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Abstract

We propose a new method to program robots based on Bayesian inference and learning.
The capacities of this programming method are demonstrated through a succession of
increasingly complex experiments. Starting from the learning of simple reactive behaviors,
we present instances of behavior combinations, sensor fusion, hierarchical behavior com-
position, situation recognition and temporal sequencing. This series of experiments
comprises the steps in the incremental development of a complex robot program. The
advantages and drawbacks of this approach are discussed along with these different exper-
iments and summed up as a conclusion. These different robotics programs may be seen as
an illustration of probabilistic programming applicable whenever one must deal with prob-
lems based on uncertain or incomplete knowledge. The scope of possible applications is
obviously much broader than robotics.

1. Introduction

By inference we mean simply: deductive reasoning whenever enough information is at
hand to permit it; inductive or probabilistic reasoning when - as is almost invariably the
case in real problems - all the necessary information is not available. Thus the topic of
"Probability as Logic" is the optimal processing of uncertain and incomplete knowledge.

E.T. Jaynes

We assume that any model of a real phenomenarcasmplete There are always some hid-

den variables, not taken into account in the model, that influence the phenomenon. The effect
of these hidden variables is that the model and the phenomenon never have the same behav-
ior.

Any robot system must face this central difficulty: how to use an incomplete model of its
environment to perceive, infer, decide and act efficiently? We propose an original robot pro-
gramming method that specifically addresses this question.

Rational reasoning with incomplete information is quite a challenge for artificial sys-
tems. The purpose of Bayesian inference and learning is precisely to tackle this problem with
a well-established formal theory. Our method heavily relies on this Bayesian framework.

1. (Jaynes, 1998)
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We present several programming examples to illustrate this approach anddésfing-
tionsas generic programming resources. We show that these resources can be used to incre-
mentally build complex programs in a systematic and uniform framework. The system is
based on the simple and sound basis of Bayesian inference. It obliges the programmer to
explicitly state all assumptions that have been made. Finally, it permits effective treatment of
incomplete and uncertain information when building robot programs.

The paper is organized as follows. Section 2 offers a short review of the main related
work, Section 3 is dedicated to definitions and notations and Section 4 presents the experi-
mental platform. Sections 5 to p@esent various instances of Bayesian programs: learning
simple reactive behaviors; instances of behavior combinations; sensor fusion; hierarchi-
cal behavior composition; situation recognition; and temporal sequen8iagfion 11
describes a combination of all these behaviors to program a robot to accomplish a night
watchman task. Finally, we conclude with a synthesis summing up the principles, the theo-
retical foundations and the programming method. This concluding section stresses the main
advantages and drawbacks of the approach.

2. Related work

Our work is based on an implementation of the principle of the Bayesian theory of probabil-
ities.

In physics, since the precursory work of Laplace (1774; 1814), numerous results have
been obtained using Bayesian inference techniques (to take uncertainty into account) and the
maximum entropy principle (to take incompleteness into account). The late Edward T. Jaynes
proposed a rigorous and synthetic formalization of probabilistic reasoning with his "Proba-
bility as Logic" theory (Jaynes, 1998). A historical review of this approach was offered by
Jaynes (1979) and an epistemological analysis, by Matalon (1967). Theoretical justifications
of probabilistic inference and maximum entropy are numerous. The entropy concentration
theorems (Jaynes, 1982; Robert, 1990) are among the more rigorous, Cox theorem (Cox,
1961) being the most well known, although it has been partially disputed recently by Halpern
(1999a; 1999b). Numerous applications and mathematical tools have been developed (Smith
& Grandy, 1985; Tarentola, 1987; Bretthorst, 1988; Erickson & Smith, 1988a; Erickson &
Smith, 1988b; Mohammad-Djafari & Demoment, 1992; Kapur & Kesavan, 1992).

In artificial intelligence, the importance of reasoning with uncertain knowledge has been
recognized for a long time. However, the Bayesian approach clearly appeared as one of the
principle trends only since the proposal of Bayesian nets (Pearl, 1988) and graphical models
(Lauritzen & Spiegehalter, 1988; Lauritzen, 1996; Jordan, 1998; Frey, 1998). Very important
technical progress has been achieved recently (See for instance tHealtitkes on that
subject: Saul et al., 1996; Zhang & Poole, 1996; Delcher et al., 1996; Darwiche & Provan,
1997; Ruiz et al., 1998; Jaakola & Jordan, 1999; Jordan et al., 1999).

Recent robot programming architectures (Alami et al., 1998; Borrelly et al.,, 1998;
Schneider et al., 1998; Dekhil & Henderson, 1998; Mazer et al., 1998) are in general not
concerned with the problem of uncertainty. In robotics, the uncertainty topic is either related
to calibration (Bernhardt & Albright, 1993) or to planning problems (Brafman et al., 1997).

In the latter case, some authors have considered modeling the uncertainty of the robot
motions when planning assembly operations (Lozano-Perez et al., 1984; Donald, 1988) or
modeling the uncertainty related to the position of the robot in a scene (Kapur & Kesavan,

2. Journal of Artificial Intelligence Research
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1992). Bayesian techniques are used in POR®Pplan complex paths in partially known
environments (Kaelbling, Littman & Cassandra, 1996). Hieve also used to plan complex
tasks and recognize situations in complex environments (Aycard, 1998, Thrun, 1998). How-
ever, to the best of our knowledge, the design of a robot programming system and architec-
ture solely based on Bayesian inference has never been investigated before.

Finally, a presentation of the epistemological foundations of the approach described in
this paper may be found in two articles by Bessiére et al. (1998a; 1998b) and all the technical
details in the PhD dissertation of Olivier Lebeltel (1999).

3. Basic concepts

In this section, we introduce the concepts, postulates, definitions, notations and rules that are
necessary to define a Bayesian robot program.

3.1 Definition and notation

Proposition

The first concept we will use is the usual notioriagfical proposition Propositions will be
denoted by lowercase names. Propositions may be composed to obtain new proposition using
the usual logical operatorgdb  denoting the conjunction of propositions baradib,

their disjunction and-a the negation of propositin

Variable

The notion ofdiscrete variables the second concept we require. Variables will be denoted
by names starting with one uppercase letter.

By definition, adiscrete variablex is a set of logical propositiong  such that these
propositions are mutually exclusive (for all witkj  x,0y; is false) and exhaustive (at
least one of the propositions is true).  stands for «varigble také} its  vakie».
denotes the cardinal of the set (the number of propositions ).

The conjunction of two variablex  and , denotgd Y , is defined as the set of
|XIx[Y] propositionsx; Oy, .XOY is a set of mutually exclusive and exhaustive logical
propositions. As such, it is a new variabl®f course, the conjunction of variables is also
a variable and, as such, it may be renamed at any time and considered as a unique variable in
the sequel.

Probability

To be able to deal with uncertainty, we will attach probabilities to propositions.

We consider that, to assign a probability to a proposition , it is necessary to have at
least some@reliminary knowledgesummed up by a propositian Consequently, the proba-
bility of a propositiona is always conditioned, at least,sby . For each differermt(.| ,m)
is an application assigning to each proposition a unique real vakyen) in the interval
[0,1.

Of course, we will be interested in reasoning on the probabilities of the conjunctions,

3. Partially Observable Markoff Decision Process

4. Hidden Markov Models

5. By contrast, the disjunction of two variables, defined as the set of propos'qirﬁ , is not a variable. These
propositions are not mutually exclusive.
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disjunctions and negations of propositions, denoted, respectivelydayo|n) P(aOp|m)
andP(-a| 1) .

We will also be interested in the probability of proposition  conditioned by both the
preliminary knowledgetr and some other proposition . This will be dereteldbOmn)

For simplicity and clarity, we will also use probabilistic formula with variables appearing
instead of propositions. By convention, each time a varigble appears in a probabilistic for-
mula ®(X) , it should be understood as 0 X® (x;) . For instance, given three variables |,
andz ,P(X0OY| zdmn = P(X| m stands for:

Ox 0X,0y;0Y,0z0Z P(x Oy | z.0m = P(x | m) [E3.1]

3.2 Inference postulates and rules

This section presents the inference postulates and rules necessary to carry out probabilistic
reasoning.

Conjunction and normalization postulates for propositions

Probabilistic reasoning needs only two basic rules:
1 - The conjunction rule which gives the probability of a conjunction of proposi-
tions.

P(allb| )

P(a] mxP(b| alim) [E3.2]
P(b| mxP(a| bOm)

2 - Thenormalization rule which states that the sum of the probabilitiea of aad
is one.

P(a] m+P(-a| m) =1 [E3.3]

For the purpose of this paper, we take these two rules as postulates

As in logic, where the resolution principle (Robinson, 1965; Robinson, 1979) is suffi-
cient to solve any inference problem, in discrete probabilities, these two rules ([E3.2],
[E3.3]) are sufficient for any computation. In particular, we may derive all the other neces-
sary inference rules from those two, especially the rules concerning variables.

Disjunction rule for propositions
For instance, the rule concerning the disjunction of propositions:
P(aOb| m) = P(a| m+P(b|] m—P(adb| n) [E3.4]

may be derived as follows:

6. See some references on justifications of these two rules in § 2.

3
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P(aOb| m) = 1-P(-aO-b| m)
= 1-P(-a| mxP(-b| -aOmn)
= 1-P(-a] m*(1-P(b| ~allm)
= P(al m+P(-alb| m [E3.5]
= P(al m+P(b| m*xP(-al bOn)
= P(al m+P(b| mx(1-P(a] bOm)
= P(a| m+P(b| m-P(alb| m)

Conjunction rule for variables

PIXOY| m = P(X| mxP(Y| XOmn)

[E3.6]
P(Y| MxP(X| YO m

According to our notation convention for probabilistic formula including variables, this
may be restated as:

Ox OX, Oy, 0Y
PG| m=P(y;| x0m [E3.7]
P(Yj| m x P(x; | Y Om

which may be directly deduced from equation [E3.2].

P(x; DyJ' | m)

Normalization rule for variables
;P(X| m=1 [E3.8]

The normalization rule may obviously be derived as follows:

1= P(x | m+P(=x | m)
Px | m+Px0....0 x| ™
P(x;| M+ PG| M)+ P(X x| | 1) [E3.9]

%X P(x| m

where the first equality derives from equation [E3.3], the second from the exhaustiveness
of propositionsx, and the third from both the application of equation [E3.4] and the mutual
exclusivity of propositions;

Marginalization rule for variables

;P(XDY| m=PY| n [E3.10]

The marginalization rule is derived by the successive application of the product rule
(equation [E3.6]) and the normalization rule (equation [E3.8]):
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SPOXOYIm = $P(Y| mxP(X| YO
= P(Y| n)x;P(X| YO [E3.11]
= P(Y| m

3.3 Bayesian Programs

We have defined Bayesian programas a means of specifying a family of probability
distributions. Our goal is to show that by using such a specification one can effectively con-
trol a robot to perform complex tasks.

The constituent elements of a Bayesian program are presented in Figure 1:

d 0 Pertinent Variables

0O O -

] 0 Ebecomposmon

O L [Preliminary Knowledge (MmO .

[Description 0 Parametrical Forms
Program [ 0 orms

0 0 0 rograms

0

% [Data (9)

[Question

Figure 1: Structure of a bayesian program

» A program is constructed from a description and a question.

* A description is constructed from preliminary knowledge and a data set.

» Preliminary knowledge is constructed from a set of pertinent variables, a decompo-
sition and a set of forms.

* Forms are either parametric forms or programs.

Description

The purpose of a description is to specify an effective method to compute a joint distribution
on a set of variablesx®, x*, ...,x"  given a set of experimentaldata and preliminary knowl-
edgen . This joint distribution is denoted a&gx'0x51 0 X8| m )

Preliminary Knowledge

To specify preliminary knowledge the programmer must undertake the following:
1 Define the set of relevant variablgs!, X2, ..., x" on which the joint distribution is
defined.
2 Decompose the joint distribution:
Given a partition off x%, x* ...,x"} into k subsets we define variable$, ...,L* each
corresponding to one of these subsets.

Each variable.' is obtained as the conjunction of the variat{lﬂié, X2, 2} belonging to
the subset . The conjunction rules [E3.6] leads to:
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pxtoxt o x8) o) [E3.12]
=ptIsomxP? L'o® mx..xP o0 f alos m
Conditional independence hypotheses then allow further simplifications. A conditional
independence hypothesis for variahle is defined by picking some variableg

among the variables appearing in conjunction’o .o 1 L! , calithg  the con-

junction of these chosen variables and setting:
pl " '0.0 F n'os m=pPL|IRO&® n [E3.13]
We then obtain:

px*oxt o x8) ) [E3.14]
=P s0mxP(L’| RRo& mxPL}| RRo& mx..xPLY| R'oD& n

Such a simplification of the joint distribution as a product of simpler distributions is
called a decomposition.
3 Define the forms:

Each distributionp(L'| R 0&a m appearing in the product is then associated with
either a parametric form (i.e., a functio[;(Li) ) or another Bayesian program. In gen-

eral,p is a vector of parameters that may depend ons obotlorLearning takes place
when some of these parameters are computed using the data set

Question

Given a description (i.ep(x'0x5i O x8| m1 ) ), a question is obtained by partition-
ing {x' %% ... x% into three sets : the searched variables, the known variables and the
unknown variables.

We define the variablesearch Known andinknown as the conjunction of the variables
belonging to these sets. We define a question as the distribution:

P(Searched Knowfl & ). [E3.15]

3.4 Running Bayesian programs

Running a Bayesian program supposes two basic capabilities: Bayesian inference and deci-
sion-making.

Bayesian inference

Given the joint distributionrp(x*oxti 0 x8| @ ) , it is always possible to compute
any possible question, using the following general inference:
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P(Searched Knowfl &1 m) = > P(Searchedl UnknowhKnownO & 1)

Unknown

P(Searched] Unknown Known @ )

— Unknown

P(Known| &0 m)
P(Searched] Unknown KnowWyn @ )

— Unknown
P(Searchedd Unknown Known @ )

Searched

Unknown

e > P(Searched] Unknown Known @ )

z Unknown

[E3.16]

where the first equality results from the marginalization rule (equation [E3.10]), the sec-
ond results from the product rule (equation [E3.6]) and the third corresponds to a second
application of the marginalization rule. The denominator appears to be a normalization term.
Consequently, by convention, we will replace ity

It is well known that general Bayesian inference is a very difficult problem, which may
be practically intractable. Exact inference has been proved to be NP-hard (Cooper, 1990) and
the general problem of approximate inference too (Dagum & Luby, 1993). Numerous heuris-
tics and restrictions to the generality of the possible inferences have been proposed to
achieve admissible computation time (see the papers already cited in Section 2 about techni-
cal progress in this area).

An inference engine and the associated programming A®been developed and used
for the experiments presented in this paper. The same API has also been used for other appli-
cations such as CAD modeling (see Mekhnacha, 1999).

Our engine proceeds in two phases: a symbolic simplification phase which reduces the
complexity of the considered sums, and a numeric phase that computes an approximation of
the distributions.

Our symbolic simplification phase drastically reduces the number of sums necessary to
compute a given distribution. However the decomposition part of the preliminary knowledge,
which expresses the conditional dependencies of variables, still plays a crucial role in keep-
ing the computation tractable. The importance of the decomposition has already been
stressed by many authors (e.g., Zhang & Poole, 1996) and explains the good performances of
our engine (10 inferences per sec®nd

Decision-making

For a given distribution, different decision policies are possible: for example, searching
the best (highest probability) values or drawing at random according to the distribution. For
our purposes, we will always use this second policy and refer this query as:
Draw(P(Searched Knowfl &1 m)) .

Control loop of the robot

To control our robot using a Bayesian program, a decision is made every tenth of a sec-
ond. A typical question is to select the values of the motor variables knowing the values of

7. Application Programming Interface
8. Order of magitude on a standard desk top computer for the inferences required by the experiments described in
the sequel.
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the sensory variables. Consequently, the basic loop to operate the robot is to loop on the fol-
lowing instructions every tenth of a second:

1 - Read the values of the sensors
2-  Draw(P(Motors| Sensor§l &l m))

3 - Send the returned values to the motors
4. Experimental platform

4.1 Khepera robot

Khepera is a two-wheeled mobile robot, 57 millimeters in diameter and 29 millimeters in
height, with a total weight of 80g (See Figure 2). It was designed at E®Lis commer-
cialized by K-Tean?.

Figure 2: The Khepera mobile robot (from the top and from the left)

The robot is equipped with eight light sensors (six in front and two behind), taking val-
ues between 0 and 511 in inverse relation to light intensity, stored in variablesLs (see
Figure 3). These eight sensors can also be used as infrared proximeters, taking values
between 0 and 1023 in inverse relation to the distance from the obstacle, stored in variables
Px1, ...,Px8 (see Figure 3).

The robot is controlled by the rotation speeds of its left and right wheels, stored in vari-
ablesMg andMd, respectively.

From these 18 basic sensory and motor variables, we derived three new sensory variables
(Dir, Prox andThetal ) and one new motor on&rft ). They are described below.

 Dir is a variable that approximately corresponds to the bearing of the closest obsta-

cle (See Figure 3). It takes values between -10 (obstacle to the left of the robot) and
+10 (obstacle to the right of the robot), and is defined as follows:

9. Ecole Polytechnique Fédérale de Lausane (Switzerland)
10. http://www.K-team.com/
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Figure 3: The sensory-motor variables of the Khepera robot.

[P0(Px6— Px1) + 45(Px5— Px3 +5(Px4— Px3Q [E4.1]
O 9(1+Px1+ Px2+ Px3+ Px4 Px5 Py6U )

Dir = Floor

e Prox is a variable that approximately corresponds to the proximity of the closest
obstacle (See Figure 3). It takes values between zero (obstacle very far from the
robot) and 15 (obstacle very close to the robot), and is defined as follows:

Prox = Floor%\/l"’lx(Pxl Px2 Px3 Pxd Px5 PY6 [E4.2]

64 g

* Thetal is a variable that approximately corresponds to the bearing of the greatest
source of illumination. It takes on 36 values from -170° to 180°.

* The robot is piloted solely by its rotation speed (the translation speed is fixed). It
receives motor commands from tiveot variable, calculated from the difference
between the rotation speeds of the left and right wheeats. takes on values
between -10 (fastest to the left) and +10 (fastest to the right).

Khepera accepts turrets on its top to augment either its sensory or motor capacities. For

the final experiment (the nightwatchman task), a linear camera of 64 pixels and a micro tur-
bine were added on top of the robot.

4.2 Environment

For all experiments described in the current paper, the Khepera is placed ina 1 m by 1 m
environment. This environment has walls around its contour, textured to be easily seen by the
robot. Inside this square, we place walls made of @elgmks that can be moved easily to

set any configuration we need quickly. We usually build a recess made of hig(ﬂ wadle

in a corner, and place a small light over this recess, to create a «base» for the robot.
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5. Reactive behavior

5.1 Goal and experimental protocol

The goal of the first experiment was to teach the robot how to push objects.

First, in a learning phase, we drove the robot with a joystick to push objects. During that
phase, the robot collected, every tenth of a second, both the values of its sensory variables
and the values of its motor variables (determined by the joystick position). This data set was
then used to identify the free parameters of the parametric forms.

Then, in a restitution phase, the robot has to reproduce the behavior it had just learned.
Every tenth of a second it decided the values of its motor variables, knowing the values of its
sensory variables and the internal representation of the task.

5.2 Specification

Having defined our goal, we describe the three steps necessary to define the preliminary
knowledge.

1 - Chose the pertinent variables
2 - Decompose the joint distribution

3 - Define the Parametric forms

Variables

First, the programmer specifies which variables are pertinent for the task.

To push objects it is necessary to have an idea of the position of the objects relative to the
robot. The front proximeters provide this information. However, we chose to sum up the
information of these six proximeters by the two varialbés rangl

We also chose to set the translation speed to a constant and to operate the robot by its
rotation speed/rot

These three variables are all we need to push obstacles. Their definitions are summed up
as follows:

Dir 0{-10, ...,10¢,|Dir ] =21
Prox0{0,...,15,| Prox] = 16 [S5.1]
VrotO{-10,...,10,[ Vrot] =21

Decomposition

In the second specification step, we give a decomposition of the joint probability
P(Dir OProxd Vroth [ reobstacly as a product of simpler terms. This distribution is condi-
tioned by bothrobstacle , the preliminary knowledge we are defining, and  a data set that
will be provided during the learning phase.

P(Dir OProx2 Vroth O reobstaclg
= P(Dir | A reobstacl§ x P(Prox| Dir 0 A1 rrobstacld x P(Vrot| Prox Difl B 7robstacld [S5.2]
P(Dir | A O rrobstaclg x P(Prox| A O rrobstaclg x P(Vrot| ProxO Difl A rrobstaclg

The first equality results from the application of the product rule (equation [E3.6]). The

10
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second results from the simplification(Prox| Dird A1 rrobstacly = P(Prox| A reobstacl§
which means that we consider thatox abnd are independent. The distances to the
objects and their bearings are not contingent.

Parametric forms

To be able to compute the joint distribution, we finally need to assign parametric forms to
each of the terms appearing in the decomposition:

P(Dir | A O rrobstaclg = Uniform
P(Prox| A O reobstaclg = Uniform [S5.3]
P(Vrot| ProxO Dif] @ rrobstaclg = G(u(Prox, Dir), a(Prox, Dir))

We have naa priori information about the direction and the distance of the obstacles.
Hence, P(Dir | AD rrobstacly andP(Prox| A0 reobstacld  are uniform distributions; all direc-
tions and proximities have the same probability.

For each sensory situation, we believe that there is one and only one rotation speed that
should be preferred. The distributi®vrot| Proxd Difl B 7rrobstaclg is unimodal. However,
depending of the situation, the decision to be madefar may be more or less certain. This
is resumed by assigning a Gaussian parametrical foriviot| Proxd Difl @& rrobstacld

5.3 Identification

We drive the robot with a joystick (see Movi%l)l, and collect a set of dara . Let us call the
particular set of data corresponding to this experindgnth . A datum collected at time is
a triplet (vrot, dir,, prox,) .

The free parameters of the parametric forms (means and standard deviations for all the
LDir | x[Prox | Gaussians) can then be identified.

Finally, it is possible to compute the joint distribution:

P(Dir OProx Vrot| J&pushd rrobstaclg

ES5.1
= P(Dir | rrobstaclg x P(Prox| rrobstaclg x P(Vrot| Prox Difl J&puSh rrobstaclg [ ]

According to equation [E3.16], the robot can answer any question concerning this joint
distribution.

We call the distributiorP(Dir OProxd Vrot| &push reobstacly —descriptionof the task. A
description is the result of identifying the free parameters of a preliminary knowledge using
some given data. Hence, a description is completely defined by a couple preliminary knowl-
edge + data. That is why a conjunctidn always appears to the right of a description.

5.4 Utilization

To render the pushing obstacle behavior just learned, the Bayesian controller is called every
tenth of a second :

1 - The sensors are read and the values of and dre,computgdox,

2 - The Bayesian program is run with the query:

11. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Scienceéhs7/T7.mu (QuickTime, 4.4 Mo)
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Draw(P(Vrot| prox O dir[J] &push rrobstaclg) [E5.2]

3 - The drawn viogent to the motors
5.5 Results, lessons and comments

Results

As shown in Movie 1!, the Khepera learns how to push obstacles in 20 to 30 seconds. It
learns the particular dependency, corresponding to this specific behavior, between the sen-
sory variablesir androx and the motor variabiet

This dependency is largely independent of the particular characteristics of the objects
(weight, color, balance, nature, etc.). Therefore, as shown in M@)%,ieh% robot is also able
to push different objects. This, of course, is only true within certain limits. For instance, the
robot will not be able to push the object if it is too heavy.

Method
In this experiment we apply a precise three-step method to program the robot.
1- Specification : define the preliminary knowledge
1.1 - Choose the pertinent variables
1.2 - Decompose the joint distribution
1.3 - Define the Parametric forms
2 - Identification n:identify the free parameters of the preliminary knowledge

3- Ulilization : ask a question to the joint distribution
In the sequel, we will use the very same method for all the other experiments.

Variations

Numerous different behaviors may be obtained by changing some of the different compo-
nents of a Bayesian program in the following ways.

* It is possible tochange the questipnkeeping the description unchanged. For
instance, if theerox information is no longer available because of some failure, the
robot may still try to push the obstacles knowing only their direction. The query is
then:

Draw (P(Vrot| dir, 0 &-pusil 7robstacld) [E5.3]

* It is possible tochange the datakeeping the preliminary knowledge unchanged.
For instance, with the same preliminary knowledgsbstacle , we taught the robot
to avoid objects or to follow their contour (see Figure 4 and Mo¥® Fwo new
descriptions* were obtained by changing only the driving of the robot during the

12. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Scienceéhs8/T8.mu (QuickTime, 1Mo)
13. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science&hs9/T9.mu (QuickTime, 3.6Mo)
14. P(Dir OProXxd Vrot| &avoidO reobstacld andP(Dir OProxd Vrot| &follow O reobstacld
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Figure 4: Contour following (superposed images)

learning phase. As a result, two new programs were obtained leading to the
expected behaviors : «obstacle avoidance» and «contour following».

* Finally, it is possible tachange the preliminary knowledgehich leads to com-
pletely different behaviors. Numerous examples will be presented in the sequel of
this paper. For instance, we taught the robot another reactive behavior called photo-
taxy. Its goal is then to move toward a light source. This new preliminary knowl-
edge rephototaxyl uses the variablesot anttal Thetal  roughly corresponds to
the direction of the light.

6. Behavior combination

6.1 Goal and experimental protocol

In this experiment we want the robot to go back to its base where it can recharge.

This will be obtained with no further teaching. As the robot's base is lit, the light gradient
usually gives good hints on its direction. Consequently, we will obtain the homing behavior
by combining together the obstacle avoidance behavior and the phototaxy behavior. By pro-
gramming this behavior we will illustrate one possible way to combine Bayesian programs
that make use of «xcommand variablex.

6.2 Specification

Variables

We needbDir Prox ,Thetal androt , the four variables already used in the two composed
behaviors. We also need a new variable  which acts as a command to switch from avoid-
ance to phototaxy.

13
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Dir 0{-10, ..., 1¢ , | Dir ] = 21
ProxO{0,...,15,[ Prox] =16
Thetald{-17Q ..., 18G ,| Thetal| = 36 [S6.1]
VrotO{-10,...,1¢,[ Vrot] =21
H O{avoidance phototajy|H]=2

Decomposition

We believe that the sensory variabkes Prax anedal are independent from one another.
Far from any objects, we want the robot to go toward the light. Very close to obstacles, we
want the robot to avoid them. Hence, we consider that  should only deperdxon
Finally, we believe that/rot must depend on the other four variables. These programmer
choices lead to the following decomposition:

P(Dir OProxd Thetall OH \Xof 0O rehome
= P(Dir | rhom@ x P(Prox| rehom@ x P(Thetal| 7homd x P(H | Prox O rehome [S6.2]
x P(Vrot| Dir OProxd Thetal OH 7rhome

Parametric forms

We have naa priori information about either the direction and distance of objects or the
direction of the light source. Consequently, we state:

P(Dir | 7rhom@ = Uniform
P(Prox| rehom@ =Uniform [S6.3]
P(Thetal| rehom@ =Uniform

H is a command variable to switch from avoidance to phototaxy. This means that when
H = avoidance the robot should behave as it learned to do in the description
P(Dir OProd Vrot| savoidd reobstacld and when H = phototaxy the robot should behave
according to the descriptioR(Thetald Vrof &phototaxyd 7ephototaxy) . Therefore, we state:

P(Vrot| Dir OProXJ Thetdl avoidafice rrhomé = P(Vrot| Dir O ProXxJ J-avdil rrobstaclg [S6.4]
P(Vrot| Dir OProxd Thetdl phototaxy rrhomé = P(Vrot| Thetald d-phototaxyl 7ephototaxy) '

We want a smooth transition from phototaxy to avoidance as we move closer and closer
to objects. Hence we finally state:

P(avoidancd Proxd rrhome = SigmoiquB(Prox) (a=9),(B=0,25

S6.5
P(phototaxy] Proxd rrhom@ = 1-P(avoidancg ProXxd rehomé [ ]

The discrete approximation of the Sigmoid function we use above, which will not be
defined in the current paper, is shown in Figure 5.

The preliminary knowledgerhome is defined by specifications [S6.1], [S6.2], [S6.3],
[S6.4] and [S6.5].

6.3 Identification
There are no free parameters in preliminary knowledpe@ne . No learning is required.
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P(avoidance | Proxd 7ehom@
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Figure 5:P(avoidancd Proxl 7home

6.4 Utilization

While Khepera returns to its base, we do not know in advance when it should avoid obstacles

or when it should go toward the light. Consequently, to render the homing behavior we will

use the following question where is unknown:
P(Vrot| Dir OProXx2 Thetdl rrhomé

gP(VrotD H| Dir OProxd Thetal rrhomé

[E6.1]
_1 [ [P(avoidancg ProXd rrhome x P(Vrot| Dir O Proxd d-avdidl rrobstacld] }
z +[P(phototaxy] Proxd rehomé x P(Vrot| Thetall d-phototaxyy rephototaxy]]

Equation [E6.1] shows that the robot does a weighted combination between avoidance
and phototaxy. Far from any objectsrdx = 0, P(phototaxy] proxd 7thomg =1 ) it does pure
phototaxy. Very close to objectsprox = 15 P(avoidancgd proxXd 7zhomg =1 ) it does pure
avoidance. In between, it mixes the two.

6.5 Results, lessons and comments

Results

Figure 6 and Movie ¥ show efficient homing behavior obtained this way.

Figures 7 and 8 present the probability distributions obtained when the robot must avoid
an obstacle on the left with a light source also on the left. As the object is on the left, the
robot needs to turn right to avoid it. This is what happens when the robot is close to the
objects (see Figure 7). However, when the robot is further from the object, the presence of
the light source on the left influences the way the robot avoids obstacles. In that case, the
robot may turn left despite the presence of the obstacle (see Figure 8).

15. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science&hs10/T10.mo (QuickTime, 4.3Mo)
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Figure 6: Homing behavior (The arrow points out the light source)
(superposed images).

(Dir = -5,Prox = 10,Lum = -90)

P(Vrot | ThetalO &phototaxyl rephototaxy) P(Vrot |Dir O Prox[ d-avoid [ reobstaclg
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000 I I I 0.00 _Io I I I
1 T 1 1 1 ] 1 1 T 1
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P(H | Prox O rehomg P(Vrot | Dir O Prox O Thetalll 7-homg@
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Figure 7: Homing behavior (Khepera close to an object on its left). The top left
distribution shows the knowledge emot  given by the phototaxy description; the top
right is vrot given by the avoidance description; the bottom left shows the knowledge

of the «command variablest ; finally the bottom right shows the resulting
combination onvrot .
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(Dir = -5,Prox = 8,Lum = -90)

P(Vrot | Thetald &-phototaxy] rephototaxyl P(Vrot |Dir O ProxO J-avoid [J rrobstaclg
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Figure 8: Homing behavior (Khepera further from the object on its left).
This figure is structured as Figure 7.

Descriptions combination method

In this experiment we present a simple instance of a general method to combine descriptions
to obtain a new mixed behavior. This method uses a command variable to switch from one
of the composing behaviors to another. A probability distributioHon  knowing some sen-
sory variables should then be specified or leatfiebhe new description is finally used by
asking questions where is unknown. The resulting sum on the different cages of does
the mixing.

This shows that Bayesian robot programming allows easy, clear and rigorous specifica-
tions of such combinations. This seems to be an important benefit compared to some other
methods that have great difficulties in mixing behaviors with one another, such as Brooks’
subsumption architecture (Brooks, 1986; Maes, 1989) or neural networks. Description com-
bination appears to naturally implement a mechanism similar to HESbrdan & Jacobs,
1994).

7. Sensor fusion

7.1 Goal and experimental protocol
The goal of this experiment is to fuse the data originating from the eight light sensors to

16. see (Diard & Lebeltel, 1999)
17. Hierachical Mixture of Expert
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determine the position of a light source.
This will be obtained in two steps. In the first one, we specify one description for each
sensor individually. In the second one, we mix these eight descriptions to form a global one.

7.2 Sensor model
Specification

Variables

To build a model of the light sensar , we only require two variahles:  the reading of the
ith sensor, andheta2 , the bearing of the light source.

LiO{0,...,51%,|Li | =512

[S7.1]
Theta20 {170, ..., 18 , | Theta2| = 36

Decomposition

The decomposition simply specifies that the reading of a sensor obviously depends on the
position of the light source

P(Theta20 Li|JA O resensoj

_ [S7.2]
= P(Theta2 rrsenso) x P(Li| Theta20 A1 rrsensoj
Parametric forms
As we have na priori information on the position of the source, we state:
P(Theta2| 7esenso} = Uniform [S7.3]

The distributionP(Li | Theta2O A1 7esensoj IS usually very easy to specify because it cor-
responds exactly to the kind of information that the sensor supplier provides: the expected
readings of its device when exposed to a light. For the Khepera'’s light sensors, we obtain
(see Figure 9):

K (Theta20)
SEE
486
2EE
286

1686

5]

~16E @
Theta2(°)

Figure 9: K(Theta2 0)
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P(Li | Theta2O rrsenso) = GK(Thetazei), o(Li)

1 [S7.4]

—4B(|Theta2- 6| —a)
e

K(Theta26,) = 1- (a =45), (B =0,03

1+

In specification [S7.4]p, stands for the position of the sensor with respect to the robot,
and will be used later to «rotate» this model for different sensors.

Specifications [S7.1], [S7.2], [S7.3] and [S7.4] are the preliminary knowledge corre-
sponding to this sensor model. This preliminary knowledge is nametsor

Identification

No identification is required as there are no free parametetseisor

However, it may be easy and interesting to calibrate specifically each of the eight light
sensors. This could be achieved, for instance, by identifying parameters g and indepen-
dently for each sensor, by observing the response of the particular sensor to a light source.

7.3 Fusion
Specification

Variables
The interesting variables are the eight variahles Taad2

L10{O0, ...,51%,|L1] =512
[S7.5]

L8 {0, ...,51%,| L8] =512

Theta200{-170, ...,18Q , | Theta2] = 36

Decomposition
The decomposition of the joint distribution is chosen to be:

P(Theta2d LD D2 OL30 L@ 5 0OL6 A7 LB O refusion)

= P(Theta2] A O refusion) x P(L1| Theta2d A1 refusion) x P(L2| L10 Theta2 B  refusion)
.xP(L8| L7TO L6 [ O40L3 12 L10 Theta2 A refusion) [S7.6]
= P(Theta2| refusion) x P(L1| Theta2d A1 7efusion) x P(L2| Theta2d A1 refusion)

.. x P(L8]| Theta2d A1 rrfusion)

The first equality results from the product rule [E3.6]. The second from simplifications of
the kind:

P(Lj| Lj—10..0 1@ ThéfaZd A 7efusion) = P(Lj| Theta2d A1 7efusion) [E7.1]

These simplifications may seem peculiar as obviously the readings of the different light
sensors are not independent. The exact meaning of these equations is that we Tansider
(the position of the light source) to be the main reason for the contingency of the readings.
Consequently, we state that, knowimigeta2 , the readings  are indepermheni is the
cause of the readings and knowing the cause, the consequences are independent. This is,
indeed, a very strong hypothesis. The snesors may be correlated for numerous other reasons.
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For instance, ambient temperature influences the functioning of any electronic device and
consequently correlates their responses. However, we choose, as a first approximation, to
disregard all these other factors.

Parametric forms
We do not have ang priori information onTheta2 :

P(Theta2| efusion) = Uniform [S7.7]

P(Li | Theta2d A1 refusion) is obtained from the model of each sensor as specified in previ-
ous section (7.2):

P(Li | Theta2O A1 7efusion) = P(Li | Theta20 7esensoj [S7.8]

Identification
As there are no free parametersrfusion  , no identification is required.

Utilization
To find the position of the light source the standard query is:

Draw(P(Theta2] I, 0...0 I8 rfusion)) [E7.1]

This question may be easily answered using equation [E3.16] and specification [S7.8]:

P(Theta2| 1, 0O..0 18 refusion)

8 [E7.2]
x [ P(liy] Theta2ll resensoy
i=1

Ml

Values drawn from this distribution may be efficiently computed given that the distribu-
tion P(Theta2l L, 0..0 I8 refusion) is simply a product of eight very simple ones, and given
that the normalizing constadt does not need to be computed for a random draw.

Many other interesting questions may be asked of this description, as the following:
« It is possible to search for the position of the light source knowing only the read-
ings of a few sensors:

P(Theta2] W, 0120 rfusion)

1 [E7.3]
=5 P(11,| Theta20 rrsensoj x P(12,| Theta2[ rrsensoy

* It is possible to check whether the sensor  is out of order. Indeed, if its reiading
at time t, persists in being inconsistent with the readings of the others for some
period, it is a good indication of a malfunction. This inconsistency may be detected
by a very low probability fori,
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P(1] 12,0..0 18 refusion)

8

Ml

X z |‘| P(liy| Theta2(l resensoy
Theta =1

7.4 Results, lessons and comments

Results

Figure 10 presents the result obtained for a light source with a bearing of 10°:

(L3=171)
0.5 P(Theta2|L3 O resensoy

(L4 =135)
oso P(Theta2|L4 O resensoy

0.37

0.37

0.25

0.25

[E7.4]

0.5 P(Theta2| L8[ resensoj

0.12 0.12 " I
R D= =
80 90 45 O 45 90 170 480 90 45 0 45 90 170
(L2=422) (L5=280)
0.50_P(Theta2| L2 0 r-sensoy o.50 P(Theta2| L5 0 7resensoy
0.37 0. 37
0.2 (Theta2 = 10) 0.25
0. 12 n 1.00P(Theta2|L1D .0 L80O refusion 0.12
0. 00 0.00
180 4 110 0.75 H -lmg'%_lf
0.50
(L1=506) 0.2 I (L6 =489)
0.50_P(Theta2|L1 O resensojy : I 0.50 P(Theta2| L6 O r-sensoy
0.00 — — .
z' Z 180 9050 10 80690 179 Z' Z
0.12 0. 12
0. 00 0.00
-180 45 do 170 %
(L8 =511) (L7=511)
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0.00 ]
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Figure 10: The result of a sensor fusion for a light source with a bearing of 10°

The eight peripheral figures present the distributiom®eta2 Li0J resenso)
ing to the eight light sensors. The central schema presents the result of the fusion, the distri-
bution P(Theta2l L, 0..0 18 rfusion . Even poor information coming from each separate

sensor may blend as a certainty.

Sensor fusion method

In the experiment just presented, we have seen a simple instance of a general method to carry
out data fusion.

The key point of this method is in the decomposition of the joint distribution, which has
been considerably simplified under the hypothesis that «knowing the cause, the conse-
guences are independent». This is a very strong hypothesis, although it may be assumed in
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numerous cases.

This way of doing sensor fusion is very efficient. Its advantages are manifold.
» The signal is heightened.

* It is robust to a malfunction of one of the sensors.

* It provides precise information even with poor sensors.

« It leads to simple and efficient computations.

In this experiment, another fundamental advantage of Bayesian programming is clearly
evident. The description is neither a direct nor an inverse model. Mathematically, all vari-
ables appearing in a joint distribution play exactly the same role. This is why any question
may be asked of a description. Furthermore, there is none ill-posed problem. If a question
may have several solutions, the probabilistic answer will simply have several peaks.

8. Hierarchical behavior composition

8.1 Goal and experimental protocol

In this experiment, we want to obtain phototaxy behavior basedoon  Trend .

We have already built such behavior basedvan Hiechl , Narpiadotaxyl . How-
ever, as we saw in the previous section (fhgta2 obtained by a sensor fusion has many
advantages omhetal obtained by pretreatment.

8.2 Specification

Variables

The variables we require are the nine variables used in the sensor fusion description
L1, L2 L3, L4 L5 L6 L7 L§ Thetazand Vrot :

L10{0, ...,51%,|L1] =512

L80{o,...,51%,[ L8] =512 [S8.1]
Theta20 {-170, ..., 18Q , | Theta2| = 36
VrotO{-10,...,10,[ Vrot] =21

Decomposition

The decomposition states that if we knaweta2 , the position of the light source, then the
exact readings of the light sensors do not matterfar

P(Theta2D) LM D02 0OL30 L4 b 0OL60O L7 A8 Vrdgt 0O rephototaxy?2
= P(Theta2D LD D2 0OL30 L@ [5 0OL6 L7 LB rephototaxyld x P(Vrot| Theta2d rrphototaxy.

S8.2]

Parametric forms
The first distribution is directly obtained using the sensor fusion description:
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P(Theta2 LM @02 0OL30 L@ 5 0OL6 L7 LB rephototaxy?

. [S8.3]
=P(Theta2d LI [2 OL30 L& 5 OL6 L7 LB refusion)
The second one is obtained fraomphototaxyl  as:
P(Vrot| Theta2d rephototaxyd = P(Vrot| Theta2d rephototaxy) [S8.4]

Specifications [S8.1], [S8.2], [S8.3] and [S8.4] are the components of preliminary
knowledgerephototaxy? .

8.3 Identification
No identification is required as there are no free parametetghstotaxy2

8.4 Utilization

In order to drive Khepera toward the light with descripti®phototaxy2 ~, one should answer
the following question:

P(vrot| I1,0..0 18 rephototaxy2 [E8.1]

Applying successively the marginalization rule ([E3.10]), the product rule ([E3.6]) and
the specifications [S8.3] and [S8.4], we obtain:

P(Vrot| L10 ..0 LB rephototaxy2
P(VrotO Theta?2 L10 ..0 U8 rephototaxy2
Theta2

z P(Theta2] L10O0 ..0 U8 rrphototaxy2 x P(Vrot| Theta2 rephototaxy2
Theta2

P(Theta2] L10..0 U8 refusion) x P(Vrot| Theta2d rephototaxy)
Theta2

[E8.2]

8.5 Results, lessons and comments

Results

The results obtained this way are presented in the three following figures.

Figure 11 presents the results for a light source in front of the robot. The left part shows
P(Theta?] L10..0 I8 refusion) and the right partP(vrot| L10..0 B 7ephototaxyl

Figure 12 presents the results for two light sources, one 90° left of the robot, and the sec-
ond 90° rightt The left part exhibits two symmetrical peaks for
P(Theta?] L10..0 1B refusion) . Consequently, the right part also shows two symmetrical
peaks for P(vrot| L10..0 U8 rephototaxyd . The robot may decide to turn left or right with
equal probabilities.

If we suppose it decided to turn left, at next the time step Khepera will have the left light
source 80° to its left and the right one 100° to its right. Figure 13 shows that it has then a
high probability of continuing toward the left light source.

Hierarchical composition method

In Section 6 we showed a method of combining different behaviors (descriptions) in order to
obtain more complex ones. By contrast, in this experiment we present a method to hierarchi-
cally compose descriptions, in order to incrementally obtain more abstract ones.
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P(Theta2| L10 ...0 L8O rrfusion P(Vrot |L10 ...0 L8O rephototaxy?
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Figure 11: Light source in front of the robot.
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Figure 12: Two light sources: 90° left and 90° right.
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Figure 13: Two light sources: 80° left and 100° right.

A description of levelh may, thus, be used to infer a variable for a description at level
n+1. In the experiment just described, for instance, the descriptiasion is used to infer
Theta2 for description rephototaxyl , and the result of this hierarchical composition is the
descriptionrphototaxy2 . In this experiment, all the information abawkta2  is preserved. This
information is passed as the distributionTheta2l L10..0 1B 7refusion) and all the possible
values ofTheta2 are taken into account by way of the sum over this variable. However, as we
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will show in 11, there is a possible alternative where a value for the variable at level is first
decided, then passed to the description at leval . In our example, we could have drawn a
value for Theta2 according toP( Theta? LO..0 U8 rfusio) and then passed this value to
P(Vrot| Theta2d rephototaxy). This second method is obviously much more computationally
efficient than the first one (the sum ovieta2 is no longer necessary), although the price to
pay is that some information is lost in this second process.

9. Situation recognition

9.1 Goal and experimental protocol

The goal of this experiment is to distinguish different objects from one another.

At the beginning of the experiment the robot does not know any object. It must incre-
mentally build categories for the objects it encounters. When it kmows of them, the robot
must decide if a presented object enters in one ofithe categories or if it is something new.
If it is a new object, the robot must create a new category and should start to learn it.

9.2 Specification

Variables

The Khepera does not use its camera for this task. It must «grope» for the object. It uses the
«contour following» behavior to do so (see Figure 4). It does a tour of the presented object
and computes at the end of this tour four new variaes: the number of leftnurns, the
number of right turnsper the perimeter and the longest straight line. The values of these
variables are not completely determined by the shape of the object, given that the contour
following behavior is quite choppy.

We also require a variable to identify the different classes of object. The @alue
is reserved for the class of unknown (not yet presented) objects.

Finally, we obtain:

NIt {0, ..., 24 , | NIt | = 25
Nrt 040, ..., 24 , | Nrt| = 25
Per{0, ..., 9999 , | Per] = 10000 [S9.1]
Lrl O0{0,...,999, [ Lrl | = 1000
00{0,...,13,.0] =16

Decomposition

Obviously, the four variablesit Nrt Per and are not independent of one another. How-
ever, by reasoning similar to the sensor fusion case (see Section 7), we consider that knowing
the objecto , they are independent. Indeed, if the object is known, its perimeter or the num-
ber of turns necessary to complete a tour are also known. This leads to the following decom-
position:
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P(OONIO Nt Per Kl| O rrobjec)
= P(O| 7eobjech x P(NIt| OO A1 7eobjech x P(Nrt| OO A1 7eobjech [S9.2]
x P(Per| OO A1 rrobjec) x P(Lrl | O O A1 rrobjech)

Parametric forms
We have na priori information on the presented object:

P(O| reobjec) = Uniform [S9.3]

For an observed objecogo ), we state that the distributionsiton Nand are Laplace
succession law§ and that the distributions orer  and are Gaussian laws:

Oo, 0O, 0; # 0
P(NIt| o; 0 A1 rrobjec = L, (ny,(0;))
P(Nrt| o,0 &7 7robjec) = L(ny,(0,)) [S9.4]
P(Per| o OAJ rrobjec) = G,(u(0;), a(0;))
P(Lrl | 0; 0 A3 rrobjech = G,(K(0;), 6(0;))

Finally, we state that for a new object € 0 ) we haveargriori information abounit
Nrt, Per andLrl :

P(NIt| o, O reobjech = Uniform

P(Nrt| o, O rrobject = Uniform
. _ [S9.5]
P(Per| q,0 rerobjec) = Uniform

P(Lrl | oy O rrobject = Uniform

The preliminary knowledge composed of specifications [S9.1], [S9.2], [S9.3], [S9.4] and
[S9.5] is namedzobject .

9.3 Identification

When an object is presented to the robot, if it is recognized as a member of g class , the
parameters of the two Laplace succession laws and the two Gaussian laws corresponding to
this class are updated.

If the object is considered by Khepera to be a new one, then a new class is created and
the parameters of the distributions are initialized with the valuestof\rt per , Land just
read.

The learning process is incremental. Contrary to what we have seen up to this point, the
identification and utilization phases are not separated. Each new experience changes the set
of dataa , and leads to a new descriptm@ O NIE Nt Per Brl| O rrobjec)

1+n
18. A Laplace succession law on a variable V is defined—,dai:t—\‘;] MWith the total number of observations,

LV ] the number of possible values fgr  angd the number of observations of the specifie value
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9.4 Utilization
After n—1 experiences, to recognize a presented object, the question to answer is:

P(O| nit,Onrtd pef, Irlp0 ,_[ rrobjech [E9.1]
This may be simply computed by:

P(O| NitONrd Per L0 _f rrobjech

= %x P(NIt| O0¢&,_{J rrobjec) x P(Nrt| OO 6, _[1 rrobjec) [E9.2]

x P(Per| OO¢&,_[J rrobjec) x P(Lrl| O O¢8,_[1 7robjec)

If the most probable value fad is zero, then Khepera assumes that it is facing a new
object. Otherwise, this most probable value is considered to correspond to the recognized
object.

9.5 Results, lessons and comments

Results

The objects shown on Figure 14 have been presented to the robot, five times each, in random
order. Each time the question was as follows: «Do you know this object, or is it a new one?»
The robot did not ever fail to recognize novelty. At the end of the experiment, it was able to
classify all the objects except for the two in the upper right corners. These two objects have
the exact same square basis and thus may not be distinguished from one another given the
four chosen variables. In these cases, Khepera was in the position of someone asked to iden-
tify the color of an object by groping it.

Figure 14: The different objects presented to Khepera.

Lessons

The main lesson to retain from this experiment is that categorization of objects or situations
may be considered as developing some specific sensor. Indeed, the method used in this sec-
tion for object recognition is very similar to what was achieved for sensor fusion in Section

7. The hypotheses are similar and the advantages are the same.
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10. Temporal sequences

10.1 Goal and experimental protocol

In this paper, to exemplify the Bayesian programming method, we choose a «nightwatchman

task». This may be obtained as temporal sequences of six simpler behaviors:

lidle: The robot is at its base, recharging its batteries. It waits for both an order and
enough energy to leave.

2 patrol: It wanders around its environment and sounds an alarm if it detects any
movement.

3 recognition The robot tours object to identify them.

4 fire-intervention Khepera tries to extinguish fires by blowing them using its micro-
turbine.

5 homing It goes to its base when ordered to do so.

6 recharge When low on energy, it goes to its base to recharge.

The purpose of this section is to show how such temporal sequences may be specified in

the Bayesian framework.
10.2 Specification

Variables

The first variable to consider iBehavior ,which may takes the six preceding valles
patrol, recognition fire-intervention homing and recharge This variable will be used to
select a given behavior.
This selection will be made according to the values of the six following variables:
* Vigil : a binary variable, used to order the khepera to work.
* Energy. a variable that measures the level of available enekgstgy may take four
different values very-high high, low andvery-low.
* Base: a binary variable, true if the robot is at its base.
* Fire: a binary variable, true if the robot detects any fire.
* Identify: @ binary variable, used to order the Khepera to recognize an object.
 Finally, Behavior_t-1 a variable taking the same six valuesgsavior , used to memo-
rize which behavior was selected at timel
This may be summed up as usual :
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Behaviord {idle, patrol, recognition fire- interventiorhoming rechargl, | Behavior| = 6
Vigil O {true, falsé, | Vigil | =2
Energyl {very— high high, low, very- loW, | Energy| = 4
Basel {true, falsé,|Base| =2 [S$10.1]
Fire O {true, falsé,|Fire|=2
Identify 0 { true, fals¢, | Identify| =2
Behavior_t-101 {idle, patrol, ...,rechargé, | Behavior_t-1 = 6

Decomposition

At each time step the robot will select a behavior knowing the values of these six variables
by answering the question:

P(Behavior| Vigild Enerdy Bake [Fire Ifentify Behavior_t-17ebehavioy [E10.1]

It is tempting to specify this distribution directly. It would correspond to the usual pro-
gramming method where the conditions at time establish what should be done at time
We propose to do the exact opposite. Indeed, it is quite easy, knowing the behavior, to
have some notion of the possible values of the variald@s Energy Base, Fire , Idexmity
For instance, if the Khepera is patrolling, it means that it has been necessarily ordered to do
so and thatigil isrue. Furthermore, we consider that knowing the behavior, these five vari-
ables are independent. These assumptions lead to the following decomposition:

P(BehaviorQl Vigil Enefdy Bhase O Fire [dentify Behavior_t-Irbehaviol)

= P(Behavior_t-1] rrbehaviop x P(Behavior| Behavior_t-II rebehaviol)

x P(Vigil | Behaviord 7ebehavio) x P(Energy| Behaviof] rebehavio) [S10.2]
x P(Base| Behaviofl rebehavio) x P(Fire | Behaviord rebehavioi)
x P(Identify| Behaviofd rebehaviol)

Parametric forms
First we chose a uniform priori value for P(Behavior_t-1 rebehavioy :

P(Behavior_t-1] 7ebehavio) = Uniform [S$10.3]

We chose to specify all the other terms of this decomposition as discrete distributions.
Their different values will be givea priori, one by one, using tables.

For instance p(Behavior| Behavior_t-11 7ebehavio) IS specified by table 1.

This table should be read by column. Each column corresponds to the probability of
Behavior knowing a certain behavior of the robot at time1 . Consequently, each column
should sum to 1 to respect the normalization constraint.

For instance, the first column of table 2 specifies the probabilities of vamabdeior
knowing that the behavior of robot at time1  wdle. If Khepera wagdle, then it may stay
idle with a high probability (90%), it may not directly change its behavior to erdoagni-
tion, homingor recharge(probability 0), it may switch tgatrol or fire-interventionwith a
low probability (0.05 for both case obtained by normalization as specified by the «x»).

If the Khepera was in modmatrol (second column), the most probable behavior is that it
stays in this mode, although it can switch to any other one. If the Khepera was imenode
ognition (third column) we fix a very high probability for it to stay in this mode because we
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do not want it to be easily distracted from this task and we preclude any possibility of
switching toidle. In modefire-intervention(column 4) we exclude any switchitle, recog-

nition or homing Finally, when in modéomingor recharge the most probable behavior is

to not change mode, although nothing is definitely excluded.

Biﬁgs;g?_rt{1 idle patrol recognition | fire-interv. homing recharge
idle 0.9 X 0 0 X X
patrol X 0.9 X X X X
recognition 0 X 0.99 0 X X
fire-interv. X X X X X X
homing 0 X X 0 0.9 X
recharge 0 X X X X 0.9

Table 1:P(Behavior] Behavior_t-11 7ebehavio)

Table 2 mainly says thgtatrol andrecognitionsuppose thatigil is true and thatoming
supposes thatigil is false. Wheridle the probability thaW¥igil is true is not 0, because the
Khepera may bélle to recharge its batteries even when ordered to work.

Vigil / Behavior idle patrol recognition | fire-interv. homing recharge
false 0.9 0 0 X 1 X
true 0.1 1 1 X 0 X

Table 3 specifies that whedle it is more probable thd&nergyis low than high. It also
says thapatrol andrecognitionsuppose a higknergyandrechargethe opposite.

Table 2:P(Vigil | BehaviorO rebehavio)

Energy / Behavior idle patrol recognitiorL fire-interv. homing recharg
very-low 0.325 0 0 X X 0.8
low 0.325 0.1 0.1 X X 0.2
high 0.25 X X X X 0
very-high 0.1 X X X X 0

Table 3:P(Energy| Behaviof] rebehaviop

Table 4 says thatlle imposes thaBaseis true, whenpatrol, recognition homingand
rechargesuppose with a high probability that Khepera is not at its base.

Base/ Behavior

idle

patrol

recognition

fire-interv.

homing

recharge

Table 4:pP(Base| Behaviofl 7ebehavio)
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false

0.99

0.99

X

0.99

0.99

true

0.01

0.01

X

0.01

0.01

Table 4:pP(Base| Behaviofl rebehavio)

Table 5 means that when Khepera is facing a fire, it is necessarily infiresdgerven-

tion.
Fire / Behavior idle patrol recognition | fire-interv. homing recharge
false 1 1 1 0 1 1
true 0 0 0 1 0 0

Table 5:P(Fire | Behaviord rebehavio)

Finally, Table 6 saysecognitionimposes that Khepera has been ordered to dédso

tify is true).
Identify / . . . .
Behavior idle patrol recognition fire-interv. homing recharge
false X X 0 X X X
true X X 1 X X X
Table 6:P(Identify| Behaviofd rebehavio)
10.3 Identification
No identification is required, as there are no free parametetseitavior
10.4 Utilization
The robot chooses its behavior with the following query:
Draw (P(Behavior| Vigild Enerdy Bake [Fire Ifientify Behavior t-17ebehaviop) [E10.1]
that can be easily computed:
P(Behavior| Vigild Enerdy Base [Fire Idéntify Behavior_t-1rebehavio)
= %x P(Behavior_t-1 rebehavion x P(Behavior] Behavior_t-11 rebehaviop [E10.2]

x P(Vigil | Behavior rrbehaviop x P(Energy|

x P(Base|

10.5 Results, lessons and comments

Results

Behaviof] rebehaviol)
Behaviofl rebehavioi) x P(Fire | Behaviorl rebehavion x P(Identify| Behaviofd rebehaviol)

Using these techniques, Khepera obtains temporal sequences of behaviors that appear con-
vincing to a human observer (an instance of such a sequence will be given in the next sec-
tion, see Movie 9.

For instance, these sequences are stable. Khepera does not behave like a weathercock
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that changes its mind every second.

Inverse programming

This experiment demonstrates a completely new method of specifying temporal sequences of
tasks that could be called «inverse temporal programming». Indeed, the programmer does
not specify, as usual, the necessary conditions for an action. On the contrary, he or she spec-
ifies for each action the expected observations and assumes that knowing the action these
observations are independent.
Inverse programming presents two main advantages.
It is robust to unforeseen situations. A sequence of actions is always produced,
even in cases that the programmer did not explicitly take into account.
* Due to the conditional independence assumption, the number of cases to take into
account grows only linearly with the number of conditioning variables.
The a priori specification of the probability distributions of the observed variables know-
ing the behavior may be a difficulty. However its is possible to learn these distributions (see
Diard & Lebeltel, 1999).

11. Integration: A Nightwatchman Task

11.1 Goal and experimental protocol

The practical goal and experimental protocol of the night watchman task has already been
presented in Section 10.1.

The scientific purpose of this last experiment is to prove that Bayesian robots program-
ming is an efficient constructive methodology and that all the previous descriptions may be
integrated into a single synthetic one.

Three descriptions and a few corresponding variables necessary for the night watchman
task have not yet been presented to keep the paper short:

1- P(Based Px1 [ Px80OLD .. L8|kbasg used by Khepera to decide if it is at
its base

2 - P(Movel Behaviot Moved-1 Tempo Tduremoved another temporal sequencing
description required because some of the behaviors are successions of reactive
movements.

3 - P(VrotO Vtrangl Mdve O H 0O Dir OProx] DirLO ProxL OVtrans_ ¢ Thetd2respeed built
on the reactive behaviors to finally decide the rotation and translation speeds.

11.2 Specification

Variables

The nightwatchman task requires 41 variables:
» Thirty-three «sensory» variables that Khepera may read every tenth of a second.
When convenient, we will summarize these 33 variables by their conjunction (a
variable namedensory-variables ).

19. http://www-leibniz.imag.fr/LAPLACE/Cours/Semaine-Science&hs12/T12.small.mo(QuickTime,5.5Mo)
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Sensory-variables PxI ..0 PXx8 [110... L8
O VigiO Energy FEre Idéntify Behavior t-1 [E11.1]
0 Move_t-I Tenipo [@Mourd Dir0O Prokl Dirld ProxL Vtrans_c
ONIEJ Nt Per L

* Five internal variablesBase Theta2 Behavipr Moye H
« Three «motor» variables that Khepera must compute. These three variables are the
rotation speedirot , the translation speadns and the identity of the object

Decomposition and parametric forms

The decomposition of the joint distribution on these 41 variables is a product of a uniform
distribution on the sensory variable®($ensory-variablgsewatchmad ) and eight questions
addressed to the previously defined descriptions:

ad Sensory-variables
PBBaseD Thetd2 Behalior Move qwatchmag
O Vrotd Vtrangl O

= P(Sensory-variablggrwatchmarn)
x P(Base PxI0 .0 Px8 [10..0 L8 rrbase

x P(Theta?l L1J L2 @[3 OL40 L6 D6 OL7 L8 refusion) [E11.2]
x P(Behavior| VigilD Energy Base [Fire Idéntify Behavior_t-1rrbehaviol)

x P(Move| Behaviofl Move f-l Tempo OTourremove

x P(H| ProxO rethomé

x P(VrotO Vtrans| Movel Hl Dir Prox Dirk BroxL Mitans_c Theta2 rrspeed

x P(O| NItO NriJ Per Lrl O rrobjec)

11.3 Identification

No identification is required.

11.4 Utilization

The ultimate question that Khepera must answer is:

P(VrotO Vtransl O] Sensory-variable§ rewatchmar) [E11.3]

«What order should be sent to the motors, knowing the sensory state, and ignoring the

values of the internal variables?»
The answer to that question is obtained, as usual, by summing over the five ignored vari-

ables. This leads to the following result:
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P(Vrot O Vtrangl O| Sensory-variable8 rrwatchmarn)
= %x P(O| NItO Nrd PeEr LrlO rrobject)

IZI EP(Move| Behaviof] ..0 Tolr 7rmove x
hz EP(Behavior| Vigild ..[0 Behavior_fil 7rbehavio
y % av""D,5 [ xP(Basg PxIJ ...[0 B 7rrbase
N%,elij(Theta2| L0 ..0 U8 refusion)
ThetaZ x P(H | ProxO rehome
H Dy P(Vrot O Vtrans| Movel ..[J ThetB2 rrspeeq

[E11.4]

DDDDDI@%E

This expression may seem complex. In fact, it exactly reflects the structure of the reason-
ing required to solve the problem.

» Recognizing the object is independent of the Khepera control.

e The innermost sum searches #uhavior ignorige

EP(BehaV|or| Vigild ..[0 Behavior_fil nbehawor)D
ge ) x P(Basd Px1D .0 B 7ebase [E11.5]
= P(Behavior| VigilO ..0 Behavior_#1 Bx10...0 L8 rrwatchmar)

» The intermediary sum searches the movement ignoringdheior Basud :

» The position of the light sourcaHieta2 ) is estimated by the fusion of the light sen-
sors information.

« The command variable is estimated according to the valeexf

* The outermost sum searches fost andns ignoring the precise values of the
five internal variables.

No decision is made except the ultimate one alvgit vanas . Uncertainty is propa-
gated from the innermost level to the outermost. All the available information is taken into
account. The resulting observed robot behavior is, indeed, a probabilistic mixture of the dif-
ferent component descriptions.

Discarding no information has an obvious computational cost. The evaluation of the
three levels of cascading sums may be very time consuming. Thus, the programmer may
choose to make decisions on any intermediary variables. This choice will always trade a gain
of efficiency for a loss of information. For instance, the most efficient possible program
would make a decision for all the internal variables:

1- Draw(P(Base Px10..0 B rrbasejo decide if the robotis at its base,

2- Draw(P(Behavior| ... 0 BasEl .1 7rbehaviol))to decide the Behavior knowing
Base,

3- Draw(P(Move| Behaviofl .. 7rmove}o chose a movement knowing the
Behavior,

4- Draw(P(Theta2] L10 ..0 U8 refusion)}o decide the position of the light
source,

5- Draw(P(H| Proxd rehométp decide between avoidance and phototaxy,

6 - and finally, Draw (P(VrotO Vtrans|... O rrépeedol the robot.
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11.5 Results, lessons and comments

The results obtained are satisfactory to a human observer. The Khepera performed this task
hundreds of time in various environments and conditions. The behavior was very robust; for
instance, this experiment ran without interruption, 10 hours a day for three days as a demon-
stration during a conference.

The Movie 5° shows the Khepera during one of these experiments. It successively
shows:

» Khepera identifying an object,

» Khepera aborting its object recognition due to a possible fire detection,

» Khepera verifying that it is really facing a fire by trying to blow it,

» Khepera extinguishing the fire,

» Khepera patrolling the environment (it stops occasionally to detect movement and

sounds an alarm if it succeeds),
« Khepera returning to its base.

.-IJ |: .i 'I II |!:|I |r. |

Blowing

Figure 15: The night watchman task.

12. Synthesis
12.1 Principles, theoretical foundation and methodology

Principles

The dominant paradigm in robotics may be caricatured by Figure 16.
The programmer of the robot has an abstract conception of its environment. He or she
may describe the environment in geometrical terms because the shape of objects and the map
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AvoidObs()

if (Obs=01)
then
turn:=true
else

Figure 16: The symbolic approach in robotics.

of the world can be specified. He or she may be described the environment in analytical

terms because laws of physics that govern this world are known. The environment may also
be described in symbolic terms because both the objects and their characteristics can be
named.

The programmer uses this abstract representation to program the robot. The programs
use these geometric, analytic and symbolic notions. In a way, the programmer imposes on
the robot his or her own conception of the environment.

The difficulties of this approach appear when the robot needs to link these abstract con-
cepts with the raw signals it obtains from its sensors and sends to its actuators.

The central origin of these difficulties is the irreducible incompleteness of the models.
Indeed, there are always some hidden variables, not taken into account in the model, that
influence the phenomenon. The effect of these hidden variables is that the model and the phe-
nomenon never behave exactly the same. The hidden variables prevent the robot from relat-
ing the abstract concepts and the raw sensory-motor data reliably. The sensory-motor data
are then said to be «noisy» or even «aberrant». A queer reversal of causality occurs that seem
to consider that the mathematical model is exact and that the physical world has some
unknown flaws.

Compelling the environment is the usual answer to these difficulties. The programmer of
the robot looks for the causes of «noises» and modifies either the robot or the environment to
suppress these «flaws». The environment is modified until it corresponds to its mathematical
model. This approach is both legitimate and efficient from an engineering point of view. A
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precise control of both the environment and the tasks ensures that industrial robots work
properly.

However, compelling the environment may not be possible when the robot must act in an
environment not specifically designed for it. In that case, completely different solutions must
be devised.

The purpose of this paper is to propose Bayesian robot programming as a possible solu-
tion.

Figure 17 presents the principles of this approach.

The fundamental notion is to place side by side the programmer’s conception of the task

o rorrI Iy

Avoid Obstacl

PM OS50 1) v T\
- Preliminary
Knowledge
PMOS|50
M
S

o
Experimental/ v

Data P QDJ

7
s
o

Figure 17: The Bayesian programming approach in robotics.

(the preliminary knowledge) and the experimental data to obtain the programming resources
called «descriptions». As seen in the different examples described in this paper, both the pre-
liminary knowledge and the descriptions may be expressed easily and efficiently in probabi-
listic terms.

The preliminary knowledge gives some hints to the robot about what it may expect to
observe. The preliminary knowledge is not a fixed and rigid model purporting completeness.
Rather, it is a gauge, with open parameters, waiting to be molded by the experimental data.
Learning is the means of setting these parameters. The resulting descriptions result from
both the views of the programmer and the physical specificities of each robot and environ-
ment. Even the influence of the hidden variables is taken into account and quantified; the
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more important their effects, the more noisy the data, the more uncertain the resulting
descriptions.

However, Bayesian robot programming preserves two very important merits of the sym-
bolic approach. Thanks to the preliminary knowledge, the descriptions are comprehensible to
the programmer. Thanks to Bayesian inference, complex reasoning is possible.

Theoretical foundations

The theoretical foundations of Bayesian robot programming may be summed up by Figure
18.

The first step transforms the irreducible incompleteness to uncertainty. Starting from the

Incompletness

Preliminary Knowledge Maximum Entropy
ot Principle
Experimental Data
Probability Distributions -2 pi In(py)

Uncertainty

P(allb ) =P(a [mP(b [at )=P(b |mP(a bt )

Bayesian Inference
P(-am+P(-alm) =1

Decision

Figure 18: Theoretical foundation.

preliminary knowledge and the experimental data, learning builds probability distributions.
The maximum entropy principle is the theoretical foundation of this first step. Given
some preliminary knowledge and some data, the probability distribution that maximizes the
entropy isthe distribution thatbestrepresents this couple. Entropy gives a precise, mathe-
matical and quantifiable meaning to the «quality» of a distribution (for justifications of the
maximum entropy principle see, for instance, Jaynes, 1982; Robert, 1990; Bessiere et al.,
1998b).
Two extreme examples may help to understand what occurs:
e Suppose that we are studying a formal phenomenon. There are no hidden variables.
A complete model may be proposed. If we select this model as the preliminary
knowledge, any data set will lead to a description made of Diracs. There is no
uncertainty, any question may be answered either by true or false. Logic appears as
a special case of the Bayesian approach in that particular context (see Cox, 1979).
» On the opposite extreme, suppose that preliminary knowledge consists of very poor
hypotheses about the modeled phenomenon. Learning will lead to «flat» distribu-
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tions, containing no information. No relevant decisions can be made, only com-
pletely random ones.

Hopefully, most common cases, are somewhere in between these two extremes. Prelimi-
nary knowledge, even imperfect and incomplete is relevant and provides interesting hints
about the observed phenomenon. The resulting descriptions are neither Diracs nor uniform
distributions. They give no certitudes, although they provide a means of taking the best pos-
sible decision according to the available information.

The second step consists of reasoning with the probability distributions obtained by the
first step.

To do so, we only require the two basic rules of Bayesian inference (see Section 3).
These two rules are to Bayesian inference what the resolution principle is to logical reason-
ing (see Robinson, 1965; Robinson, 1979; Robinson & Sibert, 1983a; Robinson & Sibert,
1983b). These inferences may be as complex and subtle as those usually achieved with logi-
cal inference tools, as demonstrated in the different examples in this paper.

Methodology

The proposed robot programming method results directly from this theoretical foundations.
Let us recall it for the last time:

1- Specification : define the preliminary knowledge
1.1 - Choose the pertinent variables
1.2 - Decompose the joint distribution
1.3 - Define the Parametric forms
2 - Identification : identify the free parameters of the preliminary knowledge

3-  Utilization : ask a question of the joint distribution

12.2 Advantages

In this section we survey, comment and briefly discuss the advantages of the Bayesian robot
programming method proposed in this paper.

 Ability to treat incomplete and uncertain informatiofihe basis of this work is

related to the fundamental difficulty of robot programming in real environment. For

us this difficulty is the direct consequence of the irreducible incompleteness of

models. Consequently, the first advantage of the proposed approach is its ability to

take into account this incompleteness and the resulting uncertainty. This is

obtained in three steps, thanks to the following three abilities of the method:

° Ability to convert incompleteness to uncertainty by learnegydemonstrated in
the numerous instances where the free parameters of preliminary knowledge are
identified from experimental data (see, for instance, Section 5 concerning reac-
tive behaviors or Setcion 9 concerning object recognition). Object recognition,
for instance, shows that with simple preliminary knowledge, we are able to learn
descriptions sufficient for classification. However, in this task there are numerous
ignored variables such as, for instance, the color and material of the objects, the
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global lighting of the room, the approximate quality of the contour following
behavior or the position from where the robot has started.

° Ability to reason despite uncertaintgs demonstrated by all the experiments
requiring inference (see, for instance, Section 7 about sensor fusion or Section 9
about object recognition). The «nightwatchman» task (see Section 11) shows the
complexity of the possible reasoning (41 variables, 12 descriptions, four hierar-
chical levels).

° Ability to decide, taking uncertainty into accoufhe decision strategy selected
in this work has been to draw the values of the searched variables from the distri-
butions obtained by the preceding inference step. This strategy «renders» uncer-
tainty, the decision are nearly deterministic when the distributions are sharp, and
conversely, nearly random when they are flat.

Simple and sound theoretical basd@fie proposed approach is founded on simple
theoretical bases. Essential questions may be asked clearly and formally and even-
tually answered by mathematical reasoning. For instance, one may consider to
fairly compare Bayesian inference and logic as two possible models of reasoning.
Thanks to these theoretical bases, the experimental results (successes or even more
enlightening failures) may be analyzed and understood in detail.
Generic, systematic and simple programming metHAdwe proposed programming
method is simple, systematic and generic. Simple, as this method may be learned
and mastered easily. Systematic, as it may be applied with rigor and efficiency.
Generic, as this method may be also used in numerous other domains than robot
programming, for instance CAD (see Mekhnacha, 1999).
Homogeneity of representations and resolution procesd@s method is based on
a unique data structure, called a description, associated with two inference rules.
This homogeneity leads to simple and generic program development.
Obligation to state all hypothesi€hoosing a description as the only data structure
to specify robotics programs and following a systematic method to do so compel
the programmer to exhaustively express his knowledge about the task. Everything
that should be known about a given robotics problem is in its description: the syn-
thesis between the preliminary knowledge and the experimental data. There is no
hidden knowledge in either the inference program or the decision algorithm. As the
description encapsulates all the relevant information, exchanging, sharing or dis-
cussing models is easy and rigorous.

Large capacity of expressioescriptions offer a large capacity of expression to

specify models and to question them as well.

° Specification capacityThe different experiments described in this paper prove

that descriptions may be used to specify numerous different models. Let us recall

that we used descriptions tearn simple reactive behaviors (Section 5), to combine
them (Section 6), to hierarchically compose them (Section 8), to merge sensor infor-
mation (Section 7), to recognize situations (Section 9), to carry out temporal sequenc-
ing (Section 10) and finally, to specify a task integrating all the previously defined

descriptions (Section 11).

Question capacityLet us also recall that any question may be asked to a joint

distribution. Mathematically, all variables appearing in a joint distribution play

the exact same role. They may all, indifferently, be known, unknown or searched.

The description is neither a direct nor an inverse model. Sensor fusion (Section

7), situation recognition (Section 9) or inverse programming (Section 10) offer

o
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instances where the questions asked do not correspond to the specification order.
Furthermore, there is no ill-posed problem. If a question may have several solu-
tions, the probabilistic answer will simply have several peaks. Some instances of
sensor fusion exemplified this point (see Section 7.3).

* Ability for real incremental development of roboBayesian robot programming,
thanks to its clear theoretical foundations and to its rigorous programming method-
ology, appears to be an incremental method of developing robot programs that
could really be used in practice. The final experiment (Section 11) demonstrates
that point.

° Ability to combine descriptionsThe first incremental development tool is
description combination (Section 6). With this tool it is possible to define new
behaviors as weighted mixtures of different simpler ones.

° Ability to compose descriptiondhe second incremental development tool is
hierarchical description composition (Section 8). It is in some senses similar to
calling sub-procedures in classical programming, as some of the parametric
forms appearing in a decomposition may be questions addressed to more basic
descriptions.

° Description = ResourceMore generally, a description, as an internal representa-
tion of a physical phenomenon, may be considered as a programming ressource.
For instance, a description may offer new variables to be used in other descrip-
tions. This is the case with the varialbe that identifies the object, provided by
the object recognition description (Section 9). Object recognition also proposes
another example of the use of a description as a programming resource. Indeed,
the countour following behavior is a necessary tool to be ablefor computing the
four variablesNit ,Nrt Per andr  used by the object recognition description.
Numerous other possibilities for enhancing the capacity of a robot using descrip-
tions as resources may be found in Dedieu’s Ph.D. thesis (Dedieu, 1995).

12.3 Conclusion

We have introduced a new formalism to program robots. Our approach closely implements
the Bayesian inference paradigm and, as a result, follows a clear mathematical framework. It
permits programming of robots while explicitly taking into account the incompleteness of
the models chosen by the programmer. The proposed system has been used to program sev-
eral tasks. We have demonstrated that complex programs may be obtained by combining sim-
pler components. Experimental tests have shown the effectiveness and the robustness of the
programs built. Many developments are considered. At the theoretical level, we are testing
new methods to automatically infer the decomposition from a set of examples. We are also
improving the resolution method used in our inference engine. At the application level the
system will be used to fuse sensors to control an automated car (European Project Car
Sense). It will also be used to program a new version of the Khepera robot : the Koala. This
robot is equipped with several new sensors (color ccd, compass, directional microphones)
and can run in a larger environment. To extend the range of application we plan to use the
Bayesian programming scheme to control artificial agents in virtual worlds. We believe this
approach may ultimately lead to a new generation of robot programming languages.
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