, Einav and
Finkelstein, 2011, Hackmann et al., 2013) or strategic insurers (Einav et al., 2010), both of
which give rise to a unique equilibrium that is reached no matter which initial conditions
we start from.3 That equilibrium emits a degree of risk pooling ranging from full pooling
to no pooling (“unraveling”), or something in between (where only some of the lower
risk types drop out of the market), but there is not much role for initial conditions in
affecting the eventual outcome. In the context of the ACA, the standard textbook model
suggests that either the policy is destined to be “successful” (i.e., it pools risk across many
risk types) or it is destined to “fail” (it does not successfully pool risk across many types).
For example, Handel et al. (2013) analyze a model of the ACA health exchanges with a
unique equilibrium and conclude that it may eventually involve limited degrees of risk
pooling. So was the media frenzy and the concern by policymakers about the ACA’s ini-
tial conditions much to do about nothing? Or, is it indeed possible that initial conditions
could actually matter?

In this paper, we add simple dynamics to the textbook model of competitive insurance
markets under adverse selection, building upon Akerlof (1970), Wilson (1977, 1980) and
the recent work of Einav et al. (2010) and Einav and Finkelstein (2011), but without as-
suming a shape for cost and demand curves. We show that initial conditions can indeed
matter for the eventual outcome if (i) insurers are competitive price-takers, and if (ii)
there exist at least three competitive equilibria. In the case of exactly three equilibria, one

3See also Mahoney and Weyl (2013) who consider the interaction between market power and selection
in a model with a unique equilibrium.
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equilibrium is unstable and other two are stable. The “good” stable equilibrium provides
more coverage at a lower price relative (in fact, is Pareto superior) to the “bad” stable
equilibrium. While some of the earlier insurance literature, including Wilson (1980), has
pointed out the potential for multiple equilibria, we believe that we are the first to provide
conditions that explicitly distinguish between stable and unstable equilibria. For policy
purposes, only stable equilibria matter. For example, we show that if a model only has
two equilibria, then only one of them can be stable, and initial conditions do not matter.

Using data on average costs from the Medical Expenditure Panel Survey, we then
provide a simple calibration of insurance demand that suggests that the presence of
three competitive equilibria is, in fact, consistent with moderate levels of risk aversion.
The reason is that medical expenditures tend to be fairly concentrated within the pre-
Medicare population, thereby producing very non-linear willingness-to-pay and average
cost curves. Multiple crossings, therefore, may emerge naturally.

We also find that the functional form of the fine, and not just its size, plays a poten-
tially important role in the presence of multiple equilibria. The ACA uses an “absolute”
fine, which, as noted earlier, is equal to the greater of 1% of income or $95 in 2014, grow-
ing by pre-determined amounts over the subsequent two years.4 In contrast, the Mas-
sachusetts health care reform law, enacted in 2006, levied a “relative” fine equal to 50% of
the smallest yearly premium for qualified plans available in the market.5 The “relative”
fine, therefore, effectively grows with the amount of adverse selection. We show that the
relative fine increases the likelihood of reaching the good equilibrium, even when the
absolute and relative fines are normalized to be equal in value at the point of the good
equilibrium. Moreover, even if the bad equilibrium is reached under the relative fine, its
“badness” is strictly less than under the absolute fine. Put differently, a re-construction
of the fine toward a relative basis is more likely to expand coverage (achieve the good
equilibrium) while reducing the badness of the worst outcome, all without costing non-
insured consumers anything more in the desired, good equilibrium with a high number
of individuals covered at a low premium.6

However, if firms set premiums strategically in a Nash equilibrium and have common
knowledge (about the distribution of risk types and individual attributes like preferences,
loss amounts, and wealth), then the popular media concerns about the system unraveling

4In 2015, the fine grows to greater of 2% of income or $325; by 2015, it is the greater of 2.5% of income or
$695. Thereafter, the minimum dollar penalty grows with the general inflation level.

5This fine has since been updated to be consistent with the ACA requirements.
6Hackmann et al. (2013) compute the optimal absolute level of the fine in a model calibrated to the Mas-

sachusetts health exchanges. However, their model is static and assumes linear demand and cost curves,
thus excluding the possibility of multiple equilibria and any difference between absolute and relative fines.
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over time because of a bad first year are without merit: only a single equilibrium exists in
this case (see e.g. Einav et al., 2010) and the market converges to it independently from
initial conditions. In particular, if premiums were set at a high value, consistent with a
Pareto dominated equilibrium under price-taking, then a profitable deviation would exist
for any insurer that lowers its premium.

The required assumption of perfect information about the full set of fundamentals
of the market, though, may be quite strong in this context. Whereas perfect competi-
tion only requires local knowledge of the demand curve, strategic pricing requires global
knowledge. Experimenting with prices to discover market fundamentals could be quite
expensive in the strategic setting, especially if insurers are unable to quickly adjust prices
in response to pricing mistakes. In practice, ACA prices are legally rigid in two ways.
First, ACA premiums can be adjusted infrequently, typically to coincide with the annual
“open enrollment” period. Second, premium increases must be justified under existing
laws in many states and now at the federal level.

In fact, in the numerous media articles discussing the importance of the initial health
mix for future prices, we could not find evidence that suggested that an insufficient mix of
younger enrollees might actually lead insurers to reduce premiums, in order to improve
the risk pool, compatible with strategic pricing. Consistently, Cutler and Reber (1998)
Monheit et al. (2004) and Clemens (2014) provide evidence of repeated marginal price
changes that suggest that insurers do not a priori know the entire shape of the demand
and cost curves in the market and locally adjust premiums in response to profits or losses
they experience.

In sum, we characterize situations in which initial conditions could cause the health
exchanges to converge to a bad equilibrium, even if the exchanges are well designed rel-
ative to the good equilibrium. We provide some evidence for the potential of multiple
equilibria in this market. Changing the construction of the fine from an absolute form to
a relative basis widens the range of initial conditions under which the good equilibrium
eventually emerges while reducing the badness of the bad equilibrium. However, equilib-
rium multiplicity may persist. Reducing the legal frictions to price adjustments improves
the chances that the good equilibrium emerges by incentivizing insurers to experiment
with lower prices when the distribution of risk types and other market fundamentals are
not well known.

The rest of this paper is organized as follows. Section 2 presents a simple insurance
model within the price-taking setting; extensions of this model are presented in Ap-
pendix B. Section 3 generalizes this price-taking model to a dynamic setting and demon-
strates how initial conditions can matter when multiple equilibria exist. This section also
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presents some quantitative evidence about the potential for multiple equilibria as well as
examples of pricing dynamics from some previous efforts by individual states to reform
their health insurance systems. Section 4 discusses the important role of the construction
of the fine that is levied on consumers who do not purchase health insurance. Section 5
considers the setting where insurers set premiums strategically. Section 6 concludes.

2 Model with Price-Taking Insurers

For the sake of expositional simplicity, we start by considering a simple insurance model
that incorporates many of the key features highlighted in Akerlof (1970), Wilson (1980),
Einav et al. (2010) and Einav and Finkelstein (2011). Our most parsimonious model
assumes a continuum of risk types, that risk is the only source of consumer heterogeneity,
and losses are binary. In Appendix B, we demonstrate that our key results extend to a
model setting with discrete risk types, richer forms of heterogeneity and multiple loss
sizes.

2.1 Consumers

A unit measure of consumers have wealth w > 0 and face a potential loss of size 0 < l < w
in the presence of limited liability. Consumers only differ in the probability p 2 [0, 1]
of the loss occurring, which is distributed throughout the population by the continuous
cumulative distribution function H(p) with support [0, 1].7 Let the random variable P be
H-distributed, and denote a realization of P by p. Agents are risk-averse with a concave
Bernoulli utility function u(c) over consumption, so the expected utility of type p is given
by

pu(w − l) + (1 − p)u(w)

when there is no insurance.
We assume that individuals can choose from exactly two available insurance contracts

that differ exogenously in how much of the loss l they cover. Following Einav et al.
(2010), and without loss of generality, we normalize the low coverage contract to be no
insurance at a zero premium, and the high coverage contract to be full insurance at some
endogenous premium p. Abstracting from moral hazard, we take l and each individual’s

7The full support assumption can be viewed as a limiting case where, as in Hendren (2012), even the
most extreme risk types, for whom the loss never or always occurs, exist with arbitrarily small but positive
density. None of our substantive results depend on this assumption. Appendix B relaxes this and other
assumptions, as noted earlier.
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risk p as exogenous and, therefore, independent of the insurance choice. The demand for
insurance, therefore, is only a function of the price p.

The assumption of fixed coverage levels places our analysis in the spirit of Akerlof
(1970) rather than Rothschild and Stiglitz (1976), who endogenize coverage levels as
well.8 As discussed in Einav et al. (2010) and Einav and Finkelstein (2011), this assump-
tion is a reasonable characterization of many insurance markets. It becomes an even more
appropriate assumption for the ACA health exchanges which place regulatory bounds on
minimum coverage, despite allowing for a range of plans that differ in copayments made
by consumers (see Handel et al., 2013, for a model of insurance markets with two fixed
(non-zero) coverage levels, covering 90% and 60% of an individual’s cost, respectively).
This modeling decision is also most natural to analyze one of the main policy interven-
tions of the ACA, namely the penalty for not having insurance, which affects the demand
for health insurance on the extensive margin and which we consider in Section 4.

2.2 Insurers

There are many identical, risk-neutral insurers that maximize their respective expected
profits. In this section, we assume that insurers act as price-takers, as in Akerlof (1970).
In Section 5, we demonstrate how the results change when insurers set premiums strate-
gically in a model of Bertrand competition.

We assume throughout that an individual’s risk type p is private information, so in-
surers cannot offer different premiums to different individuals. Even if insurers could ob-
serve risk types, the ACA does not permit pricing based on pre-existing conditions. One
can, therefore, think of our analysis as applying to a set of individuals who are otherwise
identical in terms of characteristics that insurers are allowed to price, such as smoking
status.

2.3 Competitive Equilibria

The following definition of a competitive equilibrium is consistent with the informational
assumptions outlined above:

Definition 1. With unobservable risk types p, a competitive equilibrium is a premium p⇤ and a
critical type p⇤ such that

u(w − p⇤) ≥ pu(w − l) + (1 − p)u(w) 8p ≥ p⇤, (1)

8See e.g. Netzer and Scheuer (2014) for a recent treatment.
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u(w − p⇤) < pu(w − l) + (1 − p)u(w) 8p < p⇤ (2)

and
(1 − H(p⇤))p⇤ =

Z 1

p⇤
pdH(p)l. (3)

The first two conditions characterize consumers’ demand for insurance, given the
equilibrium premium p⇤. At that premium, individuals of risk type p ≥ p⇤ are just
indifferent or strictly prefer to buy insurance, whereas all other types p < p⇤ prefer to
stay uninsured. The third condition then requires insurers to make zero profits at the pol-
icy premium p⇤ on the pool of risk types who demand insurance when the premium is
p⇤, which includes all types p ≥ p⇤. In particular, the left-hand side of (3) equals the total
premium revenue collected from these agents while the right-hand side is equal to their
expected losses. This zero profit condition can be simply rewritten as p⇤ = E[P|P ≥ p⇤]l,
i.e. the equilibrium premium must equal the expected loss of the pool of insurance buyers
induced to buy the policy.

To characterize the set of competitive equilibria, a graphical representation following
Einav and Finkelstein (2011) is useful. For any critical buyer p 2 [0, 1], the average cost of
insuring everyone with risk equal to or greater than p is

G(p) ⌘ E[P|P ≥ p]l. (4)

Our assumptions ensure that G(p) is continuous, increasing in p, and satisfies G(0) =

E[P]l and G(1) = l. In words, when p = 0 is the critical type, the average cost of the
entire population is just the unconditional expected loss. On the other hand, with critical
type p = 1, their losses are certain, and so their expected loss is simply l.

On the demand side, we can define the willingness to pay W(p) for insurance of each
type p implicitly by solving

u(w − W) ⌘ pu(w − l) + (1 − p)u(w). (5)

Since the right-hand side is decreasing in p, there is a unique solution W(p) for each p,
which is also continuous, increasing in p, and satisfies W(0) = 0, W(1) = l.9 In words,
the lowest risk type p = 0 never experiences a loss and, therefore, has no willingness
to pay for insurance. In contrast, the highest risk type p = 1 experiences the loss l for
sure and is, therefore, willing to pay a premium up to l. We can also interpret W(p) as an

9As is standard, we are assuming that the loss size l does not exceed available wealth w. As discussed
more below in our calibration exercise, in the presence of limited liability, it is possible for actual losses to
exceed wealth for some types, and so W(p) is only weakly increasing in p and W(1) < l.
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Figure 1: Unique Competitive Equilibrium with Complete Unraveling
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inverse demand curve: with a premium p = W(p), insurance will demanded by all types
higher than p (so that the inverse function W−1(p) identifies the marginal buyer when
the premium is p).

A competitive equilibrium, therefore, is any p⇤ such that G(p⇤) = W(p⇤), so that the
average cost and willingness to pay curves intersect. For the remainder of the paper,
we confine attention to the generic case where all intersections are proper intersections
rather than tangency points of the two curves. A simple illustration is provided in Figure
1. Note that, by risk aversion, W(p) ≥ pl, so the inverse demand curve must always lie
above the diagonal line p = pl. Obviously, we have G(1) = W(1), so there always exists a
competitive equilibrium. Here, it is such that nobody buys insurance except for the very
highest risk types with p = 1, who are just indifferent between buying or not buying
when faced with the fair premium p⇤ = l for this pool. In the situation depicted in Figure
1, this outcome is, in fact, the only equilibrium, corresponding to the case of complete
unraveling emphasized in Akerlof (1970). Specifically, for any p < 1, the average cost
curve is above the demand curve, so insurers would make losses at any premium p < l.

The fact that condition W(1) = l = G(1) holds in this baseline model is not required
for an equilibrium to always exist. Below, we consider the role of limited liability where
the willingness to pay at the very highest risk (p = 1) is lower than the average cost.
There always exist a “corner” equilibrium where p = G(1) and nobody buys insurance.
Conversely, as in the model extension in the Appendix, if we had W(1) > G(1), then there
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Figure 2: Multiple Competitive Equilibria
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would always exist an (interior) equilibrium, due to the continuity of G and W and the
fact that W(0) < G(0).

3 Equilibrium Multiplicity and Initial Conditions

Since most of the insurance literature has implicitly focused on either linear demand or
cost curves (see, e.g., Cutler and Reber, 1998, and Einav and Finkelstein, 2011) or strate-
gic insurers (see Section 5 and Einav et al., 2010), the possibility of multiple competitive
equilibria has not received much attention in this context.10 As a result, there is no real
role for the type of “initial conditions” discussed in Section 1.

Equilibrium multiplicity, however, can arise naturally in our framework because the
average cost and demand curves are upward sloping, but their shapes are otherwise unre-
stricted. A simple example is depicted in Figure 3. There are three competitive equilibria
in total, namely the one with unraveling located at p⇤ = 1 as well as two additional
equilibria with critical buyers p⇤

1 and p⇤
2 .

As is well known in other contexts (see e.g. Wilson, 1980, for a lemons goods market
and Mas-Colell et al., 1995, for a labor market model with unobservable productivities),

10See also Hackmann et al. (2013), Handel et al. (2013) and Mahoney and Weyl (2013) for recent studies
of health exchanges in models with a unique equilibrium.
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whenever there are multiple equilibria, they are Pareto ranked: The equilibrium at p⇤
1 is

Pareto better than the equilibrium at p⇤
2 , which is Pareto better than the equilibrium with

complete unraveling at p⇤ = 1. For example, compare p⇤
1 against p⇤

2 . In the equilibrium
at p⇤

1 , all types p ≥ p⇤
2 are better off than in the equilibrium at p⇤

2 because they pay
a lower premium for their insurance (i.e., G(p⇤

1) < G(p⇤
2)). Moreover, the types p 2

[p⇤
1 , p⇤

2) prefer to buy insurance at p⇤
1 rather than staying with their endowment, which

would be their choice at p⇤
2 . So, they are also better off. The types p < p⇤

1 are indifferent
because they do not buy insurance in either case. Moreover, insurers earn zero profits in
all equilibria.

Indeed, the “good” equilibrium p⇤
1 — which offers the lowest premium and entices

the most consumers to buy insurance — Pareto dominates all the others.11 The other
equilibria arise because of a coordination failure: When only a few individuals purchase
insurance, they will be the highest risk types, and so the premium that breaks even for
this pool will also be high. At the same time, only the riskiest types find it worthwhile to
sign up for insurance because the premium is so high.

3.1 Introducing Dynamics

The previous literature examining multiple equilibria has not explicitly distinguished be-
tween stable and unstable equilibria. For policy purposes, only stable equilibria are ma-
terial. Moreover, initial conditions do not matter with multiple equilibria unless at least
two are stable. As we now show, generating two stable equilibria requires having at least
three equilibria in total. Initial conditions do not matter if there are only two equilibria.

To study the circumstances under which initial conditions could affect which compet-
itive equilibrium is reached, a dynamic version of this static model is required. The most
straightforward way to introduce dynamics is to assume that, in each period, premiums
reflect the average cost of the pool of individuals who purchase insurance, thereby allow-
ing insurers to always break even. But, given this premium, consumers decide whether
to enroll for insurance the next period. Cutler and Reber (1998), Monheit et al. (2004) and
Clemens (2014) provide evidence for this pattern of price and demand adjustments.

These dynamics can be conveniently illustrated graphically using the same type of
diagram as before. Recall that, for any critical type pt in period t, we can read the pre-
mium from the average cost curve by setting pt = G(pt). The consumers’ reaction in
t + 1, therefore, can then be read off the demand curve to obtain a new marginal buyer

11In fact, the good equilibrium is constrained Pareto efficient under the restriction to full insurance con-
tracts.
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Figure 3: Dynamics and Equilibrium Stability
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pt+1 = W−1(pt), and so forth. This leads to the recursion pt+1 = W−1(G(pt)) for the
evolution of marginal buyers, as illustrated in Figure 3. It immediately implies that p

increases (i.e. there is unraveling where the premium increases and fewer consumers
sign up for insurance) whenever G(p) > W(p) while p falls otherwise (more consumers
demand insurance, so the premium falls).

We can see that, of the three competitive equilibria here, only two are stable, whereas
the intermediate one with the marginal buyer p⇤

2 is unstable. Which competitive equilib-
rium is eventually reached depends on the initial value of p, as formalized in the follow-
ing proposition:

Proposition 1. (i) Initial conditions p 2 [0, 1) matter for which competitive equilibrium is
reached only if there exist at least three competitive equilibria.
(ii) When there are exactly three equilibria with critical types p⇤

1 < p⇤
2 < 1, the intermediate

equilibrium with marginal buyer p⇤
2 is generically unstable while the other two are stable.

(iii) In this case, p⇤
2 is the critical threshold for initial conditions: for any initial p > p⇤

2 , there
is unraveling to the “bad” stable equilibrium where p⇤ = 1. For any p < p⇤

2 , the “good” stable
equilibrium with critical type p⇤

1 is reached.

Proof. See Appendix.

While the possibility of equilibrium multiplicity per se is not surprising in this model,
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Figure 4: Globally Stable Equilibrium with Two Equilibria
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Proposition 1 formalizes the non-obvious result that at least three competitive equilibria
are required to obtain at least two stable equilibria, which are the only type of equilibria
that are relevant for policy purposes. Figure 4 illustrates why the existence of just two
equilibria is not enough for initial conditions to matter. In this case, the best equilibrium
is always the (unique) globally stable equilibrium and so convergence to the bad equi-
librium, which is unstable, cannot occur. As discussed earlier, Proposition 1 (i) does not
depend on the fact that the condition W(1) = G(1) implies that p = 1 is always an equi-
librium. In particular, we would have a “corner” equilibrium at p = 1 if W(1) < G(1),
or an interior equilibrium when W(1) > G(1). Instead, at least one intermediate, unstable
equilibrium is always required in order to produce two stable equilibria and, hence, for
initial conditions to matter.

With exactly three equilibria as depicted in Figure 3, unraveling occurs starting from
initial conditions to the left of p⇤

1 (a partial unraveling) and to the right of p⇤
2 (a full un-

raveling), whereas the dynamics imply falling premiums and more individuals enrolling
otherwise. Evidence for such dynamics have been documented in states which, before the
ACA, placed restrictions on adjusting premiums based on age and preexisting conditions.
Writing about the New Jersey Individual Health Coverage Program (IHCP) the began in
1993, Monheit et al. (2004) found dynamics similar to those shown in Figure 3 for values
of p > p⇤

2 (or p < p⇤
1). In particular, between the end of 1995 and the end of 2001, enroll-
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ment fell from 186,130 individuals to just 84,968, with premiums rising by 200% to 300%.
Three other states — Kentucky, New York and Vermont — tried health care reforms with
similar consequences (Cohn, 2012). Clemens (2014) provides a comprehensive analysis
of the effect of the introduction of community rating regulations in these states and finds
that the fraction of uninsured gradually increased by around 70%, from 18% to 31%, in the
three years following the reforms. Cutler and Reber (1998) provide evidence for gradual
unraveling of high coverage plans in a setting with employer provided insurance.

As widely reported in the popular media reports, the initial conditions described in
Section 1 would quite reasonably discourage lower-risk consumers from enrolling in the
health exchanges relative to higher-risk consumers. In the context of our model in this
section, we would expect consumers with large values of p to be the first to enroll, po-
tentially trapping the system in the bad stable equilibrium. Of course, by Proposition 1,
these mechanics only matter if multiple equilibria actually exist in the first place, a topic
to which we now turn.

3.2 A Calibration based on the Medical Expenditure Panel Survey

To examine the potential for the type of multiple equilibria shown in Figure 3, we now
present a simple quantification of the model. This subsection provides calculations cor-
responding to our model developed above, where household types differ in their prob-
ability of an identical loss. Appendix B presents a calibration based on the case where
household types face the same loss probability across different loss amounts. The key
lessons are the same in both sets of calculations. Moreover, the generalization provided
in Appendix B demonstrates that similar quantitative exercises could be performed al-
lowing for richer forms of heterogeneity.

We use data from the Medical Expenditure Panel Survey (MEPS) for the pre-Medicare
population (ages 18 - 64) provided to us by Cohen and Uberoi (2013) to calibrate the av-
erage cost (AC) and demand curves.12 This data allows us to construct a distribution
of health expenditures per person. Figure 5 shows the average cost curve as well as the
willingness-to-pay curves at different levels of risk aversion. The horizontal axis corre-
sponds to the top X% percent of spenders, where X (the “rank”) is the shown value.13

12We are grateful to both of these authors for providing some additional data related to the pre-Medicare
(ages 18 - 64) population that are not shown in their paper.

13Notice that the horizontal axis in Figure 5, denoted in X%, has the same ordering as the horizontal
axis in the previous figures, denoted in p. Rightward movements in both imply greater risk. However,
the support itself is now bounded above zero. In particular, the left-most point of 100% in Figure 5 now
corresponds to a willingness to pay that is greater than zero since the average person in the bottom 50%
of spenders now faces a chance of loss greater than zero. In contrast, in the previous figures, the left-most
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The vertical axis is denominated in dollars. The average cost curve simply sorts medical
spenders by percentile. For example, the mean health expenditure per person in the top
100% of the population (i.e., the entire population mean) is equal to $3,844, increasing to
$7,476 for population in the top 50%, and climbing to $38,147 for the top 5%.

Of course, an important question is how much of this (ex-post) heterogeneity corre-
sponds to (ex-ante) private information of individuals. On one extreme, the cost distribu-
tion could entirely result from ex-post risk, where all individuals have the same expected
costs and, therefore, no private information. In this case, the AC curve would be flat and
there would be no adverse selection. On the other extreme, all of the distribution could be
driven by heterogeneous individuals with private information about their (deterministic)
health expenditures. Instead, we take an intermediate stance that is closest to our formal
model. In particular, we distinguish quantiles including the top X% of spenders, with
X 2 {5, 10, 20, 25, 30, 50, 100} and assume that individuals only have private information
about which of these bins they belong to.14

We calibrate the marginal willingness to pay for insurance for each of the shown per-
centiles as follows. First, we assume throughout a constant relative risk aversion utility
function u(c) = c1−a/(1 − a), where a is the level of risk aversion. Second, for this cali-
bration, the constant loss value l is derived from equation (4) by using the average cost of
the top 5% of the population from the MEPS and setting with p5% = 1 for them. Third,
given this fixed loss value, the (marginal) value of p is then calculated recursively (from
the top) at each value of X% by solving equation (4) for p.15 (Hence, the value of p in-
creases as the shown value of X% decreases.) Finally, for a given value of a, the demand
curve is then calculated by solving equation (5) for the value of W for each value of p, and
hence X%. The value of wealth w in equation (5) is initially set equal to the median net
worth found in the 2010 Survey of Consumer Finances (Board of Governors 2012) , which
assumes that the probability of a loss is independent of the household’s wealth.

Consider first the case of a = 3. Notice that the willingness-to-pay curve is always
smaller than the AC curve (i.e., W(X%) < G(X%) except at the top rank (the smallest
shown value of X%) where both curves join). This outcome corresponds to the full un-
raveling case shown previously in Figure 1. Intuitively, at this comparatively small level
of risk aversion, agents with a smaller loss probability p (located at larger values of X%
on the horizontal axis) are willing to forgo insurance, pushing up its average cost, thereby

point of p = 0 corresponded to a person who faced no chance of loss.
14We have performed robustness checks with even fewer bins and similar results.
15For instance, to compute the probability p10% of the loss for the top 10-5% of spenders, we solve

(0.5p10% + 0.5p5%)l = AC10%, where we take the average costs AC10% and l = AC5% from the MEPS
data and set p5% = 1. p20% is then obtained from solving (0.5p20% + 0.25p10% + 0.25p5%)l = AC20%, etc.
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Figure 5: Willingness to Pay and Average Costs: Median Net Worth
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Source: Medical Expenditure Panel Survey (Cohen and Uberoi 2013).
Explanation: Wealth equals net worth (assets less liabilities), including net housing wealth.

leading to unraveling as the value of X% gets smaller. Now, consider the case of a = 5.
In this case, the willingness-to-pay curve intersects the AC curve just once before again
joining the AC curve at the smallest value of X%. Since at the the good equilibrium (close
to the top 50% of spenders), the demand curve intersects the cost curve from below, we
know from Section 3 that it is stable, whereas the equilibrium at the top 5% is unstable.
Starting from any initial condition, the dynamics will bring the market to the stable equi-
librium located at the larger rank, with more than half of the population being covered,
consistent with a comparatively large level of risk aversion.

Finally, consider the in-between case where a = 4. Notice that the willingness-to-pay
and AC curves now intersect at three places, at the shown stable “good” and “bad” equi-
libria and an unstable intermediate equilibrium. Notice that the sharply rising AC curve
as rank X% grows smaller plays a critical role in causing these multiple intersections.
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Figure 6: Willingness to Pay with Median Liquid Assets
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Source: Medical Expenditure Panel Survey (Cohen and Uberoi 2013).
Explanation: Wealth equals liquid assets only.

More generally, multiple equilibria are more likely to be produced as losses become more
concentrated.16 Indeed, health costs are much more concentrated than most other types
of insurable losses. By Proposition 1, initial conditions matter here: if we start from a
situation to the right of the unstable equilibrium (covering somewhere between the top
10 and 20% of the population in terms of spending), the dynamics converge to the worst
equilibrium with only the top 5% covered. Otherwise, we eventually reach the best equi-
librium with the critical quantile between the top 20 and 25%.

To check the robustness of our results to various assumptions, Figure 6 repeats the
same calculations assuming that wealth w is now set equal to the median liquid assets
reported in the 2010 Survey of Consumer Finances. (Hence, the AC curve remains un-
changed.) Liquid assets are a potentially more accurate measure of the relevant amount

16Of course, as cost become more concentrated, the willingness-to-pay W curve must also increase faster
at small values of X% so that W(1) = G(1). But at large values of a, the value of W will rise faster than G,
thereby preventing multiple equilibria.
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of wealth when illiquid assets, mainly housing, cannot be legally confiscated to pay for
medical bills. Because the value of liquid assets is smaller than the median net worth, we
can consider relatively smaller values of a in our comparisons.

The reason why the highest willingness to pay no longer also joins the AC curve at
its highest point is due to limited liability. The calibrated loss amount l now exceeds the
wealth level w, and so the maximum potential loss is capped at w.17 The presence of
limited liability generally enhances the likelihood of equilibrium multiplicity by reducing
the slope of the willingness-to-pay curve in the same neighborhood where the slope of the
AC curve is increasing.

Notice that the smallest value of a, now set equal to 1, produces a willingness-to-pay
curve that is always below the AC curve, corresponding to the case of a single (corner)
equilibrium with full unraveling at 0% (not shown). But we get three equilibria for the
other two values of a. In particular, the largest value of a, now set equal to 3, produces just
one intersection, corresponding to an unstable equilibrium. But this unstable equilibrium
falls in-between two corner stable equilibria: a stable corner equilibrium at 100% where
everyone buys insurance (where the willingness to pay exceeds the average cost of the
entire population) and another stable corner equilibria at 0% (not shown) where nobody
buys insurance. For the in-between value of a, now set equal to 2, we have a stable interior
equilibrium, followed by an unstable equilibrium at a larger value of X%, followed by a
corner stable equilibria at 0% (not shown) where nobody buys insurance.

By focusing on median wealth for all cost quantiles, our estimates, however, have
not accounted for the fact that both the size of wealth and the probability of loss tend
to increase in age. For additional robustness, Figure 7 shows the effect of assuming that
rank now grows linearly in age, where 18-year olds are now effectively located at the
100% mark on the horizontal axis while 64-year olds are located at the 5% mark. We
can now also use the median values of liquid assets at each age from the 2010 Survey of
Consumer Finances. Notice that allowing for this relationship has very little impact on
our results. Relative to Figure 6, the effects of limited liability are now absent because
older people tend to have both more assets and a higher probability of loss.

Appendix B presents additional estimates that relax the assumption that the size of
loss is fixed across different risk types. In particular, the probability of loss is now held
fixed across households, and a risk type is now defined in terms of the heterogenous
size of loss. As before, a low level of risk aversion a leads to unraveling. Moreover, the
in-between level of risk aversion produces multiple stable equilibria. However, unlike

17In the actual simulations, we cap the loss at w less $1,000. Not only does this threshold avoid “almost”
infinite marginal utility states, it roughly corresponds with Medicaid qualifications as well.
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Figure 7: Willingness to Pay with Median Liquid Assets and Risk Increasing by Age
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Source: Medical Expenditure Panel Survey (Cohen and Uberoi 2013).
Explanation: Wealth equals liquid assets only.

before, even large values of risk aversion now produce multiple stable equilibria. Overall,
therefore, the empirical evidence is consistent with the potential for multiple equilibria,
especially for moderate values of risk aversion and when loss sizes are not fixed.

Of course, we view these calibrations as merely a first step towards exploring the pos-
sibility of multiple equilibria in insurance markets. In a more complete exercise, which is
beyond the scope of the current paper, heterogeneity in both risk and risk-aversion could
be accounted for, and both dimensions could be backed out from richer data sources.
Moreover, we have considered data from the entire population aged 18-65 rather than
just the subset of individuals most likely to demand insurance in the ACA health ex-
changes. Finally, our calculations have abstracted from the various fines and subsidies in
place, to which we turn in the next section.

18



4 Mandate Enforcement through Fines

Given the previous experience in the states, the mandate—in reality, the associated fine
that gives the mandate its force—is widely viewed as critical to the success of the ACA. In-
deed, the mandate was the focus of the challenge to the ACA heard by the Supreme Court
in National Federation of Independent Business v. Sebelius. Chandra et al. (2011) present ev-
idence that the phase-in of the mandate in the Massachusetts plan encouraged healthier
consumers to enroll, and Hackmann et al. (2013) estimate the socially optimal level of the
penalty that enforces the mandate in a model with linear cost and demand curves.

In this section, we show that the actual form of the fine, and not just its level, plays
an important role in the presence of equilibrium multiplicity. The ACA imposes an ab-
solute fine — a fixed dollar amount or a percentage of income, whichever is greater —
whereas the Massachusetts reform in 2006 created a relative fine that was a function of
market premium prices. In addition to the fine, the ACA also makes subsidies available
to households with lower income.

We begin by demonstrating how the introduction of an absolute fine f for not having
insurance as well as a subsidy s for having insurance can be captured in our graphical
framework. Of course, neither the fine nor the subsidy affects the average cost curve
G(p). However, it affects the construction of the willingness to pay for insurance, now
denoted as Ŵ(p), through the modified indifference condition

u(w − Ŵ + s) = pu(w − f − l) + (1 − p)u(w − f ). (6)

Notice that the subsidy s and the fine f both shift up the inverse demand curve Ŵ(p), in
fact, in a parallel manner in the case of a subsidy. We now focus on the construction of
the fine f given its greater importance in the recent debate.

Unsurprisingly, an absolute fine can give rise to better equilibria with more individ-
uals insured. In the example shown in Figure 1 where only the complete unraveling
equilibrium exists, shifting up the Ŵ-curve will induce the emergence of equilibria with
a positive mass of individuals getting coverage. In fact, this upward shift could induce
multiple equilibria where previously there was only one. For the example shown in Fig-
ure 3 with three equilibria, Figure 8 illustrates how shifting up the Ŵ-curve can shrink
the range of initial values (p̂⇤

2 , 1] for which unraveling to the bad stable equilibrium p⇤
3

occurs. At the same time, it also shifts both the good stable equilibrium p⇤
1 and the bad

stable equilibrium p⇤
3 to the left and, hence, leads to a greater number of individuals being

covered at a lower premium.
Of course, we can always set the fine to be large enough such that there exists a unique

19



Figure 8: Enforcement of a Mandate through a Fine f
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equilibrium where everyone buys insurance and there is no risk of unraveling. However,
this outcome may be both inefficient and politically challenging. Indeed, the peculiar na-
ture of the fine’s construction under the ACA — namely, its assessment only on tax filers
who are owed a refund — reflects the sensitivity that Congress felt it faced in creating a
fine that causes too much hardship.

A more interesting question is whether there exists another fine mechanism that elim-
inates the possibility of equilibrium multiplicity without imposing a higher fine in the best
equilibrium p⇤

1 . As Figure 8 makes clear, it is actually not necessary to impose a higher fine
everywhere in order to eliminate the bad stable equilibria. A large fine value is only nec-
essary in situations where few individuals enroll for insurance, that is, where the critical
value of p and, hence, the premium are both large.

A relative fine that is tied to the actual equilibrium premium in the market achieves
exactly this outcome. Using the dynamics developed in Section 3, suppose that in each
period t, the fine that must be paid by uninsured consumers is set equal to kpt, where
k > 0 is some constant that can be interpreted as the percentage of the current premium
pt.18 Since pt = G(pt), the resulting willingness to pay for insurance, now denoted as

18In the case of Massachusetts, the corresponding value of k would roughly equal 1/2.
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Figure 9: Relative versus absolute fine with kG(p̂⇤
1) = f
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W̃(p), for each risk level p is then defined implicitly by

u(w − W̃) = pu(w − l − kG(p)) + (1 − p)u(w − kG(p)).19 (7)

The benefit of the relative fine is that the fine value — and, hence, consumers’ demand
for insurance — automatically increase as the market unravels towards a bad stable equi-
librium. This outcome occurs even if we choose k such that kG(p̂⇤

1) = f , so the relative
and the absolute fines take exactly the same value in the best equilibrium p̂⇤

1 . This is il-
lustrated in Figure 9, which shows how the inverse demand curve under the relative fine
W̃(p) is a counter-clockwise rotation at point p̂⇤

1 relative to the inverse demand curve
under the absolute fine Ŵ(p). Proposition 2 formalizes the advantages of a relative fine
compared to an absolute fine with this normalization.

Proposition 2. Let p̂⇤
1 < 1 be the best equilibrium under an absolute fine f > 0, and set the

relative fine such that kG(p̂⇤
1) = f (i.e., equal fine values at the best equilibrium). Then:

(i) for any number N ≥ 1 of equilibria, the worst equilibrium p̃⇤
N under the relative fine is Pareto

better (more coverage at a lower price) than the worst equilibrium under the absolute fine p̂⇤
N, i.e.

p̃⇤
N  p̂⇤

N.

19Notice that, since G(p) is increasing, the right-hand side of (7) is still decreasing in p, and so W̃(p)
remains well-defined and increasing.
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(ii) The best equilibrium under the absolute and relative fine are identical, i.e. p̂⇤
1 = p̃⇤

1 .
(iii) The interval of initial conditions [0, p̃1) from which we converge to the best equilibrium p̃⇤

1

under the relative fine is larger than the range of initial conditions [0, p̂1) from which we converge
to the best equilibrium p̂⇤

1 = p̃⇤
1 under the absolute fine, i.e. p̃1 ≥ p̂1.

Proof. See Appendix.

In sum, a re-construction of the fine toward a relative basis is more likely to expand
coverage, by moving the market to the good stable equilibrium, without costing non-
insured consumers anything more in the good equilibrium. However, even if the bad
stable equilibrium does emerge (which may still be possible under a small enough relative
fine), its “badness” is also reduced (more coverage at a lower price).

It is also worth pointing out that, in the context of this model, introducing a fine for
non-participation (or other forms of enforcing a mandate) can never lead to a Pareto im-
provement. This is because there are always individuals with sufficiently low p who, in
any equilibrium without a fine, prefer to demand no insurance. With a fine in place, they
will either remain uninsured and pay the fine or, if the fine is high enough, buy insurance
at a premium that is higher than their original willingness to pay. In either case, they
will be worse off. Hence, a fine or mandate can increase coverage but not in a Pareto
improving way.20

Even when relaxing the assumption that p has full support on [0, 1], as in Appendix
B (as well as in the model calibrated to the MEPS data considered earlier), a Pareto im-
provement from introducing a fine is possible only in the presence of multiple equilibria,
when the fine induces a shift from a bad equilibrium with low coverage to a good equilib-
rium where in fact everyone gets covered, and everyone being covered is an equilibrium
even without the fine. Only this outcome guarantees that nobody ends up paying the fine
and even the lowest risk types actually prefer buying insurance when everyone does so,
so they are better off compared to the bad equilibrium (see e.g. Figure 12 in Appendix B).
Explicitly accounting for equilibrium multiplicity, therefore, crucially underlies standard
arguments for Pareto improving mandates or fines in the context of adverse selection.

5 Strategic Insurers

So far, we have focused on the notion of competitive equilibrium where insurers act as
price-takers, as in Akerlof (1970). A natural question is whether equilibrium multiplic-

20This argument goes through unaffected when the revenue from the fine is returned lump-sum to all
individuals, or when the fine on non-participants is replaced by a subsidy for participation that is financed
by a lump-sum tax.
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ity and, hence, the role of initial conditions also extend to situations in which insurers
strategically set premiums rather than taking them as given.

Following Einav et al. (2010) in the insurance market and Mas-Colell et al. (1995) in
a labor market setting, suppose there are at least two insurers who set premiums in a
two-stage Bertrand game. In the first stage, insurers simultaneously announce their pre-
miums. In the second stage, individuals decide whether to purchase insurance and, if so,
from which insurer.21 Of course, each consumer’s risk level p is still private information.
But we now assume that there is common knowledge of the distribution H(p), consumer
wealth w, the loss amount l, and the form of utility u(c). Hence, the shapes of G(p) (the
average cost curve) and W(p) (the willingness to pay curve) are common knowledge.

Returning to the setting without any fines, the following proposition, which is easily
adapted from Mas-Colell et al. (1995) and Einav et al. (2010), shows that equilibrium
multiplicity disappears.

Proposition 3. With strategic insurers, the unique subgame perfect equilibrium outcome of the
above two-stage game involves the critical type

p⇤
1 = min {p 2 [0, 1] |W(p) = G(p)} .

In words, when insurers set premiums strategically, only the best competitive equilib-
rium (with the lowest premium and the most people covered) survives. This result holds
even if there is more than one competitive equilibrium, that is, multiple equilibria in the
price-taking model.

Intuitively, consider again the setting shown earlier in Figure 3 with exactly three com-
petitive equilibria. Figure 10 illustrates the mechanics when firms now behave strategi-
cally. Suppose we are in the worst equilibrium with critical type p = 1 and premium
p = l.22 If all insurers set premium p = l, only types p = 1 demand insurance, and the
average cost of this pool is G(1) = l, and so all insurers make zero profits. Hence, this
outcome is a competitive equilibrium in the sense of Definition 1. But it also emits a prof-
itable deviation by any strategic insurer. In particular, suppose that an insurer deviates
and sets a premium p02 < p⇤2. As drawn in Figure 10, this insurer will capture the entire
market with demand from all types p ≥ p0

2 (and observe p0
2 < p⇤

2). Moreover, at p0
2,

the average cost curve is below the demand curve, so G(p0
2) < p02. Hence, offering the

premium p02 will result in strictly positive profits for the deviating insurer corresponding

21As usual, to break a tie (since actual currency denominations are technically a countable set to the penny
level), if multiple insurers announce exactly the same premium levels, individuals then randomize among
them with equal probabilities.

22The same argument could be made about the intermediate equilibrium with p⇤
2 and p⇤2.

23



Figure 10: Equilibrium Uniqueness with Strategic Insurers
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to the dashed area in Figure 10. The only competitive equilibrium from where there is no
such profitable deviation is the good equilibrium with marginal buyer p⇤

1 and the lowest
premium p⇤1.

Strategic premium setting in a framework of Bertrand-like competition may seem like
the more relevant case than price-taking for insurance markets, since many insurers are
not atomistic and do actively set premiums taking into account their competitors’ and
customers’ responses to their actions. However, as e.g. Mas-Colell et al. (1995) empha-
size in the setting of labor markets with adverse selection, the outcome in Proposition
3 relies on the assumption that firms have common knowledge about all market funda-
mentals, including the global shape of the demand and cost curves W and G. In contrast,
in the competitive equilibria with price-taking considered in Sections 2 to 4, insurers only
need to know the average cost of those who buy insurance at the going premium; they
do not need to know anything about the preferences or risk distribution underlying this
equilibrium or have non-localized knowledge away from current conditions.

In the strategic setting, a mistaken attempt at a profitable deviation could lead to sub-
stantial losses. For instance, suppose again we start from the worst equilibrium p⇤ = 1
in Figure 10. If an insurer deviates by offering a marginally lower premium p = l − #,
this will lead to losses since G(p) > W(p) for p close to one. To make profits, a deviating
insurer would have to offer a discretely lower premium p < p⇤2 < l, but also not too low,
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Figure 11: Small and Distant Interval of Profitable Premium Deviations
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since losses would be incurred again if p < p⇤1. In Figure 10, the demand and cost curves
are drawn such that the interval of profitable premium deviations (p⇤1, p⇤2) is still rela-
tively large. However, this need not be the case. Figure 11 depicts market fundamentals
where this interval is very small and far away from the going premium p = l. In this case,
insurers would actually incur losses for large range of premium cuts in (p⇤2, l), and only
make profits if they reduce premiums by a very large (and just the right) amount until
p 2 (p⇤1, p⇤2). In other words, Proposition 3 requires that insurers have precise knowl-
edge about market conditions potentially far away from the current situation. In contrast,
the competitive equilibrium and the dynamics in Section 3 only require knowledge about
local market conditions around the current situation.

Strategic insurers could potentially limit their losses if they could rapidly change
prices to try to discover the global shapes of the willingness-to-pay and average cost
curves. However, as noted in Section 1, transitory losses from pricing experimentation are
magnified by the fact that regulations prevent insurers from changing prices frequently.
Once set, ACA plan premiums are generally viewed as locked until the next open enroll-
ment period (Kaiser 2013) .

Moreover, the ability to sharply increasing premiums after a pricing mistake is chal-
lenging. Under the McCarran-Ferguson Act of 1945, individual states typically regulate
the business of insurance, and most states already require some steps before rates can

25



be increased (National Conference of State Legislatures 2013).23 However, because rules
vary between states, Title I (Subtitle A, Sec. 1003) of the ACA creates a more uniform
standard around rate increases. These rules include requiring states to collect premium
information and determine if plans should be excluded from the health exchange based
on unjustified premium increases.24 If an insurer requests a premium increase above 10%,
a more detailed explanation must be provided and posted on their and the HHS website.
The ACA also makes $250 million available to states to take action against insurers re-
questing unreasonable rate increases. According to the Centers for Medicare and Medi-
caid Services (2010) , “[t]his funding will help assure consumers in every state that any
premium increases requested by their insurance company, regardless of size, is justified.”

In the absence of perfect information about the market structure, insurers, therefore,
may simply prefer local adjustments to premiums in a backward looking manner, as doc-
umented in Cutler and Reber (1998). Such behavior would effectively make them price-
takers again.25 Consumer-protection laws intended to protect consumers from frequent
and large price increases could undermine experimentation and essentially force insurers
into price-taking behavior that includes the potential of getting stuck in a bad equilibrium
with low coverage and high prices.

6 Conclusion

This paper characterizes when the “initial conditions" of a new insurance market — like
a website failure at launch — could have permanent consequences. We show that initial
conditions can be material if (i) insurers are competitive price-takers, and if (ii) there exist
at least three competitive equilibria. In the case of exactly three equilibria, one equilibrium
is unstable while the other two are stable. A “good” stable equilibrium is Pareto superior
— by offering more coverage at a lower price — to a “bad” stable equilibrium. While
some older papers have noted the possibility of multiple equilibria, this paper appears
to be first to formalize the conditions required to have multiple stable equilibria, which
are the only equilibria that are relevant for policy purposes. For example, a model with
just two competitive equilibria has only one stable equilibria, rendering initial conditions

23At least two dozen states require that the insurer receives prior approval from the state insurance com-
missioner or department before increasing health insurance premiums (National Conference of State Leg-
islatures 2013).

24For a few states — Alabama, Louisiana, Missouri, Oklahoma, Texas, and Wyoming — these determi-
nations will be made by the federal government since these states do not have effective review processes in
place.

25See also Rothschild (1974) for the classic model on experimentation to learn about demand conditions.
These two-armed bandit models also have the typical feature that multiple equilibria can arise.
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irrelevant. Three or more equilibria are required to produce two or more stable equilibria.
We provide some suggestive empirical evidence using the Medical Expenditure Panel

Survey that the presence of three equilibria is indeed consistent with moderate levels of
risk aversion. Multiple equilibria are more likely to emerge when losses are very concen-
trated (as in the case of health care) and in the presence of limited liability. Future work
can provide a more detailed empirical analysis using a wider range of data sets.

As is well known, the Affordable Care Act (ACA) levies a fine on non-participants in
order to try to prevent unraveling. Without the presence of multiple equilibria, a fine can-
not expand coverage in a Pareto improving manner, but it effectively redistributes from
low to high risk types. Equilibrium multiplicity is a necessary (but not sufficient) condi-
tion for a fine to achieve a Pareto improvement. The ACA’s fine, however, is constructed
as an absolute amount, equal to the greater of a fixed dollar amount or a fixed fraction of
income. In contrast, the 2006 Massachusetts plan, on which the ACA is modeled, levied
a fine on a relative basis, equal to a fraction of the equilibrium premium. The relative
fine, therefore, grows with the amount of adverse selection. We show that changing the
fine from an absolute to a relative amount — normalized to be equal in the desired, good
equilibrium — increases the range of initial conditions consistent with reaching the good
equilibrium, while also reducing the severity of the bad equilibrium, if it still exists.

If insurers price strategically, rather than acting like price takers, only the good equilib-
rium emerges. In particular, any attempt to price at the bad equilibrium emits profitable
deviations. However, strategic pricing also requires insurers to have global knowledge
of the distribution of risk types and participant characteristics (preferences, loss amounts,
and wealth). Incorrect deviations can be costly across a wide range of guesses: If an in-
surer reduces prices too little, they will continue to be stuck with high-risk types who are
now paying below the fair rate required for zero profits. But if the firm reduces prices
too much, it still can lose money even if it favorably changes the risk pool. In contrast,
competitive pricing only requires localized knowledge of average costs.

Existing evidence from previous health care reforms at the state level and from some
employer-based plans suggest that insurers instead update their prices more consistently
with the price-taking model. While there could be good reasons for limitations to the
frequency of price changes and the amount of increases, such as consumer protection, an
unintended consequence could be that they further discourage price discovery, thereby
increasing the potential for reaching a Pareto dominated equilibrium.
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A Appendix: Proofs

A.1 Proof of Proposition 1

(i). We show that initial conditions cannot matter when there are only one or two com-
petitive equilibria. If p⇤ = 1 is the only equilibrium, we must have G(p) > W(p) for all
p < 1. Otherwise, by continuity of G and W and since G(0) = E[P]l > W(0) = 0, there
would have to exist at least one intersection of G and W at some p < 1 and hence another
equilibrium. Since G(p) > W(p) for all p < 1, the dynamics imply unraveling to p⇤ = 1
for any initial p and therefore initial conditions do not matter.

If there are two equilibria with p⇤ = 1 and some p⇤
1 < 1, it must hold that G(p) >

W(p) for all p 2 [0, p⇤
1) and G(p) < W(p) for all p 2 (p⇤

1 , 1) by an analogous argument
as above. Hence, for any p 2 [0, 1), we converge to the constrained efficient equilibrium
p⇤

1 < 1. As a result, initial conditions again do not matter for the equilibrium that is
eventually reached except in the non-generic case where the initial p = 1.

(ii) and (iii). Note first that, for any number N of equilibria p⇤
1 < ... < p⇤

N−1 < 1,
the best equilibrium p⇤

1 must be stable generically. This is because G(p) > W(p) for all
p 2 [0, p⇤

1) and, since there is a proper intersection of G and W generically, G(p) < W(p)

for all p 2 (p⇤
1 , p1) and p1 > p⇤

1 sufficiently close to p⇤
1 . With exactly 3 competitive

equilibria p⇤
1 < p⇤

2 < 1, this implies that in fact p1 = p⇤
2 , and since again there is a proper

intersection of G and W at p⇤
2 generically, G(p) > W(p) for all (p⇤

2 , 1), as illustrated in
Figure 3. Hence, the intermediate equilibrium p⇤

2 is unstable and the other two are stable.
Moreover, we converge to p⇤

1 for any initial p < p⇤
2 and to p⇤ = 1 for any p > p⇤

2 .

A.2 Proof of Proposition 2

Note first that, for any absolute fine f > 0, Ŵ(1) = l + f > G(1) = l, so for any number
N of equilibria, both the best equilibrium p̂⇤

1 and the worst equilibrium p̂⇤
N under f must

satisfy p̂⇤
1  p̂⇤

N < 1. We next observe that, comparing the definitions (6) and (7) and
using the normalization that kG(p̂⇤

1) = f and the fact that G(p) is increasing in p, W̃(p) <

Ŵ(p) for all p < p̂⇤
1 and W̃(p) > Ŵ(p) for all p > p̂⇤

1 . We use this repeatedly to prove
claims (i) to (iii) in the proposition.

(i). Since Ŵ(1) > G(1) under f > 0, the worst equilibrium p̂⇤
N < 1 must be such that

Ŵ(p) > G(p) for all p > p̂⇤
N. Since p̂⇤

N ≥ p̂⇤
1 , the above result that W̃(p) > Ŵ(p) for all

p > p̂⇤
1 a fortiori implies W̃(p) > Ŵ(p) > G(p) for all p > p̂⇤

N. This immediately rules
out p̃⇤

N > p̂⇤
N.

(ii) and (iii). Note first that the best equilibrium p̂⇤
1 is always such that Ŵ(p) < G(p)

30



for all p < p̂⇤
1 . Moreover, since we observed that W̃(p) < Ŵ(p) for all p < p̂⇤

1 , we also
have W̃(p) < G(p) for all p < p̂⇤

1  p̃⇤
1 . Hence, the range of initial values from which we

converge to the best equilibrium always takes the form of an interval with lower bound
zero and upper bound p1 ≥ p̂⇤

1 . Since W̃(p) > Ŵ(p) for all p > p̂⇤
1 and W̃(p̂⇤

1) = Ŵ(p̂⇤
1),

we also have p̃⇤
1 = p̂⇤

1 , as claimed in (ii).
Suppose first that the best equilibrium p̂⇤

1 < 1 is the unique equilibrium under the
absolute fine f , so Ŵ(p) > G(p) for all p > p̂⇤

1 and vice versa. Then by the above
observation that W̃(p) > Ŵ(p) for all p > p̂⇤

1 and vice versa, this immediately implies
that p̃⇤

1 = p̂⇤
1 is also the unique equilibrium under the relative fine. It also implies that,

in both cases, the best equilibrium is globally stable, so we converge to it for any initial
conditions and thus p̃1 = p̂1 = 1.

Otherwise, since the best equilibrium p̂⇤
1 generically corresponds to a proper intersec-

tion of Ŵ(p) and G(p) and Ŵ(p) < G(p) for all p < p̂⇤
1 , me must have Ŵ(p) > G(p)

for some interval (p̂⇤
1 , p̂1) with p̂1 > p̂⇤

1 . Hence, under the absolute fine, we converge to
p̂⇤

1 for any initial p in the interval [0, p̂1). Then the above observation that W̃(p) > Ŵ(p)

for all p > p̂⇤
1 immediately implies W̃(p) > G(p) for some interval (p̂⇤

1 = p̃⇤
1 , p̃1) with

p̃1 > p̂1. The range of initial values for p for which we converge to the best equilibrium
under the relative fine is therefore [0, p̃1) with p̃1 > p̂1.

B Appendix: Generalizing the Price-Taking Model

This Appendix generalizes the model of Section 2 to allow for the presence of discrete risk
types, a richer amount of heterogeneity between consumers and more general variation
in the size of losses.

B.1 Allowing for Discrete Risk Types

We now show multiple equilibria can emerge even when we relax the assumption that
the distribution of types H(p) is continuous with full support on [0, 1]. For example,
consider a case with three risk types, 0 < pL < pM < pH < 1, of low (L), medium (M)
and high (H) risk, respectively. Their willingness to pay for insurance W(p) is depicted
as black dots in Figure 12. The empty circles represent the average costs of insuring the
corresponding pools, and so G(pH) is the cost of only insuring the high risk type H,
G(pM) is the average cost of insuring both the medium M and high risk H types, and
G(pL) = E[P]l is the average cost of insuring all three risk types.

We have chosen these values such that there are two competitive equilibria: one good
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Figure 12: Equilibrium Multiplicity with Three Types
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equilibrium in which everyone is insured at premium p1 = E[P]l, and another bad equi-
librium in which only the high risk type is insured at a higher premium p2 = pHl > p1.26

There is no equilibrium where only the medium and high types pM and pH are insured,
because the average cost G(pM) for that pool is higher than the willingness to pay of the
medium type W(pM), so the medium risk type would not buy insurance at premium
G(pM) and the dynamics would unravel to the bad equilibrium.

Let us connect Figure 12 to the corresponding figures that we drew for the case of a
continuum of types in Sections 2 and 3. Filling up the space between the three discrete
types naturally leads to Figure 13. We see that, with continuous types and this pattern of
curves, there are in fact three equilibria: a stable bad equilibrium, where only types p ≥
p2 are insured (with pM < p2 < pH), an unstable interior equilibrium with critical type
p1 between pL and pH, and a stable corner equilibrium where everyone with p ≥ pL is
insured. Notice that Figure 13 is very similar to Figure 3 shown in Section 3. In particular,
for initial conditions to matter, the existence of an unstable equilibrium is still required,
and the average cost and willingness to pay curves need to intersect at least twice in
the interior. Moreover, the marginal buyer p1 in the unstable equilibrium represents the

26With discrete types, competitive equilibria involve points with W(p) ≥ G(p) rather than necessarily
W(p) = G(p). However, Definition 1 still applies. For instance, in the competitive equilibrium with pre-
mium p2, we have W(pL) < W(pM) < p2 < W(pH), so that only the highest type pH demands insurance.
Moreover, p2 = G(pH) = pHl, and insurers make zero profits.
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Figure 13: Connection between continuous and discrete type model
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critical value of initial conditions that determines whether the good or bad equilibrium is
reached eventually. The only difference between the discrete and the continuous cases is
that the highest risk type in the discrete case may lay within the support shown for the
continuous case.

B.2 Richer Forms of Consumer Heterogeneity and Multiple Loss Sizes

It is also straightforward to extend our analysis in Section 2 to allow for richer forms of
consumer heterogeneity and multiple sizes of losses. Let the population be indexed by
the continuous variable q 2 [0, 1] with distribution F(q). Suppose there are S possible loss
levels ls(q) indexed by s, which may differ across q. The probability that type q suffers a
loss of size s is denoted by ps(q), where, of course, ÂS

s=1 ps(q) = 1 8q. The expected loss
for type q is, therefore,

S

Â
s=1

ps(q)ls(q).

We can normalize the population type index q so that the expected costs are increasing in
q. In particular, let us take q as the quantiles of the average cost distribution, so that

G(q) =
Z 1

q

S

Â
s=1

ps(q
0)ls(q0)dF(q0)

,
(1 − F(q))
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Figure 14: Willingness to Pay with Median Liquid Assets and Constant Loss Probability
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Source: Medical Expenditure Panel Survey (Cohen and Uberoi 2013).
Explanation: Wealth equals net worth (assets less liabilities), including net housing wealth.

is the average cost of the most costly 1 − q share of the population, and F(q) = q. Clearly,
G(q) is still increasing in q as before.

Correspondingly, we can capture the consumers’ willingness to pay for insurance for
those individuals who are located at the q-quantile of the cost distribution. Formally, for
each quantile q, let W(q) be given by the highest value of W such that

u(w(q)− W; q) =
S

Â
s=1

ps(q)u(w(q)− ls(q); q).

Note that we can allow for both wealth levels w(q) and preferences (notably risk-aversion)
u(c; q) to vary across quantiles of the cost distribution; for instance, higher expected cost
individuals may on average be wealthier (since older) or more risk-averse (they see the
doctor more often).

As long as W(q) remains increasing — and, hence, higher expected cost individuals on
average have a higher willingness to pay for insurance — our entire analysis from before
is maintained: a competitive equilibrium corresponds to a quantile q where G(q) = W(q).
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We can also employ the same graphical approach as before, the only difference being that
the p-axis turns into an q-axis of quantiles of the cost distribution. At an equilibrium with
critical quantile q⇤, the share of the population purchasing insurance is given by 1 − q⇤,
and so 1 − q can also be interpreted as quantity of insurance as in Einav et al. (2010).

Figure 14 shows the empirical evidence from the Medical Expenditure Survey Panel
and the Survey of Consumer finances where the probability of loss p is fixed (at 0.3) but
the size of loss ls(q) is now allowed to vary across the types. As before, the horizontal
axis corresponds to the top X% percent of spenders, where X (the “rank”) is the shown
value. Now, however, the variation in spending comes from differences in loss amounts
rather than probabilities. (Given the fixed value of p, a recursive algorithm parallel to
that discussed in the text is used to impute the losses across the different values of X%.)
As before, the relatively small value of a = 1 leads to unraveling. However, both the in-
between and large values of a lead to multiple stable equilibria: one at first intersection
of willingness-to-pay and average cost lines and a second at the corner case where X = 5,
where the willingness-to-pay is below the average cost. The driving force is, again, lim-
ited liability. As X% gets small, the value of losses must grow in order to match spending
levels in the MEPS. As a result, the willingness to pay is capped for a wider range of
types at smaller values of X% corresponding to larger losses. Increasing the level of risk
aversion, therefore, has very little impact on the demand for insurance in this range.
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