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Abstract
We propose a new method to program robots based on Bayesian inference and learnin

The capacities of this programming method are demonstrated through a succession 
increasingly complex experiments. Starting from the learning of simple reactive behaviors
we present instances of behavior combinations, sensor fusion, hierarchical behavior com
position, situation recognition and temporal sequencing. This series of experiment
comprises the steps in the incremental development of a complex robot program. Th
advantages and drawbacks of this approach are discussed along with these different exp
iments and summed up as a conclusion. These different robotics programs may be seen
an illustration of probabilistic programming applicable whenever one must deal with prob-
lems based on uncertain or incomplete knowledge. The scope of possible applications 
obviously much broader than robotics. 

1. Introduction

By inference we mean simply: deductive reasoning whenever enough information is at
hand to permit it; inductive or probabilistic reasoning when - as is almost invariably the
case in real problems - all the necessary information is not available. Thus the topic of
"Probability as Logic" is the optimal processing of uncertain and incomplete knowledge.

E.T. Jaynes1

We assume that any model of a real phenomenon is incomplete. There are always some hid
den variables, not taken into account in the model, that influence the phenomenon. The
of these hidden variables is that the model and the phenomenon never have the same
ior.

Any robot system must face this central difficulty: how to use an incomplete model o
environment to perceive, infer, decide and act efficiently? We propose an original robo
gramming method that specifically addresses this question.

Rational reasoning with incomplete information is quite a challenge for artificial 
tems. The purpose of Bayesian inference and learning is precisely to tackle this problem
a well-established formal theory. Our method heavily relies on this Bayesian framework

1. (Jaynes, 1998)
© 2000 CNRS - UJF - INPG, All rights reserved.
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We present several programming examples to illustrate this approach and define descrip-
tions as generic programming resources. We show that these resources can be used t
mentally build complex programs in a systematic and uniform framework. The syste
based on the simple and sound basis of Bayesian inference. It obliges the program
explicitly state all assumptions that have been made. Finally, it permits effective treatm
incomplete and uncertain information when building robot programs. 

The paper is organized as follows. Section 2 offers a short review of the main re
work, Section 3 is dedicated to definitions and notations and Section 4 presents the e
mental platform. Sections 5 to 10 present various instances of Bayesian programs: learn
simple reactive behaviors; instances of behavior combinations; sensor fusion; hiera
cal behavior composition; situation recognition; and temporal sequencing. Section 11
describes a combination of all these behaviors to program a robot to accomplish a
watchman task. Finally, we conclude with a synthesis summing up the principles, the 
retical foundations and the programming method. This concluding section stresses the
advantages and drawbacks of the approach.

2. Related work

Our work is based on an implementation of the principle of the Bayesian theory of prob
ities. 

In physics, since the precursory work of Laplace (1774; 1814), numerous results
been obtained using Bayesian inference techniques (to take uncertainty into account) a
maximum entropy principle (to take incompleteness into account). The late Edward T. J
proposed a rigorous and synthetic formalization of probabilistic reasoning with his "Pr
bility as Logic" theory (Jaynes, 1998). A historical review of this approach was offere
Jaynes (1979) and an epistemological analysis, by Matalon (1967). Theoretical justific
of probabilistic inference and maximum entropy are numerous. The entropy concent
theorems (Jaynes, 1982; Robert, 1990) are among the more rigorous, Cox theorem
1961) being the most well known, although it has been partially disputed recently by Ha
(1999a; 1999b). Numerous applications and mathematical tools have been developed 
& Grandy, 1985; Tarentola, 1987; Bretthorst, 1988; Erickson & Smith, 1988a; Erickso
Smith, 1988b; Mohammad-Djafari & Demoment, 1992; Kapur & Kesavan, 1992). 

In artificial intelligence, the importance of reasoning with uncertain knowledge has 
recognized for a long time. However, the Bayesian approach clearly appeared as one
principle trends only since the proposal of Bayesian nets (Pearl, 1988) and graphical m
(Lauritzen & Spiegehalter, 1988; Lauritzen, 1996; Jordan, 1998; Frey, 1998). Very impo
technical progress has been achieved recently (See for instance the JAIR2 articles on that
subject: Saul et al., 1996; Zhang & Poole, 1996; Delcher et al., 1996; Darwiche & Pr
1997; Ruiz et al., 1998; Jaakola & Jordan, 1999; Jordan et al., 1999).

Recent robot programming architectures (Alami et al., 1998; Borrelly et al., 1
Schneider et al., 1998; Dekhil & Henderson, 1998; Mazer et al., 1998) are in gener
concerned with the problem of uncertainty. In robotics, the uncertainty topic is either re
to calibration (Bernhardt & Albright, 1993) or to planning problems (Brafman et al., 19
In the latter case, some authors have considered modeling the uncertainty of the
motions when planning assembly operations (Lozano-Perez et al., 1984; Donald, 19
modeling the uncertainty related to the position of the robot in a scene (Kapur & Kes

2. Journal of Artificial Intelligence Research
1
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1992). Bayesian techniques are used in POMDP3 to plan complex paths in partially known
environments (Kaelbling, Littman & Cassandra, 1996). HMM4 are also used to plan comple
tasks and recognize situations in complex environments (Aycard, 1998, Thrun, 1998). 
ever, to the best of our knowledge, the design of a robot programming system and arc
ture solely based on Bayesian inference has never been investigated before. 

Finally, a presentation of the epistemological foundations of the approach describ
this paper may be found in two articles by Bessière et al. (1998a; 1998b) and all the tec
details in the PhD dissertation of Olivier Lebeltel (1999). 

3. Basic concepts

In this section, we introduce the concepts, postulates, definitions, notations and rules t
necessary to define a Bayesian robot program.

3.1 Definition and notation

Proposition

The first concept we will use is the usual notion of logical proposition. Propositions will be
denoted by lowercase names. Propositions may be composed to obtain new propositio
the usual logical operators:  denoting the conjunction of propositions  and , 
their disjunction and  the negation of proposition .

Variable

The notion of discrete variable is the second concept we require. Variables will be deno
by names starting with one uppercase letter.

By definition, a discrete variable  is a set of logical propositions  such that the
propositions are mutually exclusive (for all  with ,  is false) and exhaustive
least one of the propositions  is true).  stands for «variable  takes its  value»
denotes the cardinal of the set  (the number of propositions ).

The conjunction of two variables  and , denoted , is defined as the s
 propositions .  is a set of mutually exclusive and exhaustive log

propositions. As such, it is a new variable5. Of course, the conjunction of  variables is als
a variable and, as such, it may be renamed at any time and considered as a unique var
the sequel.

Probability

To be able to deal with uncertainty, we will attach probabilities to propositions. 
We consider that, to assign a probability to a proposition , it is necessary to ha

least some preliminary knowledge, summed up by a proposition . Consequently, the proba
bility of a proposition  is always conditioned, at least, by . For each different , 
is an application assigning to each proposition  a unique real value  in the int

.
Of course, we will be interested in reasoning on the probabilities of the conjunct

3. Partially Observable Markoff Decision Process
4. Hidden Markov Models
5. By contrast, the disjunction of two variables, defined as the set of propositions , is not a variable.

propositions are not mutually exclusive.

a b∧ a b a b∨
a¬ a

X xi
i j, i j≠ xi yj∧

xi xi X i
th

X

X xi

X Y X Y⊗
X Y× xi yj∧ X Y⊗

n

xi yj∨

a

π
a π π . π|( )P

a a π|( )P

0 1,[ ]
2
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disjunctions and negations of propositions, denoted, respectively, by , 
and .

We will also be interested in the probability of proposition  conditioned by both 
preliminary knowledge  and some other proposition . This will be denoted 

For simplicity and clarity, we will also use probabilistic formula with variables appea
instead of propositions. By convention, each time a variable  appears in a probabilist
mula , it should be understood as . For instance, given three variables
and ,  stands for:

[E3.1]

3.2 Inference postulates and rules

This section presents the inference postulates and rules necessary to carry out proba
reasoning. 

Conjunction and normalization postulates for propositions

Probabilistic reasoning needs only two basic rules:
1 - The conjunction rule, which gives the probability of a conjunction of proposi-

tions.

[E3.2]

2 - The normalization rule, which states that the sum of the probabilities of  and 
is one.

[E3.3]

For the purpose of this paper, we take these two rules as postulates6.
As in logic, where the resolution principle (Robinson, 1965; Robinson, 1979) is s

cient to solve any inference problem, in discrete probabilities, these two rules ([E
[E3.3]) are sufficient for any computation. In particular, we may derive all the other ne
sary inference rules from those two, especially the rules concerning variables.

Disjunction rule for propositions

For instance, the rule concerning the disjunction of propositions:

[E3.4]

may be derived as follows:

6. See some references on justifications of these two rules in § 2.

a b∧ π|( )P a b∨ π|( )P

a¬ π|( )P

a

π b a b π∧|( )P

X

Φ X( ) xi∀ X∈ Φ xi( ), X Y

Z X Y⊗ Z π⊗|( )P X π|( )P=

xi∀ X∈ yj∀ Y∈ zk∀ Z∈, , xi yj∧ zk π∧|( )P xi π|( )P=

a b∧ π|( )P a π|( )P b a π∧|( )P×=

b π|( )P a b π∧|( )P×=

a a¬

a π|( )P a¬ π|( )P+ 1=

a b∨ π|( )P a π|( )P b π|( )P a b∧ π|( )P–+=
3



 

Bayesian Robot Programming

   

this

  

eness
utual

  

 rule
[E3.5]

Conjunction rule for variables

[E3.6]

According to our notation convention for probabilistic formula including variables, 
may be restated as:

[E3.7]

which may be directly deduced from equation [E3.2].

Normalization rule for variables

[E3.8]

The normalization rule may obviously be derived as follows:

[E3.9]

where the first equality derives from equation [E3.3], the second from the exhaustiv
of propositions  and the third from both the application of equation [E3.4] and the m
exclusivity of propositions .

Marginalization rule for variables

[E3.10]

The marginalization rule is derived by the successive application of the product
(equation [E3.6]) and the normalization rule (equation [E3.8]):

a b∨ π|( )P 1 a¬ b¬∧ π|( )P–=

1 a¬ π|( )P b¬ a¬ π∧|( )P×–=

1 a¬ π|( )P 1 b a¬ π∧|( )P–( )×–=

a π|( )P a¬ b∧ π|( )P+=

a π|( )P b π|( )P a¬ b π∧|( )P×+=

a π|( )P b π|( )P 1 a b π∧|( )P–( )×+=

a π|( )P b π|( )P a b∧ π|( )P–+=

X Y⊗ π|( )P X π|( )P Y X π⊗|( )P×=

Y π|( )P X Y π⊗|( )P×=

xi∀ X∈ yj Y∈∀,

xi yj∧ π|( )P xi π|( )P yj xi π∧|( )P×=

yj π|( )P xi yj π∧|( )P×=

X π|( )P
X
∑ 1=

1 x1 π|( )P x1¬ π|( )P+=

x1 π|( )P x2 ...... x X∨ ∨ π|( )P+=

x1 π|( )P x2 π|( )P ...... x X π|( )P+ + +=

xi π|( )P
xi X∈
∑=

xi

xi

X Y⊗ π|( )P
X
∑ Y π|( )P=
4
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3.3 Bayesian Programs

We have defined a Bayesian program as a means of specifying a family of probabilit
distributions. Our goal is to show that by using such a specification one can effectively
trol a robot to perform complex tasks. 

The constituent elements of a Bayesian program are presented in Figure 1:

• A program is constructed from a description and a question.
• A description is constructed from preliminary knowledge and a data set. 
• Preliminary knowledge is constructed from a set of pertinent variables, a decompo

sition and a set of forms. 
• Forms are either parametric forms or programs.

Description

The purpose of a description is to specify an effective method to compute a joint distrib
on a set of variables  given a set of experimental data  and preliminary kn
edge . This joint distribution is denoted as: .

Preliminary Knowledge

To specify preliminary knowledge the programmer must undertake the following: 
1 Define the set of relevant variables  on which the joint distribution is

defined.
2 Decompose the joint distribution:

Given a partition of  into  subsets we define  variables  each
corresponding to one of these subsets. 

Each variable  is obtained as the conjunction of the variables belonging
the subset . The conjunction rules [E3.6] leads to:

Figure 1: Structure of a bayesian program

X Y⊗ π|( )P
X
∑ Y π|( )P X Y π⊗|( )P×

X
∑=

Y π|( )P X Y π⊗|( )P
X
∑×=

Y π|( )P=

Program 
Description 

Preliminary Knowledge π( )

Pertinent Variables 

Decomposition 

Forms 
Parametrical Forms 

Programs
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Conditional independence hypotheses then allow further simplifications. A conditi

independence hypothesis for variable  is defined by picking some variables 

among the variables appearing in conjunction , calling  the c
junction of these chosen variables and setting:

[E3.13]

We then obtain:

[E3.14]

Such a simplification of the joint distribution as a product of simpler distribution
called a decomposition.

3 Define the forms:

Each distribution  appearing in the product is then associated w

either a parametric form (i.e., a function ) or another Bayesian program. In 

eral,  is a vector of parameters that may depend on  or  or both. Learning takes place
when some of these parameters are computed using the data set 

Question

Given a description (i.e., ), a question is obtained by partitio
ing  into three sets : the searched variables, the known variables an
unknown variables. 

We define the variables ,  and  as the conjunction of the varia
belonging to these sets. We define a question as the distribution:

. [E3.15]

3.4 Running Bayesian programs

Running a Bayesian program supposes two basic capabilities: Bayesian inference an
sion-making. 

Bayesian inference

Given the joint distribution , it is always possible to compu
any possible question, using the following general inference:

X
1

X
2 … X

n⊗ ⊗ ⊗ δ π⊗|( )P
L

1 δ π⊗|( )P L
2

L
1 δ π⊗ ⊗|( )P …× L

k
L

k 1– … L
2

L
1 δ π⊗ ⊗ ⊗ ⊗ ⊗|( )P××=

L
i

X
j

L
i 1– … L

2
L

1⊗ ⊗ ⊗ R
i

L
i

L
i 1– … L

2
L

1 δ π⊗ ⊗ ⊗ ⊗ ⊗|( )P L
i

R
i δ π⊗ ⊗|( )P=

X
1

X
2 … X

n⊗ ⊗ ⊗ δ π⊗|( )P
L

1 δ π⊗|( )P L
2

R
2 δ π⊗ ⊗|( )P L

3
R

3 δ π⊗ ⊗|( )P× …× L
k

R
k δ π⊗ ⊗|( )P××=

L
i

R
i δ π⊗ ⊗|( )P

f µ L
i( )

µ R
i δ

δ

X
1

X
2 … X

n⊗ ⊗ ⊗ δ π⊗|( )P

X
1

X
2
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n, , ,{ }

Search Known Unknown

Searched Known δ π⊗ ⊗|( )P

X
1

X
2 … X
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[E3.16]

where the first equality results from the marginalization rule (equation [E3.10]), the
ond results from the product rule (equation [E3.6]) and the third corresponds to a s
application of the marginalization rule. The denominator appears to be a normalization
Consequently, by convention, we will replace it by .

It is well known that general Bayesian inference is a very difficult problem, which m
be practically intractable. Exact inference has been proved to be NP-hard (Cooper, 199
the general problem of approximate inference too (Dagum & Luby, 1993). Numerous he
tics and restrictions to the generality of the possible inferences have been propos
achieve admissible computation time (see the papers already cited in Section 2 about 
cal progress in this area).

An inference engine and the associated programming API7 as been developed and use
for the experiments presented in this paper. The same API has also been used for othe
cations such as CAD modeling (see Mekhnacha, 1999).

Our engine proceeds in two phases: a symbolic simplification phase which reduce
complexity of the considered sums, and a numeric phase that computes an approxima
the distributions.

Our symbolic simplification phase drastically reduces the number of sums necess
compute a given distribution. However the decomposition part of the preliminary knowle
which expresses the conditional dependencies of variables, still plays a crucial role in
ing the computation tractable. The importance of the decomposition has already 
stressed by many authors (e.g., Zhang & Poole, 1996) and explains the good performa
our engine (10 inferences per second8).

Decision-making

For a given distribution, different decision policies are possible: for example, searc
the best (highest probability) values or drawing at random according to the distribution
our purposes, we will always use this second policy and refer this query

.

Control loop of the robot

To control our robot using a Bayesian program, a decision is made every tenth of 
ond. A typical question is to select the values of the motor variables knowing the valu

7. Application Programming Interface
8. Order of magitude on a standard desk top computer for the inferences required by the experiments des

the sequel.

Searched Known δ π⊗ ⊗|( )P Searched Unknown⊗ Known δ π⊗ ⊗|( )P
Unknown

∑=

Searched Unknown Known⊗ ⊗ δ π⊗|( )P
Unknown

∑
Known δ π⊗|( )P

--------------------------------------------------------------------------------------------------------------------------------------=

Searched Unknown Known⊗ ⊗ δ π⊗|( )P
Unknown

∑
Searched Unknown Known⊗ ⊗ δ π⊗|( )P

Searched

Unknown

∑
--------------------------------------------------------------------------------------------------------------------------------------=

1
Σ
--- Searched Unknown Known⊗ ⊗ δ π⊗|( )P

Unknown
∑×=

Σ

Draw Searched Known δ π⊗ ⊗|( )P( )
7
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the sensory variables. Consequently, the basic loop to operate the robot is to loop on t
lowing instructions every tenth of a second:

1 - Read the values of the sensors

2 - 

3 - Send the returned values to the motors

4. Experimental platform

4.1 Khepera robot

Khepera is a two-wheeled mobile robot, 57 millimeters in diameter and 29 millimete
height, with a total weight of 80g (See Figure 2). It was designed at EPFL9 and is commer-
cialized by K-Team10.

The robot is equipped with eight light sensors (six in front and two behind), taking
ues between 0 and 511 in inverse relation to light intensity, stored in variables 
Figure 3). These eight sensors can also be used as infrared proximeters, taking 
between 0 and 1023 in inverse relation to the distance from the obstacle, stored in va

 (see Figure 3).
The robot is controlled by the rotation speeds of its left and right wheels, stored in

ables Mg and Md, respectively.
From these 18 basic sensory and motor variables, we derived three new sensory va

( ,  and ) and one new motor one ( ). They are described below.
•  is a variable that approximately corresponds to the bearing of the closest obst

cle (See Figure 3). It takes values between -10 (obstacle to the left of the robot) an
+10 (obstacle to the right of the robot), and is defined as follows:

9. Ecole Polytechnique Fédérale de Lausane (Switzerland)

Figure 2: The Khepera mobile robot (from the top and from the left)

10. http://www.K-team.com/

Draw Motors Sensors δ π⊗ ⊗|( )P( )

L1 … L8, ,

Px1 … Px8, ,

Dir Prox Theta1 Vrot

Dir
8

http://www.K-team.com/
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•  is a variable that approximately corresponds to the proximity of the closes
obstacle (See Figure 3). It takes values between zero (obstacle very far from th
robot) and 15 (obstacle very close to the robot), and is defined as follows:

[E4.2]

•  is a variable that approximately corresponds to the bearing of the greate
source of illumination. It takes on 36 values from -170° to 180°.

• The robot is piloted solely by its rotation speed (the translation speed is fixed). I
receives motor commands from the  variable, calculated from the difference
between the rotation speeds of the left and right wheels.  takes on value
between -10 (fastest to the left) and +10 (fastest to the right).  

Khepera accepts turrets on its top to augment either its sensory or motor capacitie
the final experiment (the nightwatchman task), a linear camera of 64 pixels and a micr
bine were added on top of the robot.

4.2 Environment

For all experiments described in the current paper, the Khepera is placed in a 1 m b
environment. This environment has walls around its contour, textured to be easily seen 
robot. Inside this square, we place walls made of Lego© bricks that can be moved easily t
set any configuration we need quickly. We usually build a recess made of high Lego© walls
in a corner, and place a small light over this recess, to create a «base» for the robot.  

Figure 3: The sensory-motor variables of the Khepera robot.

Vrot
- +

1

2

3 4

6

5

78

Dir

Prox

Dir  = +10

Dir  = 0

Dir  = -10

Dir Floor
90 Px6 Px1–( ) 45 Px5 Px2–( ) 5 Px4 Px3–( )+ +

9 1 Px1 Px2 Px3 Px4 Px5 Px6+ + + + + +( )
--------------------------------------------------------------------------------------------------------------------- 

 =

Prox

Prox Floor
Max Px1 Px2 Px3 Px4 Px5 Px6, , , , ,( )
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 =

Theta1

Vrot

Vrot
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5. Reactive behavior

5.1 Goal and experimental protocol

The goal of the first experiment was to teach the robot how to push objects.
First, in a learning phase, we drove the robot with a joystick to push objects. During

phase, the robot collected, every tenth of a second, both the values of its sensory va
and the values of its motor variables (determined by the joystick position). This data se
then used to identify the free parameters of the parametric forms. 

Then, in a restitution phase, the robot has to reproduce the behavior it had just le
Every tenth of a second it decided the values of its motor variables, knowing the values
sensory variables and the internal representation of the task.

5.2 Specification

Having defined our goal, we describe the three steps necessary to define the preli
knowledge. 

1 - Chose the pertinent variables

2 - Decompose the joint distribution

3 - Define the Parametric forms

Variables

First, the programmer specifies which variables are pertinent for the task. 
To push objects it is necessary to have an idea of the position of the objects relative

robot. The front proximeters provide this information. However, we chose to sum up
information of these six proximeters by the two variables  and .

We also chose to set the translation speed to a constant and to operate the robo
rotation speed . 

These three variables are all we need to push obstacles. Their definitions are summ
as follows:

[S5.1]

Decomposition

In the second specification step, we give a decomposition of the joint probab
 as a product of simpler terms. This distribution is cond

tioned by both , the preliminary knowledge we are defining, and  a data se
will be provided during the learning phase.

[S5.2]

The first equality results from the application of the product rule (equation [E3.6]).

Dir Prox

Vrot

Dir 10– … 10, ,{ }∈ Dir 21=,
Prox 0 … 15, ,{ }∈ Prox 16=,

Vrot 10– … 10, ,{ }∈ Vrot 21=,

Dir Prox Vrot⊗ ⊗ ∆ π-obstacle⊗|( )P

π-obstacle ∆

Dir Prox Vrot⊗ ⊗ ∆ π-obstacle⊗|( )P

Dir ∆ π-obstacle⊗|( )P Prox Dir ∆ π-obstacle⊗ ⊗|( )P Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|( )P××=

Dir ∆ π-obstacle⊗|( )P Prox ∆ π-obstacle⊗|( )P Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|( )P××=
10
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second results from the simplification 
which means that we consider that  and  are independent. The distances 
objects and their bearings are not contingent.

Parametric forms

To be able to compute the joint distribution, we finally need to assign parametric form
each of the terms appearing in the decomposition:

[S5.3]

We have no a priori information about the direction and the distance of the obstac
Hence,  and  are uniform distributions; all direc
tions and proximities have the same probability.

For each sensory situation, we believe that there is one and only one rotation spe
should be preferred. The distribution  is unimodal. Howev
depending of the situation, the decision to be made for  may be more or less certain
is resumed by assigning a Gaussian parametrical form to 

5.3 Identification

We drive the robot with a joystick (see Movie 111), and collect a set of data . Let us call th
particular set of data corresponding to this experiment . A datum collected at time
a triplet .

The free parameters of the parametric forms (means and standard deviations for 
 Gaussians) can then be identified.

Finally, it is possible to compute the joint distribution:

[E5.1]

According to equation [E3.16], the robot can answer any question concerning this
distribution.

We call the distribution  a description of the task. A
description is the result of identifying the free parameters of a preliminary knowledge u
some given data. Hence, a description is completely defined by a couple preliminary k
edge + data. That is why a conjunction  always appears to the right of a descriptio

5.4 Utilization

To render the pushing obstacle behavior just learned, the Bayesian controller is called
tenth of a second :

1 - The sensors are read and the values of  and  are computed

2 - The Bayesian program is run with the query:

11. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans7/T7.mov (QuickTime, 4.4 Mo)

Prox Dir ∆ π-obstacle⊗ ⊗|( )P Prox ∆ π-obstacle⊗|( )P=

Prox Dir

Dir ∆ π-obstacle⊗|( )P Uniform≡
Prox ∆ π-obstacle⊗|( )P Uniform≡

Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|( )P G µ Prox Dir,( ) σ Prox Dir,( ),( )≡

Dir ∆ π-obstacle⊗|( )P Prox ∆ π-obstacle⊗|( )P

Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|( )P

Vrot

Vrot Prox Dir ∆ π-obstacle⊗ ⊗ ⊗|( )P

∆
δ-push t

vrott dir t proxt, ,( )

Dir Prox×

Dir Prox Vrot⊗ ⊗ δ-push π-obstacle⊗|( )P

Dir π-obstacle|( )P Prox π-obstacle|( )P× Vrot Prox Dir δ-push π-obstacle⊗ ⊗ ⊗|( )P×=

Dir Prox Vrot⊗ ⊗ δ-push π-obstacle⊗|( )P

δ π⊗

dir t proxt
11
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[E5.2]

3 - The drawn  is sent to the motors

5.5 Results, lessons and comments

Results

As shown in Movie 111, the Khepera learns how to push obstacles in 20 to 30 second
learns the particular dependency, corresponding to this specific behavior, between th
sory variables  and  and the motor variable .

This dependency is largely independent of the particular characteristics of the ob
(weight, color, balance, nature, etc.). Therefore, as shown in Movie 212, the robot is also able
to push different objects. This, of course, is only true within certain limits. For instance
robot will not be able to push the object if it is too heavy.

Method

In this experiment we apply a precise three-step method to program the robot.

1 - Specification : define the preliminary knowledge

1.1 - Choose the pertinent variables

1.2 - Decompose the joint distribution

1.3 - Define the Parametric forms

2 - Identification n:identify the free parameters of the preliminary knowledge

3 - Utilization : ask a question to the joint distribution

In the sequel, we will use the very same method for all the other experiments.

Variations

Numerous different behaviors may be obtained by changing some of the different co
nents of a Bayesian program in the following ways.

• It is possible to change the question, keeping the description unchanged. For
instance, if the  information is no longer available because of some failure, th
robot may still try to push the obstacles knowing only their direction. The query is
then:

[E5.3]

• It is possible to change the data, keeping the preliminary knowledge unchanged.
For instance, with the same preliminary knowledge , we taught the robo
to avoid objects or to follow their contour (see Figure 4 and Movie 313). Two new
descriptions14 were obtained by changing only the driving of the robot during the

12. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans8/T8.mov (QuickTime, 1Mo)
13. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans9/T9.mov (QuickTime, 3.6Mo)
14.  and 

Draw Vrot proxt dir t δ-push π-obstacle⊗ ⊗ ⊗|( )P( )

vrott

Dir Prox Vrot

Prox

Draw Vrot dirt δ-push π-obstacle⊗ ⊗|( )P( )

π-obstacle

Dir Prox Vrot⊗ ⊗ δ-avoid π-obstacle⊗|( )P Dir Prox Vrot⊗ ⊗ δ-follow π-obstacle⊗|( )P
12

http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans8/T8.mov
http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans8/T8.mov
http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans8/T8.mov
http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans9/T9.mov
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learning phase. As a result, two new programs were obtained leading to th
expected behaviors : «obstacle avoidance» and «contour following». 

• Finally, it is possible to change the preliminary knowledge, which leads to com-
pletely different behaviors. Numerous examples will be presented in the sequel o
this paper. For instance, we taught the robot another reactive behavior called phot
taxy. Its goal is then to move toward a light source. This new preliminary knowl-
edge  uses the variables  and .  roughly corresponds to
the direction of the light.

6. Behavior combination

6.1 Goal and experimental protocol

In this experiment we want the robot to go back to its base where it can recharge. 
This will be obtained with no further teaching. As the robot's base is lit, the light grad

usually gives good hints on its direction. Consequently, we will obtain the homing beh
by combining together the obstacle avoidance behavior and the phototaxy behavior. B
gramming this behavior we will illustrate one possible way to combine Bayesian prog
that make use of «command variable».

6.2 Specification

Variables

We need , ,  and , the four variables already used in the two comp
behaviors. We also need a new variable  which acts as a command to switch from 
ance to phototaxy. 

Figure 4: Contour following (superposed images)

π-phototaxy1 Vrot Theta1 Theta1

Dir Prox Theta1 Vrot

H

13
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[S6.1]

Decomposition

We believe that the sensory variables ,  and  are independent from one an
Far from any objects, we want the robot to go toward the light. Very close to obstacle
want the robot to avoid them. Hence, we consider that  should only depend on 
Finally, we believe that  must depend on the other four variables. These progra
choices lead to the following decomposition:

[S6.2]

Parametric forms

We have no a priori information about either the direction and distance of objects or 
direction of the light source. Consequently, we state:

[S6.3]

 is a command variable to switch from avoidance to phototaxy. This means that 
 the robot should behave as it learned to do in the descrip

 and when  the robot should behav
according to the description . Therefore, we state:

[S6.4]

We want a smooth transition from phototaxy to avoidance as we move closer and 
to objects. Hence we finally state:

[S6.5]

The discrete approximation of the Sigmoid function we use above, which will no
defined in the current paper, is shown in Figure 5.

The preliminary knowledge  is defined by specifications [S6.1], [S6.2], [S6
[S6.4] and [S6.5].

6.3 Identification

There are no free parameters in preliminary knowledge . No learning is required.

Dir 10– … 10, ,{ }∈ Dir 21=,
Prox 0 … 15, ,{ }∈ Prox 16=,

Theta1 170– … 180, ,{ }∈ Theta1 36=,
Vrot 10– … 10, ,{ }∈ Vrot 21=,

H avoidance phototaxy,{ }∈ H 2=,

Dir Prox Theta1

H Prox

Vrot

Dir Prox Theta1 H Vrot⊗ ⊗ ⊗ ⊗ ∆ π-home⊗|( )P

Dir π-home|( )P Prox π-home|( )P Theta1 π-home|( )P H Prox π-home⊗|( )P×××=

. Vrot Dir Prox Theta1 H π-home⊗ ⊗ ⊗ ⊗|( )P×

Dir π-home|( )P Uniform≡
Prox π-home|( )P Uniform≡

Theta1 π-home|( )P Uniform≡

H

H avoidance=

Dir Prox Vrot⊗ ⊗ δ-avoid π-obstacle⊗|( )P H phototaxy=

Theta1 Vrot⊗ δ-phototaxy π-phototaxy1⊗|( )P

Vrot Dir Prox Theta1 avoidance π-home⊗ ⊗ ⊗ ⊗|( )P Vrot Dir Prox δ-avoid π-obstacle⊗ ⊗ ⊗|( )P≡
Vrot Dir Prox Theta1 phototaxy π-home⊗ ⊗ ⊗ ⊗|( )P Vrot Theta1 δ-phototaxy π-phototaxy1⊗ ⊗|( )P≡

avoidance Prox π-home⊗|( )P Sigmoidα β, Prox( )≡ α 9=( ) β 0 25,=( ),

phototaxy Prox π-home⊗|( )P 1 avoidance Prox π-home⊗|( )P–=

π-home

π-home
14
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6.4 Utilization

While Khepera returns to its base, we do not know in advance when it should avoid obs
or when it should go toward the light. Consequently, to render the homing behavior we
use the following question where  is unknown:

[E6.1]

Equation [E6.1] shows that the robot does a weighted combination between avoi
and phototaxy. Far from any objects ( ) it does pu
phototaxy. Very close to objects ( ) it does pu
avoidance. In between, it mixes the two.

6.5 Results, lessons and comments

Results

Figure 6 and Movie 415 show efficient homing behavior obtained this way.
Figures 7 and 8 present the probability distributions obtained when the robot must 

an obstacle on the left with a light source also on the left. As the object is on the lef
robot needs to turn right to avoid it. This is what happens when the robot is close t
objects (see Figure 7). However, when the robot is further from the object, the presen
the light source on the left influences the way the robot avoids obstacles. In that cas
robot may turn left despite the presence of the obstacle (see Figure 8). 

Figure 5: 

15. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans10/T10.mov (QuickTime, 4.3Mo)

Prox

P(avoidance | Prox ⊗  π-home)

avoidance Prox π-home⊗|( )P

H

Vrot Dir Prox Theta1 π-home⊗ ⊗ ⊗|( )P

Vrot H⊗ Dir Prox Theta1 π-home⊗ ⊗ ⊗|( )P
H
∑=

1
Σ
---

avoidance Prox π-home⊗|( )P Vrot Dir Prox δ-avoid π-obstacle⊗ ⊗ ⊗|( )P×[ ]
. phototaxy Prox π-home⊗|( )P Vrot Theta1 δ-phototaxy π-phototaxy1⊗ ⊗|( )P×[ ]+

×=

prox 0 phototaxy prox π-home⊗|( )P 1=,=

prox 15 avoidance prox π-home⊗|( )P 1=,=
15

http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans10/T10.mov
http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans8/T8.mov
http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans9/T9.mov
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Figure 6: Homing behavior (The arrow points out the light source)
(superposed images).

Figure 7: Homing behavior (Khepera close to an object on its left). The top left 
distribution shows the knowledge on  given by the phototaxy description; the top
right is  given by the avoidance description; the bottom left shows the knowledge

of the «command variable» ; finally the bottom right shows the resulting 
combination on .

(Dir  = -5, Prox = 10, Lum = -90)
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Descriptions combination method

In this experiment we present a simple instance of a general method to combine descr
to obtain a new mixed behavior. This method uses a command variable  to switch fro
of the composing behaviors to another. A probability distribution on  knowing some 
sory variables should then be specified or learned16. The new description is finally used b
asking questions where  is unknown. The resulting sum on the different cases of 
the mixing.

This shows that Bayesian robot programming allows easy, clear and rigorous spe
tions of such combinations. This seems to be an important benefit compared to some
methods that have great difficulties in mixing behaviors with one another, such as Br
subsumption architecture (Brooks, 1986; Maes, 1989) or neural networks. Description
bination appears to naturally implement a mechanism similar to HEM17 (Jordan & Jacobs,
1994).

7. Sensor fusion

7.1 Goal and experimental protocol

The goal of this experiment is to fuse the data originating from the eight light senso

Figure 8: Homing behavior (Khepera further from the object on its left).
This figure is structured as Figure 7.

16. see (Diard & Lebeltel, 1999)
17. Hierachical Mixture of Expert

(Dir  = -5, Prox = 8, Lum = -90)

phototaxy
avoidance

P(Vrot | Theta1 ⊗  δ-phototaxy ⊗  π-phototaxy1) P(Vrot | Dir  ⊗  Prox ⊗  δ-avoid ⊗  π-obstacle)

P(H | Prox ⊗  π-home) P(Vrot | Dir  ⊗  Prox ⊗  Theta1 ⊗  π-home)
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determine the position of a light source.
This will be obtained in two steps. In the first one, we specify one description for 

sensor individually. In the second one, we mix these eight descriptions to form a globa

7.2 Sensor model

Specification

Variables

To build a model of the light sensor , we only require two variables:  the reading o
 sensor, and , the bearing of the light source.

[S7.1]

Decomposition

The decomposition simply specifies that the reading of a sensor obviously depends 
position of the light source

[S7.2]

Parametric forms

As we have no a priori information on the position of the source, we state:

[S7.3]

The distribution  is usually very easy to specify because it c
responds exactly to the kind of information that the sensor supplier provides: the exp
readings of its device when exposed to a light. For the Khepera’s light sensors, we 
(see Figure 9):

Figure 9: 

i Li

i
th

Theta2

Li 0 … 511, ,{ }∈ Li 512=,
Theta2 170– … 180, ,{ }∈ Theta2 36=,

Theta2 Li⊗ ∆ π-sensor⊗|( )P

Theta2 π-sensor|( )P Li Theta2 ∆ π-sensor⊗ ⊗|( )P×=

Theta2 π-sensor|( )P Uniform≡

Li Theta2 ∆ π-sensor⊗ ⊗|( )P

K (Theta2,0)

Theta2 (°)

K Theta2 0,( )
18
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[S7.4]

In specification [S7.4],  stands for the position of the sensor with respect to the r
and will be used later to «rotate» this model for different sensors. 

Specifications [S7.1], [S7.2], [S7.3] and [S7.4] are the preliminary knowledge co
sponding to this sensor model. This preliminary knowledge is named .

Identification

No identification is required as there are no free parameters in .
However, it may be easy and interesting to calibrate specifically each of the eight

sensors. This could be achieved, for instance, by identifying parameters  and  ind
dently for each sensor, by observing the response of the particular sensor to a light so

7.3 Fusion

Specification

Variables

The interesting variables are the eight variables  and :

[S7.5]

Decomposition

The decomposition of the joint distribution is chosen to be:

[S7.6]

The first equality results from the product rule [E3.6]. The second from simplification
the kind:

[E7.1]

These simplifications may seem peculiar as obviously the readings of the different
sensors are not independent. The exact meaning of these equations is that we conside
(the position of the light source) to be the main reason for the contingency of the rea
Consequently, we state that, knowing , the readings  are independent.  
cause of the readings and knowing the cause, the consequences are independent. 
indeed, a very strong hypothesis. The snesors may be correlated for numerous other r

Li Theta2 π-sensor⊗|( )P GK Theta2 θi,( ) σ, Li( )≡

K Theta2 θi,( ) 1 1

1 e
4β Theta2 θi– α–( )–

+
-------------------------------------------------------–= α 45=( ) β 0 03,=( ),

θi

π-sensor

π-sensor

α β

Li Theta2

L1 0 … 511, ,{ }∈ L1 512=,
…

L8 0 … 511, ,{ }∈ L8 512=,
Theta2 170– … 180, ,{ }∈ Theta2 36=,

Theta2 L1 L2 L3 L4 L5 L6 L7 L8⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ∆ π-fusion⊗|( )P

Theta2 ∆ π-fusion⊗|( )P L1 Theta2 ∆ π-fusion⊗ ⊗|( )P L2 L1 Theta2 ∆ π-fusion⊗ ⊗ ⊗|( )P××=

… L8 L7 L6 L5 L4 L3 L2 L1 Theta2 ∆ π-fusion⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗|( )P×
Theta2 π-fusion|( )P L1 Theta2 ∆ π-fusion⊗ ⊗|( )P L2 Theta2 ∆ π-fusion⊗ ⊗|( )P××=

… L8 Theta2 ∆ π-fusion⊗ ⊗|( )P×

Lj Lj 1– … L1 Theta2 ∆ π-fusion⊗ ⊗ ⊗ ⊗ ⊗|( )P Lj Theta2 ∆ π-fusion⊗ ⊗|( )P=

Theta2

Theta2 Lj Theta2
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For instance, ambient temperature influences the functioning of any electronic devic
consequently correlates their responses. However, we choose, as a first approximat
disregard all these other factors.

Parametric forms

We do not have any a priori information on :

[S7.7]

 is obtained from the model of each sensor as specified in pr
ous section (7.2):

[S7.8]

Identification

As there are no free parameters in , no identification is required.

Utilization

To find the position of the light source the standard query is:

[E7.1]

This question may be easily answered using equation [E3.16] and specification [S7

[E7.2]

Values drawn from this distribution may be efficiently computed given that the distr
tion  is simply a product of eight very simple ones, and giv
that the normalizing constant  does not need to be computed for a random draw.

Many other interesting questions may be asked of this description, as the following
• It is possible to search for the position of the light source knowing only the read

ings of a few sensors:

[E7.3]

• It is possible to check whether the sensor  is out of order. Indeed, if its reading 
at time t, persists in being inconsistent with the readings of the others for som
period, it is a good indication of a malfunction. This inconsistency may be detecte
by a very low probability for :

Theta2

Theta2 π-fusion|( )P Uniform≡

Li Theta2 ∆ π-fusion⊗ ⊗|( )P

Li Theta2 ∆ π-fusion⊗ ⊗|( )P Li Theta2 π-sensor⊗|( )P≡

π-fusion

Draw Theta2 l1t ...... l8t π-fusion⊗ ⊗ ⊗|( )P( )

Theta2 l1t … l8t π-fusion⊗ ⊗ ⊗|( )P

1
Σ
--- li t Theta2 π-sensor⊗|( )P

i 1=

8

∏×=

Theta2 l1t … l8t π-fusion⊗ ⊗ ⊗|( )P

Σ

Theta2 l1t l2t π-fusion⊗ ⊗|( )P

1
Σ
--- l1t Theta2 π-sensor⊗|( )P l2t Theta2 π-sensor⊗|( )P××=

i li t

li t
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7.4 Results, lessons and comments

Results

Figure 10 presents the result obtained for a light source with a bearing of 10°: 

The eight peripheral figures present the distributions  correspo
ing to the eight light sensors. The central schema presents the result of the fusion, the
bution . Even poor information coming from each separa
sensor may blend as a certainty.

Sensor fusion method

In the experiment just presented, we have seen a simple instance of a general method 
out data fusion.

The key point of this method is in the decomposition of the joint distribution, which
been considerably simplified under the hypothesis that «knowing the cause, the c
quences are independent». This is a very strong hypothesis, although it may be assu

Figure 10: The result of a sensor fusion for a light source with a bearing of 10°

l1t l2t … l8t π-fusion⊗ ⊗ ⊗|( )P

1
Σ
--- li t Theta2 π-sensor⊗|( )P

i 1=

8

∏
Theta2
∑×=
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P(Theta2 | L3 ⊗  π-sensor)
(L3 =171)

90

P(Theta2 | L4 ⊗  π-sensor)
(L4 =135)

P(Theta2 | L5 ⊗  π-sensor)
(L5 =280)

P(Theta2 | L6 ⊗  π-sensor)
(L6 =489)

P(Theta2 | L2 ⊗  π-sensor)
(L2 =422)

P(Theta2 | L1 ⊗  π-sensor)
(L1 =506)

P(Theta2 | L8 ⊗  π-sensor)
(L8 =511)

P(Theta2 | L7 ⊗  π-sensor)
(L7 =511)

P(Theta2 | L1⊗  ...⊗  L8 ⊗  π-fusion)
(Theta2 = 10)

Theta2 Li π-sensor⊗|( )P

Theta2 l1t … l8t π-fusion⊗ ⊗ ⊗|( )P
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This way of doing sensor fusion is very efficient. Its advantages are manifold.
• The signal is heightened.
• It is robust to a malfunction of one of the sensors.
• It provides precise information even with poor sensors.
• It leads to simple and efficient computations.

In this experiment, another fundamental advantage of Bayesian programming is c
evident. The description is neither a direct nor an inverse model. Mathematically, all 
ables appearing in a joint distribution play exactly the same role. This is why any que
may be asked of a description. Furthermore, there is none ill-posed problem. If a qu
may have several solutions, the probabilistic answer will simply have several peaks.

8. Hierarchical behavior composition

8.1 Goal and experimental protocol

In this experiment, we want to obtain phototaxy behavior based on  and .
We have already built such behavior based on  and , named . H

ever, as we saw in the previous section (7),  obtained by a sensor fusion has
advantages on  obtained by pretreatment.

8.2 Specification

Variables

The variables we require are the nine variables used in the sensor fusion desc
 and :

[S8.1]

Decomposition

The decomposition states that if we know , the position of the light source, the
exact readings of the light sensors do not matter for :

[S8.2]

Parametric forms

The first distribution is directly obtained using the sensor fusion description:

Vrot Theta2

Vrot Theta1 π-phototaxy1

Theta2

Theta1

L1 L2 L3 L4 L5 L6 L7 L8 Theta2, , , , , , , , Vrot

L1 0 … 511, ,{ }∈ L1 512=,
…

L8 0 … 511, ,{ }∈ L8 512=,
Theta2 170– … 180, ,{ }∈ Theta2 36=,

Vrot 10– … 10, ,{ }∈ Vrot 21=,

Theta2

Vrot

Theta2 L1 L2 L3 L4 L5 L6 L7 L8 Vrot⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ∆ π-phototaxy2⊗|( )P

Theta2 L1 L2 L3 L4 L5 L6 L7 L8⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ π-phototaxy2|( )P Vrot Theta2 π-phototaxy2⊗|( )P×=
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[S8.3]

The second one is obtained from  as:

[S8.4]

Specifications [S8.1], [S8.2], [S8.3] and [S8.4] are the components of prelimi
knowledge .

8.3 Identification

No identification is required as there are no free parameters in .

8.4 Utilization

In order to drive Khepera toward the light with description , one should ans
the following question:

[E8.1]

Applying successively the marginalization rule ([E3.10]), the product rule ([E3.6]) 
the specifications [S8.3] and [S8.4], we obtain:

[E8.2]

8.5 Results, lessons and comments

Results

The results obtained this way are presented in the three following figures.
Figure 11 presents the results for a light source in front of the robot. The left part s

 and the right part . 
Figure 12 presents the results for two light sources, one 90° left of the robot, and th

ond 90° right. The left part exhibits two symmetrical peaks f
. Consequently, the right part also shows two symmetri

peaks for . The robot may decide to turn left or right wi
equal probabilities.

If we suppose it decided to turn left, at next the time step Khepera will have the left
source 80° to its left and the right one 100° to its right. Figure 13 shows that it has t
high probability of continuing toward the left light source.  

Hierarchical composition method

In Section 6 we showed a method of combining different behaviors (descriptions) in ord
obtain more complex ones. By contrast, in this experiment we present a method to hier
cally compose descriptions, in order to incrementally obtain more abstract ones.

Theta2 L1 L2 L3 L4 L5 L6 L7 L8⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ π-phototaxy2|( )P

. Theta2 L1 L2 L3 L4 L5 L6 L7 L8⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ π-fusion|( )P≡

π-phototaxy1

Vrot Theta2 π-phototaxy2⊗|( )P Vrot Theta2 π-phototaxy1⊗|( )P≡

π-phototaxy2

π-phototaxy2

π-phototaxy2

Vrot l1t … l8t π-phototaxy2⊗ ⊗ ⊗|( )P

Vrot L1 … L8 π-phototaxy2⊗ ⊗ ⊗|( )P

Vrot Theta2⊗ L1 … L8 π-phototaxy2⊗ ⊗ ⊗|( )P
Theta2
∑=

Theta2 L1 … L8 π-phototaxy2⊗ ⊗ ⊗|( )P Vrot Theta2 π-phototaxy2⊗|( )P×
Theta2
∑=

Theta2 L1 … L8 π-fusion⊗ ⊗ ⊗|( )P Vrot Theta2 π-phototaxy1⊗|( )P×
Theta2
∑=

Theta2 L1 … L8 π-fusion⊗ ⊗ ⊗|( )P Vrot L1 … L8 π-phototaxy2⊗ ⊗ ⊗|( )P

Theta2 L1 … L8 π-fusion⊗ ⊗ ⊗|( )P

Vrot L1 … L8 π-phototaxy2⊗ ⊗ ⊗|( )P
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A description of level  may, thus, be used to infer a variable for a description at 
. In the experiment just described, for instance, the description  is used to 

 for description , and the result of this hierarchical composition is 
description . In this experiment, all the information about  is preserved. T
information is passed as the distribution  and all the poss
values of  are taken into account by way of the sum over this variable. However, a

Figure 11: Light source in front of the robot.

Figure 12: Two light sources: 90° left and 90° right.

Figure 13: Two light sources: 80° left and 100° right.
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n

n 1+ π-fusion

Theta2 π-phototaxy1

π-phototaxy2 Theta2

Theta2 L1 … L8 π-fusion⊗ ⊗ ⊗|( )P

Theta2
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will show in 11, there is a possible alternative where a value for the variable at level  i
decided, then passed to the description at level . In our example, we could have dr
value for  according to  and then passed this value

. This second method is obviously much more computationa
efficient than the first one (the sum over  is no longer necessary), although the pr
pay is that some information is lost in this second process.

9. Situation recognition

9.1 Goal and experimental protocol

The goal of this experiment is to distinguish different objects from one another.
At the beginning of the experiment the robot does not know any object. It must in

mentally build categories for the objects it encounters. When it knows  of them, the 
must decide if a presented object enters in one of the  categories or if it is something
If it is a new object, the robot must create a new category and should start to learn it.

9.2 Specification

Variables

The Khepera does not use its camera for this task. It must «grope» for the object. It us
«contour following» behavior to do so (see Figure 4). It does a tour of the presented 
and computes at the end of this tour four new variables:  the number of left turns, 
number of right turns,  the perimeter and  the longest straight line. The values of 
variables are not completely determined by the shape of the object, given that the c
following behavior is quite choppy.

We also require a variable  to identify the different classes of object. The value 
is reserved for the class of unknown (not yet presented) objects.

Finally, we obtain:

[S9.1]

Decomposition

Obviously, the four variables , ,  and  are not independent of one another. H
ever, by reasoning similar to the sensor fusion case (see Section 7), we consider that k
the object , they are independent. Indeed, if the object is known, its perimeter or the
ber of turns necessary to complete a tour are also known. This leads to the following d
position:

n

n 1+

Theta2 Theta2 L1 … L8 π-fusion⊗ ⊗ ⊗|( )P

Vrot Theta2 π-phototaxy1⊗|( )P

Theta2

n

n

Nlt Nrt

Per Lrl

O O 0=

Nlt 0 … 24, ,{ }∈ Nlt 25=,
Nrt 0 … 24, ,{ }∈ Nrt 25=,

Per 0 … 9999, ,{ }∈ Per 10000=,
Lrl 0 … 999, ,{ }∈ Lrl 1000=,

O 0 … 15, ,{ }∈ O 16=,

Nlt Nrt Per Lrl

O
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Parametric forms

We have no a priori information on the presented object:

[S9.3]

For an observed object ( ), we state that the distributions on  and  are La
succession laws18 and that the distributions on  and  are Gaussian laws:

[S9.4]

Finally, we state that for a new object ( ) we have no a priori information about ,
,  and : 

[S9.5]

The preliminary knowledge composed of specifications [S9.1], [S9.2], [S9.3], [S9.4]
[S9.5] is named .

9.3 Identification

When an object is presented to the robot, if it is recognized as a member of a class 
parameters of the two Laplace succession laws and the two Gaussian laws correspon
this class are updated.

If the object is considered by Khepera to be a new one, then a new class is creat
the parameters of the distributions are initialized with the values of , ,  and 
read.

The learning process is incremental. Contrary to what we have seen up to this poin
identification and utilization phases are not separated. Each new experience changes
of data , and leads to a new description .

18. A Laplace succession law on a variable V is defined by:  with  the total number of observa

 the number of possible values for  and  the number of observations of the specific value .

O Nlt Nrt Per Lrl⊗ ⊗ ⊗ ⊗ ∆ π-object⊗|( )P

O π-object|( )P Nlt O ∆ π-object⊗ ⊗|( )P Nrt O ∆ π-object⊗ ⊗|( )P××=

. Per O ∆ π-object⊗ ⊗|( )P× Lrl O ∆ π-object⊗ ⊗|( )P×

O π-object|( )P Uniform≡

O 0≠ Nlt Nrt

Per Lrl

1 nv+

N V+
--------------------- N

V V nv v

oi O∈∀ oi o0≠,

Nlt oi ∆ π-object⊗ ⊗|( )P L1 nNlt oi( )( )≡

Nrt oi ∆ π-object⊗ ⊗|( )P L2 nNrt oi( )( )≡

Per oi ∆ π-object⊗ ⊗|( )P G1 µ oi( ) σ oi( ),( )≡

Lrl o i ∆ π-object⊗ ⊗|( )P G2 µ oi( ) σ oi( ),( )≡

O 0= Nlt

Nrt Per Lrl

Nlt o0 π-object⊗|( )P Uniform≡

Nrt o0 π-object⊗|( )P Uniform≡

Per o0 π-object⊗|( )P Uniform≡

Lrl o0 π-object⊗|( )P Uniform≡

π-object

oi

Nlt Nrt Per Lrl

∆ O Nlt Nrt Per Lrl⊗ ⊗ ⊗ ⊗ δ n π-object⊗|( )P
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9.4 Utilization

After  experiences, to recognize a presented object, the question to answer is:

[E9.1]

This may be simply computed by:

[E9.2]

If the most probable value for  is zero, then Khepera assumes that it is facing a
object. Otherwise, this most probable value is considered to correspond to the reco
object.

9.5 Results, lessons and comments

Results

The objects shown on Figure 14 have been presented to the robot, five times each, in r
order. Each time the question was as follows: «Do you know this object, or is it a new o
The robot did not ever fail to recognize novelty. At the end of the experiment, it was ab
classify all the objects except for the two in the upper right corners. These two objects
the exact same square basis and thus may not be distinguished from one another gi
four chosen variables. In these cases, Khepera was in the position of someone asked 
tify the color of an object by groping it.

Lessons

The main lesson to retain from this experiment is that categorization of objects or situa
may be considered as developing some specific sensor. Indeed, the method used in t
tion for object recognition is very similar to what was achieved for sensor fusion in Se
7. The hypotheses are similar and the advantages are the same.

Figure 14: The different objects presented to Khepera.

n 1–

O nltn nrtn pern lrl n⊗ ⊗ ⊗ δ n 1– π-object⊗ ⊗|( )P

O Nlt Nrt Per Lrl⊗ ⊗ ⊗ δ n 1– π-object⊗ ⊗|( )P

1
Σ
--- Nlt O δn 1– π-object⊗ ⊗|( )P× Nrt O δn 1– π-object⊗ ⊗|( )P×=

. Per O δn 1– π-object⊗ ⊗|( )P Lrl O δn 1– π-object⊗ ⊗|( )P××

O
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10. Temporal sequences

10.1 Goal and experimental protocol

In this paper, to exemplify the Bayesian programming method, we choose a «nightwatc
task». This may be obtained as temporal sequences of six simpler behaviors:

1 idle: The robot is at its base, recharging its batteries. It waits for both an order an
enough energy to leave.

2 patrol: It wanders around its environment and sounds an alarm if it detects an
movement.

3 recognition: The robot tours object to identify them.
4 fire-intervention: Khepera tries to extinguish fires by blowing them using its micro-

turbine.
5 homing: It goes to its base when ordered to do so.
6 recharge: When low on energy, it goes to its base to recharge.

The purpose of this section is to show how such temporal sequences may be spec
the Bayesian framework.

10.2 Specification

Variables

The first variable to consider is ,which may takes the six preceding values idle,
patrol, recognition, fire-intervention, homing and recharge. This variable will be used to
select a given behavior.

This selection will be made according to the values of the six following variables:
• : a binary variable, used to order the khepera to work.
• : a variable that measures the level of available energy.  may take fou

different values : very-high, high, low and very-low.
• : a binary variable, true if the robot is at its base.
• : a binary variable, true if the robot detects any fire.
• : a binary variable, used to order the Khepera to recognize an object.
• Finally,  a variable taking the same six values as , used to memo

rize which behavior was selected at time .
This may be summed up as usual :

Behavior

Vigil

Energy Energy

Base

Fire

Identify

Behavior_t-1 Behavior

t 1–
28
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[S10.1]

Decomposition

At each time step the robot will select a behavior knowing the values of these six var
by answering the question:

[E10.1]

It is tempting to specify this distribution directly. It would correspond to the usual p
gramming method where the conditions at time  establish what should be done at ti

We propose to do the exact opposite. Indeed, it is quite easy, knowing the behav
have some notion of the possible values of the variables , , , , and 
For instance, if the Khepera is patrolling, it means that it has been necessarily ordered
so and that  is true. Furthermore, we consider that knowing the behavior, these five v
ables are independent. These assumptions lead to the following decomposition:

[S10.2]

Parametric forms

First we chose a uniform a priori value for :

[S10.3]

We chose to specify all the other terms of this decomposition as discrete distribu
Their different values will be given a priori, one by one, using tables.

For instance,  is specified by table 1.
This table should be read by column. Each column corresponds to the probabil

 knowing a certain behavior of the robot at time . Consequently, each col
should sum to 1 to respect the normalization constraint. 

For instance, the first column of table 2 specifies the probabilities of variable 
knowing that the behavior of robot at time  was idle. If Khepera was idle, then it may stay
idle with a high probability (90%), it may not directly change its behavior to either recogni-
tion, homing or recharge (probability 0), it may switch to patrol or fire-intervention with a
low probability (0.05 for both case obtained by normalization as specified by the «x»).

If the Khepera was in mode patrol (second column), the most probable behavior is tha
stays in this mode, although it can switch to any other one. If the Khepera was in modrec-
ognition (third column) we fix a very high probability for it to stay in this mode because

Behavior idle patrol recognition fire intervention– homing recharge, , , , ,{ }∈ Behavior 6=,
Vigil true false,{ }∈ Vigil 2=,

Energy very high– high low very low–, , ,{ }∈ Energy 4=,
Base true false,{ }∈ Base 2=,
Fire true false,{ }∈ Fire 2=,

Identify true false,{ }∈ Identify 2=,
Behavior_t-1 idle patrol … recharge, , ,{ }∈ Behavior_t-1 6=,

Behavior Vigil Energy Base Fire Identify Behavior_t-1π-behavior⊗ ⊗ ⊗ ⊗ ⊗ ⊗|( )P

t 1– t

Vigil Energy Base Fire Identify

Vigil

Behavior Vigil Energy Base Fire Identify Behavior_t-1⊗ ⊗ ⊗ ⊗ ⊗ ⊗ π-behavior|( )P

Behavior_t-1 π-behavior|( )P Behavior Behavior_t-1 π-behavior⊗|( )P×=

. Vigil Behavior π-behavior⊗|( )P Energy Behavior π-behavior⊗|( )P××

. Base Behavior π-behavior⊗|( )P Fire Behavior π-behavior⊗|( )P××

. Identify Behavior π-behavior⊗|( )P×

Behavior_t-1 π-behavior|( )P

Behavior_t-1 π-behavior|( )P Uniform≡

Behavior Behavior_t-1 π-behavior⊗|( )P

Behavior t 1–

Behavior

t 1–
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do not want it to be easily distracted from this task and we preclude any possibili
switching to idle. In mode fire-intervention (column 4) we exclude any switch to idle, recog-
nition or homing. Finally, when in mode homing or recharge, the most probable behavior i
to not change mode, although nothing is definitely excluded.

Table 2 mainly says that patrol and recognition suppose that Vigil is true and that homing
supposes that Vigil is false. When idle the probability that Vigil is true is not 0, because th
Khepera may be idle to recharge its batteries even when ordered to work.

Table 3 specifies that when idle it is more probable that Energy is low than high. It also
says that patrol and recognition suppose a high Energy and recharge the opposite.

Table 4 says that idle imposes that Base is true, when patrol, recognition, homing and
recharge suppose with a high probability that Khepera is not at its base.

Behavior / 
Behavior_t-1

idle patrol recognition fire-interv. homing recharge

idle 0.9 x 0 0 x x

patrol x 0.9 x x x x

recognition 0 x 0.99 0 x x

fire-interv. x x x x x x

homing 0 x x 0 0.9 x

recharge 0 x x x x 0.9

Table 1: 

Vigil / Behavior idle patrol recognition fire-interv. homing recharge

false 0.9 0 0 x 1 x

true 0.1 1 1 x 0 x

Table 2: 

Energy / Behavior idle patrol recognition fire-interv. homing recharge

very-low 0.325 0 0 x x 0.8

low 0.325 0.1 0.1 x x 0.2

high 0.25 x x x x 0

very-high 0.1 x x x x 0

Table 3: 

Base/ Behavior idle patrol recognition fire-interv. homing recharge

Table 4: 

Behavior Behavior_t-1 π-behavior⊗|( )P

Vigil Behavior π-behavior⊗|( )P

Energy Behavior π-behavior⊗|( )P

Base Behavior π-behavior⊗|( )P
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Table 5 means that when Khepera is facing a fire, it is necessarily in mode fire-interven-
tion. 

Finally, Table 6 says recognition imposes that Khepera has been ordered to do so (Iden-
tify is true).

10.3 Identification

No identification is required, as there are no free parameters in 

10.4 Utilization

The robot chooses its behavior with the following query:

[E10.1]

that can be easily computed:

[E10.2]

10.5 Results, lessons and comments

Results

Using these techniques, Khepera obtains temporal sequences of behaviors that appe
vincing to a human observer (an instance of such a sequence will be given in the ne
tion, see Movie 519).

For instance, these sequences are stable. Khepera does not behave like a weat

false 0 0.99 0.99 x 0.99 0.99

true 1 0.01 0.01 x 0.01 0.01

Fire / Behavior idle patrol recognition fire-interv. homing recharge

false 1 1 1 0 1 1

true 0 0 0 1 0 0

Table 5: 

Identify / 
Behavior

idle patrol recognition fire-interv. homing recharge

false x x 0 x x x

true x x 1 x x x

Table 6: 

Table 4: Base Behavior π-behavior⊗|( )P

Fire Behavior π-behavior⊗|( )P

Identify Behavior π-behavior⊗|( )P

π-behavior

Draw Behavior Vigil Energy Base Fire Identify Behavior_t-1π-behavior⊗ ⊗ ⊗ ⊗ ⊗ ⊗|( )P( )

Behavior Vigil Energy Base Fire Identify Behavior_t-1π-behavior⊗ ⊗ ⊗ ⊗ ⊗ ⊗|( )P

1
Σ
--- Behavior_t-1 π-behavior|( )P× Behavior Behavior_t-1 π-behavior⊗|( )P×=

. Vigil Behavior π-behavior⊗|( )P Energy Behavior π-behavior⊗|( )P××

. Base Behavior π-behavior⊗|( )P Fire Behavior π-behavior⊗|( )P Identify Behavior π-behavior⊗|( )P×××
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that changes its mind every second. 

Inverse programming

This experiment demonstrates a completely new method of specifying temporal sequen
tasks that could be called «inverse temporal programming». Indeed, the programme
not specify, as usual, the necessary conditions for an action. On the contrary, he or sh
ifies for each action the expected observations and assumes that knowing the action
observations are independent.

Inverse programming presents two main advantages.
• It is robust to unforeseen situations. A sequence of actions is always produce

even in cases that the programmer did not explicitly take into account.
• Due to the conditional independence assumption, the number of cases to take in

account grows only linearly with the number of conditioning variables.
The a priori specification of the probability distributions of the observed variables kn

ing the behavior may be a difficulty. However its is possible to learn these distributions
Diard & Lebeltel, 1999).

11. Integration: A Nightwatchman Task

11.1 Goal and experimental protocol

The practical goal and experimental protocol of the night watchman task has already
presented in Section 10.1.

The scientific purpose of this last experiment is to prove that Bayesian robots prog
ming is an efficient constructive methodology and that all the previous descriptions m
integrated into a single synthetic one.

Three descriptions and a few corresponding variables necessary for the night watc
task have not yet been presented to keep the paper short:

1 -  used by Khepera to decide if it is at
its base

2 -  another temporal sequencing
description required because some of the behaviors are successions of react
movements.

3 -  built
on the reactive behaviors to finally decide the rotation and translation speeds.

11.2 Specification

Variables

The nightwatchman task requires 41 variables:
• Thirty-three «sensory» variables that Khepera may read every tenth of a secon

When convenient, we will summarize these 33 variables by their conjunction (a
variable named ).

19. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science/Trans12/T12.small.mov (QuickTime,5.5Mo)

Base Px1 … Px8 L1 … L8⊗ ⊗ ⊗ ⊗ ⊗ ⊗ π-base( )P

Move Behavior Move_t-1 Tempo Tour⊗ ⊗ ⊗ ⊗ π-move|( )P

Vrot Vtrans Move H Dir Prox DirL ProxL Vtrans_c Theta2⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ π-speed|( )P

Sensory-variables
32
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[E11.1]

• Five internal variables: 
• Three «motor» variables that Khepera must compute. These three variables are 

rotation speed , the translation speed  and the identity of the object .

Decomposition and parametric forms

The decomposition of the joint distribution on these 41 variables is a product of a un
distribution on the sensory variables ( ) and eight questio
addressed to the previously defined descriptions:

[E11.2]

11.3 Identification

No identification is required.

11.4 Utilization

The ultimate question that Khepera must answer is:

[E11.3]

«What order should be sent to the motors, knowing the sensory state, and ignorin
values of the internal variables?»

The answer to that question is obtained, as usual, by summing over the five ignored
ables. This leads to the following result:

Sensory-variables Px1 … Px8 L1 … L8⊗ ⊗ ⊗ ⊗ ⊗≡
. Vigil Energy Fire Identify Behavior_t-1⊗ ⊗ ⊗ ⊗ ⊗
. Move_t-1 Tempo Tour Dir Prox DirL ProxL Vtrans_c⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
. Nlt Nrt Per Lrl⊗ ⊗ ⊗ ⊗

Base Theta2 Behavior Move H, , , ,

Vrot Vtrans O

Sensory-variablesπ-watchman( )P

Sensory-variables

Base Theta2 Behavior Move H⊗ ⊗ ⊗ ⊗
Vrot Vtrans O⊗ ⊗

π-watchman
 
 
 
 

P

Sensory-variablesπ-watchman( )P=

. Base Px1 … Px8 L1 … L8 π-base⊗ ⊗ ⊗ ⊗ ⊗ ⊗( )P×

. Theta2 L1 L2 L3 L4 L5 L6 L7 L8 π-fusion⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗|( )P×

. Behavior Vigil Energy Base Fire Identify Behavior_t-1π-behavior⊗ ⊗ ⊗ ⊗ ⊗ ⊗|( )P×

. Move Behavior Move_t-1 Tempo Tourπ-move⊗ ⊗ ⊗ ⊗|( )P×

. H Prox π-home⊗|( )P×

. Vrot Vtrans⊗ Move H Dir Prox DirL ProxL Vtrans_c Theta2 π-speed⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗|( )P×

. O Nlt Nrt Per Lrl⊗ ⊗ ⊗ π-object⊗|( )P×

Vrot Vtrans O⊗ ⊗ Sensory-variables π-watchman⊗|( )P
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This expression may seem complex. In fact, it exactly reflects the structure of the re
ing required to solve the problem.

• Recognizing the object is independent of the Khepera control.
• The innermost sum searches the  ignoring 

[E11.5]

• The intermediary sum searches the movement ignoring the  and .
• The position of the light source ( ) is estimated by the fusion of the light sen-

sors information.
• The command variable  is estimated according to the value of .
• The outermost sum searches for  and  ignoring the precise values of th

five internal variables.

No decision is made except the ultimate one about  and . Uncertainty is p
gated from the innermost level to the outermost. All the available information is taken
account. The resulting observed robot behavior is, indeed, a probabilistic mixture of th
ferent component descriptions.

Discarding no information has an obvious computational cost. The evaluation o
three levels of cascading sums may be very time consuming. Thus, the programme
choose to make decisions on any intermediary variables. This choice will always trade 
of efficiency for a loss of information. For instance, the most efficient possible prog
would make a decision for all the internal variables:

1 -  to decide if the robot is at its base,

2 -  to decide the  knowing  
,

3 -  to chose a movement knowing the 
,

4 -  to decide the position of the light 
source,

5 -  to decide between avoidance and phototaxy,

6 - and finally,  to control the robot.

Vrot Vtrans O⊗ ⊗ Sensory-variables π-watchman⊗|( )P

1
Σ
--- O Nlt Nrt Per Lrl⊗ ⊗ ⊗ π-object⊗|( )P×=

.

Move Behavior … Tour π-move⊗ ⊗ ⊗|( )P .×
Behavior Vigil … Behavior_t-1 π-behavior⊗ ⊗ ⊗|( )P

. Base Px1 ...... L8 π-base⊗ ⊗ ⊗( )P× 
 

Base
∑ 

 
 
 

Behavior
∑

. Theta2 L1 … L8 π-fusion⊗ ⊗ ⊗|( )P×

. H Prox π-home⊗|( )P×

. Vrot Vtrans⊗ Move … Theta2 π-speed⊗ ⊗ ⊗|( )P× 
 
 
 
 
 
 
 
 

Move

Theta2

H

∑×

Behavior Base

Behavior Vigil … Behavior_t-1 π-behavior⊗ ⊗ ⊗|( )P

. Base Px1 … L8 π-base⊗ ⊗ ⊗( )P× 
 

Base
∑

Behavior Vigil … Behavior_t-1 Px1 … L8 π-watchman⊗ ⊗ ⊗ ⊗ ⊗ ⊗|( )P=

Behavior Base

Theta2

H Prox

Vrot Vtrans

Vrot Vtrans

Draw Base Px1 … L8 π-base⊗ ⊗ ⊗( )P( )

Draw Behavior … Base … π-behavior⊗ ⊗ ⊗|( )P( ) Behavior
Base

Draw Move Behavior … π-move⊗ ⊗|( )P( )
Behavior

Draw Theta2 L1 … L8 π-fusion⊗ ⊗ ⊗|( )P( )

Draw H Prox π-home⊗|( )P( )

Draw Vrot Vtrans⊗ … π-speed⊗|( )P( )
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11.5 Results, lessons and comments

The results obtained are satisfactory to a human observer. The Khepera performed th
hundreds of time in various environments and conditions. The behavior was very robu
instance, this experiment ran without interruption, 10 hours a day for three days as a d
stration during a conference.

The Movie 519 shows the Khepera during one of these experiments. It success
shows:

• Khepera identifying an object,
• Khepera aborting its object recognition due to a possible fire detection,
• Khepera verifying that it is really facing a fire by trying to blow it,
• Khepera extinguishing the fire,
• Khepera patrolling the environment (it stops occasionally to detect movement an

sounds an alarm if it succeeds),
• Khepera returning to its base.

12. Synthesis

12.1 Principles, theoretical foundation and methodology

Principles

The dominant paradigm in robotics may be caricatured by Figure 16.
The programmer of the robot has an abstract conception of its environment. He o

may describe the environment in geometrical terms because the shape of objects and t

Figure 15: The night watchman task.
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of the world can be specified. He or she may be described the environment in ana
terms because laws of physics that govern this world are known. The environment ma
be described in symbolic terms because both the objects and their characteristics 
named.

The programmer uses this abstract representation to program the robot. The pro
use these geometric, analytic and symbolic notions. In a way, the programmer impos
the robot his or her own conception of the environment.

The difficulties of this approach appear when the robot needs to link these abstrac
cepts with the raw signals it obtains from its sensors and sends to its actuators.

The central origin of these difficulties is the irreducible incompleteness of the mo
Indeed, there are always some hidden variables, not taken into account in the mode
influence the phenomenon. The effect of these hidden variables is that the model and th
nomenon never behave exactly the same. The hidden variables prevent the robot from
ing the abstract concepts and the raw sensory-motor data reliably. The sensory-moto
are then said to be «noisy» or even «aberrant». A queer reversal of causality occurs tha
to consider that the mathematical model is exact and that the physical world has 
unknown flaws.

Compelling the environment is the usual answer to these difficulties. The programm
the robot looks for the causes of «noises» and modifies either the robot or the environm
suppress these «flaws». The environment is modified until it corresponds to its mathem
model. This approach is both legitimate and efficient from an engineering point of vie

Figure 16: The symbolic approach in robotics.

=
?

if (Obs=01)
then
turn:=true
else
...

AvoidObs()

Environment

O1

S

M

O1

Avoid Obstacle
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precise control of both the environment and the tasks ensures that industrial robots
properly.

However, compelling the environment may not be possible when the robot must act
environment not specifically designed for it. In that case, completely different solutions 
be devised. 

The purpose of this paper is to propose Bayesian robot programming as a possible
tion. 

Figure 17 presents the principles of this approach. 
The fundamental notion is to place side by side the programmer’s conception of the

(the preliminary knowledge) and the experimental data to obtain the programming reso
called «descriptions». As seen in the different examples described in this paper, both th
liminary knowledge and the descriptions may be expressed easily and efficiently in pro
listic terms. 

The preliminary knowledge gives some hints to the robot about what it may expe
observe. The preliminary knowledge is not a fixed and rigid model purporting complete
Rather, it is a gauge, with open parameters, waiting to be molded by the experimenta
Learning is the means of setting these parameters. The resulting descriptions resul
both the views of the programmer and the physical specificities of each robot and en
ment. Even the influence of the hidden variables is taken into account and quantifie

Figure 17: The Bayesian programming approach in robotics.

S

M

ππππ
Preliminary
Knowledge

δδδδ
Experimental

Data

Avoid Obstacle

P(M ⊗  S | δ ⊗  π)

S

M

Environment

P(M ⊗  S | δ ⊗  π)
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more important their effects, the more noisy the data, the more uncertain the res
descriptions.

However, Bayesian robot programming preserves two very important merits of the 
bolic approach. Thanks to the preliminary knowledge, the descriptions are comprehens
the programmer. Thanks to Bayesian inference, complex reasoning is possible.

Theoretical foundations

The theoretical foundations of Bayesian robot programming may be summed up by F
18.

The first step transforms the irreducible incompleteness to uncertainty. Starting fro

preliminary knowledge and the experimental data, learning builds probability distributio
The maximum entropy principle is the theoretical foundation of this first step. G

some preliminary knowledge and some data, the probability distribution that maximize
entropy is the distribution that best represents this couple. Entropy gives a precise, mat
matical and quantifiable meaning to the «quality» of a distribution (for justifications of
maximum entropy principle see, for instance, Jaynes, 1982; Robert, 1990; Bessière 
1998b). 

Two extreme examples may help to understand what occurs:
• Suppose that we are studying a formal phenomenon. There are no hidden variabl

A complete model may be proposed. If we select this model as the preliminar
knowledge, any data set will lead to a description made of Diracs. There is n
uncertainty, any question may be answered either by true or false. Logic appears 
a special case of the Bayesian approach in that particular context (see Cox, 1979

• On the opposite extreme, suppose that preliminary knowledge consists of very po
hypotheses about the modeled phenomenon. Learning will lead to «flat» distribu

Figure 18: Theoretical foundation.

Incompletness

Maximum Entropy
Principle

-Σ pi ln(pi)

Preliminary Knowledge
+

Experimental Data
=

Probability Distributions

Uncertainty

Decision

P(a∧ b |π) = P(a |π)P(b |a∧π )=P(b |π)P(a |b∧π )

P(¬a |π)+P(¬a |π) = 1
Bayesian Inference
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tions, containing no information. No relevant decisions can be made, only com
pletely random ones.

Hopefully, most common cases, are somewhere in between these two extremes. P
nary knowledge, even imperfect and incomplete is relevant and provides interesting
about the observed phenomenon. The resulting descriptions are neither Diracs nor u
distributions. They give no certitudes, although they provide a means of taking the bes
sible decision according to the available information.

The second step consists of reasoning with the probability distributions obtained b
first step.

To do so, we only require the two basic rules of Bayesian inference (see Sectio
These two rules are to Bayesian inference what the resolution principle is to logical re
ing (see Robinson, 1965; Robinson, 1979; Robinson & Sibert, 1983a; Robinson & S
1983b). These inferences may be as complex and subtle as those usually achieved wi
cal inference tools, as demonstrated in the different examples in this paper.

Methodology

The proposed robot programming method results directly from this theoretical founda
Let us recall it for the last time:

1 - Specification : define the preliminary knowledge

1.1 - Choose the pertinent variables

1.2 - Decompose the joint distribution

1.3 - Define the Parametric forms

2 - Identification  : identify the free parameters of the preliminary knowledge

3 - Utilization : ask a question of the joint distribution

12.2 Advantages

In this section we survey, comment and briefly discuss the advantages of the Bayesian
programming method proposed in this paper.

• Ability to treat incomplete and uncertain information: The basis of this work is
related to the fundamental difficulty of robot programming in real environment. For
us this difficulty is the direct consequence of the irreducible incompleteness o
models. Consequently, the first advantage of the proposed approach is its ability 
take into account this incompleteness and the resulting uncertainty. This i
obtained in three steps, thanks to the following three abilities of the method:
° Ability to convert incompleteness to uncertainty by learning, as demonstrated in

the numerous instances where the free parameters of preliminary knowledge a
identified from experimental data (see, for instance, Section 5 concerning reac
tive behaviors or Setcion 9 concerning object recognition). Object recognition
for instance, shows that with simple preliminary knowledge, we are able to learn
descriptions sufficient for classification. However, in this task there are numerou
ignored variables such as, for instance, the color and material of the objects, th
39
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global lighting of the room, the approximate quality of the contour following
behavior or the position from where the robot has started.

° Ability to reason despite uncertainty, as demonstrated by all the experiments
requiring inference (see, for instance, Section 7 about sensor fusion or Section
about object recognition). The «nightwatchman» task (see Section 11) shows th
complexity of the possible reasoning (41 variables, 12 descriptions, four hierar
chical levels).

° Ability to decide, taking uncertainty into account: The decision strategy selected
in this work has been to draw the values of the searched variables from the distr
butions obtained by the preceding inference step. This strategy «renders» unce
tainty, the decision are nearly deterministic when the distributions are sharp, an
conversely, nearly random when they are flat.

• Simple and sound theoretical bases: The proposed approach is founded on simple
theoretical bases. Essential questions may be asked clearly and formally and eve
tually answered by mathematical reasoning. For instance, one may consider 
fairly compare Bayesian inference and logic as two possible models of reasonin
Thanks to these theoretical bases, the experimental results (successes or even m
enlightening failures) may be analyzed and understood in detail. 

• Generic, systematic and simple programming method: The proposed programming
method is simple, systematic and generic. Simple, as this method may be learn
and mastered easily. Systematic, as it may be applied with rigor and efficienc
Generic, as this method may be also used in numerous other domains than rob
programming, for instance CAD (see Mekhnacha, 1999).

• Homogeneity of representations and resolution processes: This method is based on
a unique data structure, called a description, associated with two inference rule
This homogeneity leads to simple and generic program development. 

• Obligation to state all hypothesis: Choosing a description as the only data structure
to specify robotics programs and following a systematic method to do so compe
the programmer to exhaustively express his knowledge about the task. Everythin
that should be known about a given robotics problem is in its description: the syn
thesis between the preliminary knowledge and the experimental data. There is n
hidden knowledge in either the inference program or the decision algorithm. As th
description encapsulates all the relevant information, exchanging, sharing or dis
cussing models is easy and rigorous.

• Large capacity of expression: Descriptions offer a large capacity of expression to
specify models and to question them as well.
° Specification capacity: The different experiments described in this paper prove

that descriptions may be used to specify numerous different models. Let us reca
that we used descriptions to learn simple reactive behaviors (Section 5), to combine
them (Section 6), to hierarchically compose them (Section 8), to merge sensor infor
mation (Section 7), to recognize situations (Section 9), to carry out temporal sequenc
ing (Section 10) and finally, to specify a task integrating all the previously defined
descriptions (Section 11).

° Question capacity: Let us also recall that any question may be asked to a joint
distribution. Mathematically, all variables appearing in a joint distribution play
the exact same role. They may all, indifferently, be known, unknown or searched
The description is neither a direct nor an inverse model. Sensor fusion (Sectio
7), situation recognition (Section 9) or inverse programming (Section 10) offer
40
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instances where the questions asked do not correspond to the specification ord
Furthermore, there is no ill-posed problem. If a question may have several solu
tions, the probabilistic answer will simply have several peaks. Some instances o
sensor fusion exemplified this point (see Section 7.3).

• Ability for real incremental development of robots: Bayesian robot programming,
thanks to its clear theoretical foundations and to its rigorous programming method
ology, appears to be an incremental method of developing robot programs th
could really be used in practice. The final experiment (Section 11) demonstrate
that point.
° Ability to combine descriptions: The first incremental development tool is

description combination (Section 6). With this tool it is possible to define new
behaviors as weighted mixtures of different simpler ones.

° Ability to compose descriptions: The second incremental development tool is
hierarchical description composition (Section 8). It is in some senses similar to
calling sub-procedures in classical programming, as some of the parametr
forms appearing in a decomposition may be questions addressed to more ba
descriptions.

° Description = Resource: More generally, a description, as an internal representa-
tion of a physical phenomenon, may be considered as a programming ressourc
For instance, a description may offer new variables to be used in other descrip
tions. This is the case with the variable  that identifies the object, provided by
the object recognition description (Section 9). Object recognition also propose
another example of the use of a description as a programming resource. Indee
the countour following behavior is a necessary tool to be ablefor computing the
four variables , ,  and  used by the object recognition description.
Numerous other possibilities for enhancing the capacity of a robot using descrip
tions as resources may be found in Dedieu’s Ph.D. thesis (Dedieu, 1995).

12.3 Conclusion

We have introduced a new formalism to program robots. Our approach closely implem
the Bayesian inference paradigm and, as a result, follows a clear mathematical framew
permits programming of robots while explicitly taking into account the incompletenes
the models chosen by the programmer.  The proposed system has been used to progr
eral tasks. We have demonstrated that complex programs may be obtained by combinin
pler components. Experimental tests have shown the effectiveness and the robustnes
programs built. Many developments are considered. At the theoretical level, we are t
new methods to automatically infer the decomposition from a set of examples. We ar
improving the resolution method used in our inference engine. At the application leve
system will be used to fuse sensors to control an automated car (European Proje
Sense). It will also be used to program a new version of the Khepera robot : the Koala
robot is equipped with several new sensors (color ccd, compass, directional microph
and can run in a larger environment. To extend the range of application we plan to u
Bayesian programming scheme to control artificial agents in virtual worlds. We believe
approach may ultimately lead to a new generation of robot programming languages.

O

Nlt Nrt Per Lrl
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