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EXTENDED BAUM TRANSFORMATIONS FOR GENERAL FUNCTIONS, I

Dimitri Kanevsky
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ABSTRACT

The discrimination technique for estimating the parameters
of Gaussian mixtures that is based on the Extended Baum
transformations (EB) has had significantimpact on the speech

recognition community. The proof that definitively shows

that these transformations increase the value of an objec- .

tive function with iteration (i.e., so-called "growth transfor-

mations”) was presented by the author two years ago for

I1l. Multidemensional multivariate Gaussian mixture den-

a diagonal Gaussian mixture densities. In this paper thisyhere

proof is extended to a multidimensional multivariant Gaus-

sian mixtures. The proof presented in the current paper is
based on the linearization process and the explicit growth

estimate for linear forms of Gaussian mixtures.

1. INTRODUCTION

The EB procedure involves two types of transformations
that can be described as follows. LEfz) = F(z;;) be
some function in variables= (z;;) andc;; = z;; %F(z).

I. Discrete probabilities:

N Cij + ZijC
= ) LT 1
“i i +C @
wherez € D = {Zij >0, Zj Zij = ;i;nL Zij = 1}
Il. Gaussian mixture densities:
o Yier Cij¥i + Ol
By = f1;(C) = =% 2
! ! dierCij +C
5o Do +CUE L0 o
P Diertiy +C ’
where
1 2 2
o= (yi—Hy)T/20; (4)
Zi e J
T (2m)Y%0;

andy; is a sample of training data.

*The work is partly supported by the DARPA Babylon Speech-to-
Speech Translation Program.
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andy! = (yi1,...vim) is @ Sample of training data.

It was shown in [4] that (1) are growth transformations
for sufficiently largeC' when F' is a rational function. Up-
dated formulae (5, 6) for rational functiofdwere obtained
through discrete probability approximation of Gaussian den-
sities [7] and have been widely used as an alternative to di-
rect gradient-based optimization approaches ([9], [8]). Us-
ing the linearization technique that was originally presented
in our IBM Research Report [5] and in [6] for diagonal
Gaussian mixtures, we demonstrate in this paper that (5, 6)
are growth transformations for sufficiently largeif func-
tions F' obey certain smoothness constraints. Axelrod [1]
has recently proposed another proof of existence of a con-
stant C that ensures validity of the MMIE auxiliary function
as formulated by Gunawardana et al. [3]). We also replicate
in this paper from [6] the proofs that transformations for di-
agonal Gaussian mixtures (5) and for discrete probabilities
(2) are growth.

2. LINEARIZATION

This principle is needed to reduce proofs of growth trans-
formation for general functions to linear forms.

Lemmal Let
F(z) = F({u;}) = F({g;(2)}) = Fog(z)  (8)

whereu; = g,(z),j = 1,..m andz varies in some real vec-
tor spaceR” of dimensiom. Letg;(z) forall j = 1,..m



and F'(z) be differentiable at. Let, also, M exist

atu; = g;(z) forall j = 1,..m. Let, furtherL(z/)
VF| -g(z1), 21 € R* . LetT, be a family of transfor-

g(z
mationsR™ — R™ such that for somé = (I;...l,,) € R"
Te(z) —z=1/C+0(1/C) if C — oco. (Hereo(e) means

thato(e)/e — 0if e — 0). Let, furtherT¢(2) = z if

VL|,-1=0 9)
Then for sufficiently larg€’ T is growth for F" at z iff T

is growth forL at z.

Proof First, from the definition of. we have

6F(2) _ §F({u;}) 69;(2) _ 6L(2)
§Zk - Z] (S’U.j %Zk - 6zk

Next, for z# = Tc(z) and sufficiently largeC' we have
F(2)—F(2) = ¥, 8 (zi1—2)+0(1/C) = ¥, 220, /C+
o(1/C) = X5, M2 /04 o(1/C) = 7, M (7~ 2) +
0(1/C) = L(z)—L(z)+0(1/C). Therefore for sufficiently
largeC F(z1) — F(z) > 0iff L(2/) — L(z) > 0.

3. EB FOR DISCRETE PROBABILITIES

The following theorem is a generalization of [4].

Theorem 1 Let F'(z) be afunction that is defined ovér =
{zi; > 0,3 z;; = 1}. LetF be differentiable at € D and
let 2 # z be defined as in (1). TheR(2) > F(z) for suf-
ficiently large positiveC and F'(2) < F(z) for sufficiently
small negative”.

Proof Following the linearization principle, we first assume
that F'(z) = I(z) = Y ai;z; Is a linear form. Than the
transformation formula fok(x) is the following:

Q5% + CZij
Zij = —

l(z)+C (10)

We need to show thdtz) > [(z). Itis sufficient to prove

this inequality for each linear sub component associated with

)
Jj=n j=n

E az‘jzijZE QijZij
Jj=1 Jj=1

Therefore without loss of generality we can assumeiisat
fixed and drop subscriptin the forthcoming proof (i.e. we
assume thal(z) = > a;z;, wherez = {z;}, z; > 0 and
> zj = 1). We have:l(2) = ZQ(IZ();*J%@ wherely(z) :=
> a?z;. The linear case of Theorem 1 will follow from
next two lemmas.

Lemma 2

Io(z) > 1(2)° (11)

Proof Let as assume that; > a;1 and substituting’ =
>°1=17" z; we need to prove:

j=n—1 j=n—1
S s rai-z Y G
j=1 j=1
j=n—1
2 Z —ap)anzj + a? (12)
j=1

We will prove the above formula by proving for every fixed
j (a? —a2)z; > (a; — a”)zz?- +2(a; — ap)anz;. If (a; —
an)z; # 0 then the above inequality is equivalentdp —

ap > (a; — an)z; and is obviously holds singg< z; < 1

Lemma 3 For sufficiently larggC|| the following holds:
I(2) > I(=) if C is positive andl(2) < I(z) if C is
negative.

Proof From (11) we have the following inequalities.
l2(2) + Cl(2) > 1(2)* + Cl( ),

I(2) = LRI > e l)( ;Cl if I(z) +C >0
andi(2) = B < S if1(:) + C < .

The general case of Theorem 1 follows immediately from
the observation that (9) is equivalentitdz) — I(z)? = 0
for largeC.

4. EB FOR GAUSSIAN DENSITIES

For simplicity of the notation we consider the transforma-
tion (5), (6), only for a single pair of variables, o, i.e.
we drop subscrip§ everywhere in (5, 6), (7) and also set

-2
oo 1 —(yi—p)" /267
ZZ - (271')1/26'6 ‘

Theorem 2 Let F({z;}), i = 1..m, be differentiable at
p,o and £ exist atz;. Let eitherji # 1 or & # o
Then for sufficiently larg€e”

F({z}) — F({z}) =T/C+0(1/C) (13)

Where
Lol - A -} > 0
(14)

In other words,F'({%;}) grows proportionally tol /C for
sufficiently largeC'.

ProofFirst, we assume th&t({z;}) = l(u,0) :=1({z:}) :==
Zzirln a;z;. Letus Se‘i(,l%&) = l({éi}) = Zzzgn a;%;.
Thenc; = a;z; in (5), (6). We want to prove that for suf-
ficiently largeC' I(f1,6) > (i, 0). This inequality is suffi-
ciently to prove with the precisioh/C?.



_ X4y +Cn

5 ZTT iy + 1

ZJ 1 ¢+ C

Z cjyi+)(

A >jlei(y; — ]
B~ C
Next, we have
ei? + O(u2 + o2
6,2 — 6'(0)2 — Z] Jy_] (/J‘ o ) _ [LZ

Zj ¢+ C
Let us computé2 using (38)

Y6y + 0 +0%)
Zj ¢+ C

Zj ijjz
C

. Ci
+u2+az)(1—%)~

(u? +o )ch]

J

~ (
Nu +o+ = Zc]y]

j=m

4 2K
T

)=1

DO

¢y
This gives

. 1
0%~ 0t S ey = (W4 0%) Y
j

And finally
0'2N0'2+Ej[(yj_g) _U]J
N2 /A2 1 2
(i = )7°/0" ~ —5l(yi — )"~
20ys — p) 225 ¢ (y; — 1)
_ e ]
{1 chy‘[(y;;cu) —0 ]} N

ZJ 1 ¢+l

chy] MZCJ

(15)

(16)

(17)

(18)

(19)

_ )2 )2
W s (S = ) = 0%+
J
20y — ) Yy — wej} (22)
J
A )11/2576 e 23)

Where

4= > _lys=p)=0lej (=) D (= m)es

202

Continue this we have

—WYi—r 2 A'L
S Ke B (14 25) (24)
Where )
K=Gns

. ¢y — w)?* = o
1/6 ~ ={1 - =22 21020 } (25)

A; >, ¢y — w)? = o?

(1+ 002){1 B 202C b~

=) Y~ wes ~1/23 el 2] ~
B;
Co? (26)

WhereB; = [W5 —1/2) X2, [(y; — )* — 0Je; + (i -
1) >y — we;

Using the last equalities we get
B,
Zi =z + 07;22,' 27)

Sincel(ji, &) is a linear form in the;; we have

() = 1@z + BED) g
and

) —1/2]x
—u)Zcxyj—m}:
—-1/2] Zc]

I({B;z}) =
X ch[(yj
= Zcz{

Zarzz{

—o?+



—m)> eily; —p)} = Step 2: Computation of T

ZJ] 1m ¢y +Cu . lZi 71n CiYj "’M

{22, ¢lly; — w)? — o} fr=p(C) = =
= . 902 + [Z ci(yj — M)]2 (29) Z] 1 6 +C Z] 1 G+l
J
. chyﬁ‘ﬂ chyj NZCJ
I({z}) —({=}) ~ 5
. o . (36)
Since by assumption eith@r poré # o T # 0. Appli-
cability of the lineriazation principle follows from the fact . > lei(yy — )
that if (14) holds then the left part in the equation (9) is not foo~ C @37
equal to zero. Q.E.D. Next we have
5. EB FOR MULTIDIMENSIONAL MULTIVARIATE B 5(0) = ey +Cp +X) (39)
GAUSSIAN DENSITIES >, e+ C s
For simplicity of the notation we consider the transforma- |et us compute” using (38)
tion (5), (6), only for a single pair of variables, ¥, i.e.
we drop subscripy everywhere in (5, 6), (7) and also set Zj cjyjyf + C(ppT + %)
A 5=z _ Tog—1 N ~
Zi = ‘(27|r)"/2 1/2(111 ,U') T (yz /) ZJ Cj J'_ C
Theorem 3 Let F'({z;}), ¢ = 1...m, be differentiable at ciyiyt Ci
u, X and 5F({Z’}) exist atz;. Let eitherji # por X # X. ~ (ZJ jcj =t + D)1 - ZJC ")~
Then for suff|C|entIy larg€e’
) NWT+2+ Zc]y]yj (up” + 2)> ¢ (39)
F({z}) — F({z:}) = T/C +o(1/C)  (30) ;
whereT > 0. i.e. F({;}) grows proportionally tal /C for o o 2u = 7
sufficiently largeC'. If = represented as a diagonal matrix B o e+ 1 cj(yj — 1) (40)
J:
21 = diag[Ag, ..y A (32) This gives
then one can writd” explicitly as follows: 5 T+ 5+ = Z ¢ yj (T + 5 Z ¢]-
T=T+T+T; (32) g
1 it
T, = 5 Z()\i + )\%)(Z Ci(lkiali)2 (33) ’u’u + Z c] -
k£l i

y E —l—E E 2 § :
- % Z()‘k Z Ciaii - cl-)2 (34) Z G Yi yj (e c;—2u ¢i(y
k=1 i

(41)
" And finally
15 = ZM(Z ciak;)? (35) o CNT _
LT 5o s 2l u)(yjc e 42)
Proof Our proof will be split in several steps.
Stepl: Linerarization 1yt E_Q{Zj[(yj — )y — )" = Zej}
First, we assume that({zi}) = (i, 2) = I({=}) = ~ - C
(43)

ZZ T a;z. Letus set(n, X) = [({4}) = Z: T aig.

Thenc; = a;z; in (5) (6). We want to prove that for suffi-
ciently largeC I(j, £) > I(u, £). This inequality is suffi- ) ey — )
ciently to prove with the precision/C2. 1/2(yi—)" £~ (yi—h) ~ 1/2[(%‘—/0—%



_ J - J
L 2Py )y — )T = S}
b . Ix
>oicily; —m)
x[(yi — p) — %1 ~
A;
~ /20y =) (- ) - (44)
A=A + Apo
A =1/2) e (ui—m)" 22 [(y =) (=) " = XN (yi—p)
j
(45)
Az =1/23 ¢ [(y;—m)" 27" (wi— )+ (=) " 7 (g5 —p)]
J
(46)
7| —1/2 —1 T y—1 i
o (L;JJT)nM eI ot (a7)
Continue this we have
G~ Ke2wimm S wimm) (1 4 %) (48)
Where
|£~|—1/2
- (271-)n/2
$1-1/2 o x—1/2 g 24 e (g — AT
[E17172 S 2 D - TrS (=) (55— T}
(49)
A;
1+ 20+ Z e (g — )y — )]} ~
- 1+5{Ai+1/220j[n—T7“2‘1(yj—u)(yj—u)T]}
j
B;
~t (50)
Where
Bi=A;+D
Here we use

— 1) TZ gy = o)

D= 1/2ch[n— (y)

and

TrE " (yy =)y —mw) " = (g =) 2 (g — )

Using the last equalities we get

B;

Sincel (i, ) is a linear form in the;; we have

I({Bizi})

({z:D) ~ U{z)) + = (52)

and

T = l({BZZ}) =
=3 e Ait1/2( Zcz ch vj—

Z Ay = Z cidin + Z ciAi
o :zz » :Z
T2y =) (g =) " =2 (yi—n)

1y = ZciAi2 =

T g+ (yi—) T2 ()] =

TR ey — )

3

)X (g — )]

(53)

= 1/2201‘6‘7‘(?] -
ij

(54)

=1/2 Z cicil(yj—
= [Z Cj (yj

l({éz}) - l({Zz}) ~ A

Step3: Reduction to a diagonal case

SinceX is a symetric matrix there exists an ortogonal
matrix O such thaDXO~! is a diagonal matrix. It is easily
to see thaf’ is invariant under such ortogonal change of co-
ordinates. For example, the componéntof T is invariant
under ortogonal change of coordinate as one can see from
the following computations:

(55)

Ay =
TOTOZ 20T

= 1/226@

x[0(y; — u)(yj —m)TO0T —=0X0"|0(y; — 1) (56)
Step 4: special case - 2-dimensional Gaussians

We will perform computations for simplicity for 2 -dimensional

case.

Withot loss of generality we can assume the! =
diag[\1, \g] is a diagona® x 2 - matrix with diagonal ele-
mens)\; ands.

Let compute

Ay =
1/22%‘0;'(1/ —)"E 2 (g =) (yy— 1) " (yi—p)] (57)
Let set
(yi — )" = (ay;, as) (58)
Then
Ay =

1/2 Z cicj(ari, az;) x diag[A}, A3]x

ij



(a17,a2,5)" x (a1, a2;) x (ari, a2;)" (59)

— 1/2 Z CZ'CJ'()\%CLM7 )\ga%)(alj, ag’j)T(aljali + agj(lgi)

ij
(60)
=1/2 Z cicj(Afariar; + Aagiag;)(a1ja1; + agjaz;)
j
(61)
= 1/20\% + /\%) Z CiCjG1;G1502i02 j+
ij
+1/2)2 Z cicja%ia%j
ij
+1/2)3 Z cicjas,a3; =
ij
1/2()\% + )\%)(Z cialiagi)Q—i—
ij
+1/203(> ciad,)?
+1/2030>  cia3,)? (62)
Al =4, - A =
(63)

= —1/2201-%(% — )2y — ) =

*1/2(2 Cj)zci(aliaa%) x (A1, A2) X (a1i,a2;)" =

J 7
—1/2(2 Cj)(z ci)\la%i + Zci/\gagi) (64)
7 i i
Next, for our 2-dimensional case we have

d D= Ci)2—1/2(z Cj)(z Ci)\la%ﬁZ cidoas;)

(65)
Therefore
T =
1/2()\% + )\%)(Z cialiagi)Q—i—
iJ
+1/2>\?(Z ciai;)”
+1/2>\3(Z ciaz;)?—
~O ") einal;, +) " cidoas;)
j i i
+(O )’
+ Z cicj(Manaj + Aeaiea ) (66)

And finally
T =

1/2(A% + )‘g)(z cia1iaz;)’+

ij
—|—1/2(/\1 Zcia%i — Zci)Q
+1/2(/\2 Z ciagi — Z Ci)2+

+/\1(Z ciari)?
+/\2(Z ciag;)? (67)
In the above equation:Z
Ty =1/2(\7 + /\3)(2 ciaiiaz;)? (68)
ij

T =1/2(M Y _cial;, — Y )+

+1/2(/\226ia§i - Zci)2 (69)
T = /\1(2 ciari)?

(70)

+/\2(Z ciazi)?

Step 4: General case - n-dimensional Gaussians

We will perform computations for n -dimensional case.

Withot loss of generality we can assume the! =
diag[A1, A2, ...\ ] is a diagonah x n - matrix with diagonal
elemens\;, Ao and\,,.

Let compute

Ay =

123 eieiyi—m) " 22 (g =) (g =) " (yi=p)] (72)

Let set
(yi — )" = (a1, agi, .-.an;) (72)
Then
Ay =
1/2 Z CiCj (ali, ag;, am) X
ij
dzag[)\f, )\%7 )\i] X (a,]_j7 asj, ...anj)T
X (alj, a2j, ...anj) X (ali, agi, ...anj)T (73)

= 1/2 Z cicj()\fau, /\%CLQZ‘, ...)\gam)(alj, a2j, ...anj)Tx

ij



(74)

X(zk:akjam‘)

= 1/2Zcicj(§k: A2 aiag; )
i
X(;aka‘aki)

=1/2 ) ) cici(Af + A7) x

kL kAL ij

(75)

X Qja07,;+

+1/2 Z CiCj Z Anazay; =
ij k

1/2 Y (A +ADQ_ ciarian)*+

kil ij

+1/20> " Mecia3;)? (76)
k,i
Similar (like for the 2-dimensional case) one can com-
pute other componets in T.
Step 5: Invariant transformation points
Here we prove the following

Lemma 4 Let X be a diagonal matrix. Then the following
holds. a)T" = 0 implies thatX'(C') = X andx(C) = p for
C=0.

b) X(C) = ¥ and u(C) = p for C = 0 implies that
XY(C)=Xandu(C) = pforanyC.

c) X(C)= XY andu(C) = puforsomeC — T =0

Proof of Lemma

QT =0Ty =0 p= %L o p(0) = p.

Next, 72 = 0 — A\ Y ciay;, — > ¢; = 0 — /\,;1 =
% = pepte = 3(0)kk-

Finally, Ty = 0 — Y ci(yir — pe)(ya — ) = 0 —
Y CilYikYit—Cillik i —CiYitfeTCitti i = 0 — D ¢ (Yiryir—
pity) =0 — Xx(0) = 0. This proves a) fot” = 0.

b) It follows from (5) that ifu(C) = p then

p(d e +C) = ciyi+Cp —
Mzcizzciyi

Adding to both parts of the above equatiofy: for any C’
we get

H(Z ci+C') = chyz + ' — p(C) = p

This proves b) fop.
Similarly, from (6) and a part b) of the lemma fowe have
that X' (C) = X implies

EZ ci = Z Yyl — Z cipp”

Adding to both parts of the above equatiéfy’ for any C’
we get

EZ ¢+ X0 = Z iy — Z cipp” +
+C' (up" + X)) = C'pp” —

Yy + Clpp” + X))
B ZC@-FC’

¥ =3¢

X

—pup” —

c) u = u(0) implies thatTs = 0. Xy, = Xk (0) implies
thatT, = 0. Finally, 2y, = X (0) = 0 for k # [ implies
thatd " ¢; (yir — px)(ya — ) =0, 1.e. Ty = 0.

We can now finish the proof ot the theorem. Since by
assumption eitheil # p or S # X T +# 0. Applicability of
the lineriazation principle follows from the fact that if (14)
holds then the left part in the equation (9) is not equal to
zero. Q.E.D.

6. NEW GROWTH TRANSFORMATIONS

One can derive new updates for means and variances ap-
plying EB algorithm of the section 3 by introducing prob-
ability constraints for means and variances as follows. Let
us assume that < p; < D;,0 < g; < E;. Then we
can introduce slack variablgs;s > 0, o;/ > 0 such that
wi/Dj+pt/Dj =1,0;/E; 4+ 0;1/E; = 1. Then we can
compute updates as in (1), withas in (5, 6).

> Cij%""c

frj = Djp; =
! ! ]Zq‘,ci]‘(ylni'z_“‘])#]‘J’»ch

J
)2
2 Cij[*1+(y’d7gj)]+c%'
. J

6, =F
T el
If somepu; < 0 one can make them positive by adding
positive constants, compute updates for new variables in the
new coordinate system and then go back to the old system
of coordinates.

2
(z/lalzb]) |+E,C
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