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Flow past a single rotating cylinder has been studied, both numerically and experimen-

tally, by many authors. In contrast is the flow past rotating cylinders in a side-by-side

arrangement, which has only very limited numerical and experimental data available, de-

spite the pioneering theoretical study by Jeffery1 as early as 1922. In this paper, we dis-

cuss a numerical investigation of the steady laminar viscous flow past two infinite rotating

cylinders in a side-by-side configuration. The solution of the compressible two-dimensional

Navier-Stokes equations is determined numerically using the high-order spectral difference

scheme over an unstructured qudralateral grid. Third order accurate results in both time

and space were obtained and compared with existing data. In addition to obtaining a high-

order accurate result for flow past two rotating cylinders, we extend the current numerical

effort to investigate the effects of Reynolds number, compressibility, and high rotation

speed, which have not been comprehensively studied in the past.

I. Introduction

The problem of viscous fluid flow around two circular cylinders rotating side-by-side to each other is not
a new one, but certainly an interesting one that has attracted many researchers. Jeffery1 first discussed
an analytical treatment of the rotation of two circular cylinders in a viscous flow in 1922 using the Stoke
approximation. He showed that, in the special case of two disjoint equal cylinders of radius r, at a center-
to-center distance d apart, counter-rotating at the same speed ω in an infinite viscous fluid, the far-field

flow will assume an steady uniform motion U∞ = ωr2

d , and the net force acting on the cylinders will be
zero. However, Jeffery’s solution in bi-polar co-ordinates of the two-dimensional Stokes equations omitted
other Stokes solutions which could give rise to non-zero net force on the cylinders. Watson2 made up for this
deficiency by including additional fourier serial terms in his refined treatment of such flow, and found that, in
higher order approximation, the special case of equal counter-rotating cylinders, like before, has a steady far
field motion, but this time with non-vanishing force acting normal to the line of centers of the cylinders. The
nature of the investigation, however, has remained mainly theoretical and mathematical.3, 4 With current
Computational Fluid Dynamic capability, the characteristics of this special flow can certainly be more fully
quantified numerically by solving the full governing equations with a high-order accurate scheme, hence the
motivation of the present study.

Despite considerable studies on flow past a single rotating cylinder, comparable work to numerically and
experimentally understand the physics of flow over two rotating cylinders have been very few. Elliott6 had
used a boundary element method to compute the streamline and vorticity patterns for such kind of flow, but
his method also produced results with zero net force on the cylinders. Nakanishi and Kida5 implemented
a vortex method to study impulsively started counter-rotating cylinders pair of equal radii in fluid initially
at rest, in an effort to understand the mechanism of the generation of the uniform flow due to cylinders
rotation. Hills7 carried out both experimental and numerical studies of two disjoint rotating cylinders in
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two-dimensional newtonian fluid, but in a confined rectangular box without freestream flow. More elaborated
computational studies to understand the flow characteristics of stream over two rotating cylinders were
carried out by Surattana and Nikolay,8 and Yoon, Kim, and Chun.9 In the former, an incompressible two-
dimentional Navier-Stokes equation in the cylindrical bipolar coordinate system was solved using projection
methods based algorithm by Chorin.10 Simulations were performed at low angular rotation speeds and
Reynolds number to determine the resultant force on the cylinders. In the later, the combined effects of
the rotation speed and the spacing between two cylinders were studied with the incompressible immersed
boundary method, but again only low rotation speeds were considered at a fixed Reynolds number. Flow for
rotation at high speeds was only recently studied by Chan and Jameson11 with an industrial code, and they
observed a virtual elliptic pattern that strongly resembles a doublet potential flow at fast enough rotation
speeds.

The objective of the present work is to apply the recently developed high-order spectral difference method
to complement and improve upon the numerical efforts that have been done before. We note that the
numerical methods used for the above applications were limited to low order schemes and incompressible
solvers. With a lack of experiment data on flow over the side-by-side counter-rotating cylinder pair, and in an
effort to more accurately represent the physics of such kind of fluid motion, it proves advantageous to apply
a higher order accurate scheme to this problem. In our present work, the compressible two-dimensional
Navier-Stokes equation was solved with the spectral difference scheme over an unstructured qudralateral
grid. Spline curve fitting was implemented along the cylindrical wall to achieve a high boundary resolution.

In particular, the current paper discusses the following aspects of two rotating cylinders flow: (1) the
effect of rotation speed; (2) the effect of Reynolds Number; (3) the effect of compressibility; (4) the critical
operating points for drag reduction, self-propulsion, and wake suppression; (5) the pressure contours and
streamline patterns.

This paper is organized into 5 sections. We started by a brief introduction of the spectral difference
method in the Spectral Difference Method section, followed by the actual numerical implementation of the
method in Numerical Formulation. In the Accuracy Validation section, we computed flow past non-rotating
cylindrical bodies, and compared our spectral difference results with the existing literatures. The main
findings are discussed in the Results and Discussions section. In this section, we started by comparing and
validating current numerical results on flow past two rotating cylinders, then went on to investigate the flow
as outlined in the previous paragraph. In the Conclusion section, we summarize our high-order method
results, and identify the main features of flow past two side-by-side rotating cylinders, and their correlations
with the Reynolds number, rotation speed, and Mach number.

II. Spectral Difference Method

Until recently, compressible flow computations on unstructured meshes have generally been dominated
by schemes restricted to second order accuracy. However, the need for highly accurate methods in appli-
cations such as vortex dominated flow, large eddy simulation, direct numerical simulation, computational
aero-acoustics etc., has seen the development of higher order schemes for unstructured meshes such as
the Discontinuous Galerkin (DG) Method,26 Spectral Volume (SV) method23 and Spectral Difference (SD)
Method.19–21 The SD method is a newly developed efficient high-order approach based on differential form
of the governing equation. It was originally proposed by Liu et al.20 and developed for wave equations in
their paper on triangular grids.Wang et al.21 extended it to 2D Euler equations on triangular grids and
Liang19 improved the convergence of the method using implicit LU-SGS and p-multigrid schemes.

Recently, Sun et al.22 further developed it for three-dimensional Navier-Stokes equations on hexahedral
unstructured meshes. The SD method combines elements from finite-volume and finite-difference techniques.
Similar to the discontinuous Galerkin (DG) and spectral volume (SV) methods, the SD scheme achieves high-
order accuracy by locally approximating the solutions as a high degree polynomial inside each cell. However,
being based on the differential form of the equations, its formulation is simpler than that of the DG and SV
methods since no test function or surface integral is involved. Conservation properties are still maintained
by a judicious placement of the nodes at quadrature points of the chosen element.

III. Numerical Formulation

Consider the unsteady compressible 2D Navier Stokes equations in conservative form
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∂Q

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (1)

where Q is the vector of conserved variables; F and G are the total fluxes including both inviscid and
viscous flux vectors. To achieve an efficient implementation, all elements in the physical domain (x, y) are
transformed into a standard square element (0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1). The transformation can be written as:

(

x

y

)

=
K
∑

i=1

Mi (ξ, η)

(

xi

yi

)

(2)

where K is the total number of points used to define the physical element, (xi, yi) are the cartesian
coordinates of those points, and Mi(ξ, η) are the shape functions. For elements with straight edges, K
is equal to 4. For elements lying on curved boundaries, 8 points (four mid-edge and four corner points)
can define a quadratic representation and 12 points can determine a third-order cubic representation. The
metrics and the Jacobian of the transformation can be computed for each element. The governing equations
in the physical domain are then transferred into the computational domain, and the transformed equations
take the following form:

∂Q̃

∂t
+

∂F̃

∂ξ
+

∂G̃

∂η
= 0 (3)

where Q̃ = |J | · Q and
(

F̃

G̃

)

= |J |J−1

(

F

G

)

(4)

In the standard element, two sets of points are defined, namely the solution points and the flux points.
In order to construct a degree (N − 1) polynomial in each coordinate direction, solutions at N points are

required. The solution points in 1D are chosen to be the Gauss points defined by:

Xs =
1

2

[

1 − cos

(

2s − 1

2N
· π

)]

, s = 1, 2, · · · , N. (5)

The flux points are selected by Sun et al22 to be the Gauss-Lobatto points given by

Xs+1/2 =
1

2

[

1 − cos
( s

N
· π
)]

, s = 0, 1, · · · , N. (6)

Different flux points, however, are chosen for the computations in this paper. As suggested by Huynh33

the flux points were selected to be Legendre-Gauss quadrature points plus the two end points 0 and 1.
Choosing P−1(ξ) = 0 and P0(ξ) = 1, the higher-degree Legendre polynomials can be determined as:

Pn(ξ) =
2n − 1

n
(2ξ − 1)Pn−1(ξ) −

n − 1

n
Pn−2(ξ) (7)

The locations of these Legendre-Gauss quadrature points are the roots of equation Pn(ξ) = 0. They are
generally found to be more stable than the Gauss-Lobatto flux points.

Using the solutions at N solution points, a degree (N − 1) polynomial can be built using the following
Lagrange basis:

hi (X) =
N
∏

s=0,s6=i

(

X − Xs

Xi − Xs

)

(8)

Similarly, using the fluxes at (N + 1) flux points, a degree N polynomial can be built for the flux using
a similar Lagrange basis:

li+1/2 (X) =

N
∏

s=0,s6=i

(

X − Xs+1/2

Xi+1/2 − Xs+1/2

)

(9)

The reconstructed solution for the conserved variables in the standard element is just the tensor products of
the two one-dimensional polynomials,

Q̃ (ξ, η) =

N
∑

j=1

N
∑

i=1

Q̃i,jhi (ξ) · hj (η) (10)
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Similarly, the reconstructed flux polynomials take the following form:

F̃ (ξ, η) =
N
∑

j=1

N
∑

i=0

F̃i+1/2,j li+1/2 (ξ) · hj (η),

G̃ (ξ, η) =

N
∑

j=0

N
∑

i=1

G̃i,j+1/2hi (ξ) · lj+1/2 (η) (11)

The reconstructed fluxes are only element-wise continuous, but discontinuous across cell interfaces. For the
inviscid flux, a Riemann solver is employed to compute a common flux at interfaces to ensure conservation
and stability. In our case, we have used the Riemann problem solver (Rusanov27 or Roe28 with entropy
fixing approach like29) to compute the interface fluxes.

In summary, the algorithm to compute the inviscid flux derivatives consists of the following steps:

• Given the conservative variables at the solution points, the conservative variables are computed at the
flux points

• The inviscid fluxes at the interior flux points are computed using the solutions computed at the previous
step

• The inviscid fluxes at the element interfaces are computed using the Rusanov/Roe solver. Given the
normal direction of the interface n, and the averaged normal velocity component Vn and the sound
speed c, the inviscid flux on the interface can be determined.

• The derivatives of the fluxes are computed at the solution points using the derivatives of Lagrange
operators l

(

∂F̃

∂ξ

)

i,j

=

N
∑

r=0

F̃r+1/2,j · l
′

r+1/2 (ξi),

(

∂G̃

∂η

)

i,j

=
N
∑

r=0

G̃i,r+1/2 · l
′

r+1/2 (ηj) (12)

We write inviscid and viscous fluxes separately for equation 1 as:

∂Q

∂t
+ ∇Fe(Q) −∇Fv(Q,∇Q) = 0 (13)

where the conservative variables Q and Cartesian components fe(Q) and ge(Q) of the inviscid flux vector
Fe(Q) are given by

Q =



















ρ

ρu

ρv

E



















, fe(Q) =



















ρu

ρu2 + p

ρuv

u(E + p)



















, ge(Q) =



















ρv

ρuv

ρv2 + p

v(E + p)



















(14)

Here ρ is the density, u and v are the velocity components in x and y directions, p stands for pressure and
E is the total energy. The pressure is related to the total energy by

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (15)

with a constant ratio of specific heat γ. For all test cases in the present study, γ is going to be 1.4 for air.
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The Cartesian components fv(Q,∇Q) and gv(Q,∇Q) of viscous flux vector Fv(Q,∇Q) are given by

fv(Q,∇Q) = µ



















0

2ux + λ(ux + vy)

vx + uy

u[2ux + λ(ux + vy)] + v(vx + uy) +
Cp

Pr

Tx



















,

gv(Q,∇Q) = µ



















0

vx + uy

2vy + λ(ux + vy)

v[2vy + λ(ux + vy)] + u(vx + uy) +
Cp

Pr

Ty



















(16)

where µ is the dynamic viscosity, Cp is the specific heat and Pr stands for Prandtl number. T is temperature
which can be derived from the perfect gas assumption. λ is set to −2/3 according to the Stokes hypothesis.

The solution procedures to get viscous fluxes can be described as the following steps.

• reconstruct Qf at the flux points from the conservative variables at the solution points using equation
10.

• average the field of Qf on the element interfaces as Qf = 1
2
(QL

f + QR
f ). For interior flux points,

Qf = Qf . Meanwhile, appropriate boundary conditions shall be applied for specific edge flux points.

• evaluate ∇Q from Qf using equation 12 where ∇Q =

{

Qx

Qy

}

and Qx = ∂Q
∂ξ ξx + ∂Q

∂η ηx, etc.

• reconstruct ∇Q, from equation 10 and applying appropriate boundary conditions for specific flux points
and average them on the element interfaces as ∇Qf = 1

2
(∇QL

f + ∇QR
f )

• use Qf and ∇Qf in order to compute viscous flux vectors described in equation 16 at the element
interfaces.

Flows with either steady or unsteady solutions are considered in this paper. In order to solve the flow
to a steady state from a nearly arbitrary initial guess, a relaxation scheme is needed. Therefore, the time
derivative term is retained for both steady and unsteady cases. All computations in this paper are advanced
in time using a fourth-order strong-stability-preserving five-stage Runge-Kutta scheme.

IV. Numerical Validation

Two testing cases, a Taylor-Couette flow32 (2009) and a laminar flow past a single cylinder12 at Re=100,
are presented here for validation of the flow solver.

A. Validation using compressible Taylor-Couette flow

In this example, the numerical order of accuracy is validated against the analytical solution for the com-
pressible Taylor Couette flow. This test problem was taken from a recent paper presented by Michalak and
Ollivier-Gooch.30

The Reynolds number based on the tangential velocity of the inner spinning cylinder and its radius (=1)
is equal to 10. The temperature and pressure are prescribed for the inner cylinder giving a Mach number 0.5.
The outer cylinder is fixed and an adiabatic wall boundary condition is employed. A grid with 24× 2 cells is
shown in figure 1. Two other finer grids are obtained using successive grid refinements in both directions. A
steady solution of Mach number contour obtained by the SD method is shown in figure 1 (b). A cubic curved
wall boundary is used for inner and outer cylinders. We obtained desired numerical order L2 accuracy of
the y-direction velocity as shown in table 1. The maximum accuracy of fourth-order is demonstrated in the
table. The explicit Runge-Kutta scheme becomes slow when the polynomial order is increased. However,
the fifth-order and even higher accuracy can also be demonstrated using the implicit LU-SGS method and
p-multigrid approach with a significantly shorter CPU time.31
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(a) grid (b) Mach Contour

Figure 1. Compressible Taylor Couette Flow

No. of elements No. of DOFs L2-error Order

3rd order SD

48 432 8.896E-04 -

192 1728 1.002E-04 3.15

768 6912 1.084E-05 3.21

4th order SD

48 768 1.4815E-04 -

192 3072 1.0036E-05 3.88

768 12288 6.5746E-07 3.93

Table 1. L2 errors and orders of accuracy of viscous Taylor-Couette flow

B. Validation using flow past a cylinder

Figure 2. shows the computational grid for the unsteady flow past a single cylinder. There are 32 cells
around the circumference of the cylinder. The first cell near the cylinder wall has a spacing around 11%
cylinder radius in the normal direction. The level of grid resolution is much coarser than the one used in
Meneghini et al.13 who employed 128 points around the cylinder wall and the first node had a distance about
1% of cylinder radius for an isolated cylinder case. The computation for this case is performed using 5th
order SD method and a cubic curved wall boundary condition is employed for the cylinder surface. Dirichlet
boundary condition is used for the inlet and fixed-pressure is adopted for the outlet boundary condition.
Invisicd symmetry boundary conditions are applied on the two lateral sides.

A snapshot of pressure contour is shown on the left hand side and the instantaneous velocity streamlines
are illustrated on the right hand side in Figure 3. The vortex formed by the fluid at the bottom of the
cylinder is associated with a region of low pressure. At this time instant, the unsteady lift coefficient is at
its minimum. The difference of coefficient C

′

L predicted by 4th order (DOFs = 21, 376) and 5th order SD

methods (DOFs = 33, 400) is in the same order of the difference of coefficient C
′

D predicted by them. These
differences are all less than 2%. For the single cylinder case, we only present the results obtained by 5th
order SD method.

Table 2. reports the comparison between the present computation of compressible viscous flow at Mach
number 0.2 to other numerical and experimental studies for incompressible viscous flow at the same Reynolds
number 100.

The Strouhal number predicted by present SD method on a mesh with DOF = 33, 400 is identical to
the one predicted by Sharman18 and the measured value by Williamson.15 There is a separate compressible
flow simulation which is not included in the table. Mittal14 also predicted 0.164 using a finite element
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(a) (b)

Figure 2. Computational grid for unsteady flow past a cylinder

(a) pressure contour (b) streamlines

Figure 3. Instantaneous flow field computed for flow past a cylinder
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Table 2. Computation Cases

Investigator Present Sharman 05 Mene 01 kang 03 Ding 07

Re no. 100 100 100 100 100

nodes 1,336 14,441 13,696 62,127 23,033

blockage 0.0312 0.02 0.047 - -

C
′

L 0.232 0.23 - 0.32 0.287

CD 1.365 1.33 1.37 1.33 1.356

C
′

D 0.0086 0.0064 - - 0.01

St. no. 0.164 0.164 0.165 0.165 0.166

compressible flow solver at Re = 100 and Mach = 0.2. The fluctuating lift coefficient is identical to the one
predicted by the incompressible solver of.16–18 The predicted higher C

′

L is probably due to insufficient near
wall grid resolution and lower-order spatial piecewise schemes which are unable to resolve the wall curvature.
The mean and rms drag coefficients are slightly higher than the ones predicted by Sharman.18 However,
the presently predicted CD 1.365 is close to 1.37 predicted by Meneghini13 and 1.356 predicted by Ding.16

The low compressibility of the present flow condition may also slightly affect mean drag coefficient but its
impact is certainly not noticeably strong. Mittal14 also predicted the mean CD around the level of 1.4 as
can be seen from figure 7 in their paper for Mach 0.2 and Re=100. Overall, this validation proves that our
2D spectral difference method produces the correct physics for flow past a cylinder.

V. Results and Discussion

In this section, we present numerical results for flow past two rotating cylinders in a side-by-side arrange-
ment. We performed the simulations with the following conditions as listed in Table 3:

Table 3. Computation Cases

Objectives Fixed Paramters Variable Parameter

Compressibility Effect g∗ = 1, Re = 100, ω = 3Ω M = 0.05, 0.10, 0.20

Reynolds Number Effect g∗ = 1, M = 0.10, ω = 3Ω Re = 1, 10, 20, 50, 100, 150

g∗ = 1, M = 0.10, Re = 001 ω = 1Ω, 2Ω, 3Ω, 4Ω, 5Ω

Rotation Speed Effect g∗ = 1, M = 0.10, Re = 020 ω = 1Ω, 2Ω, 3Ω, 4Ω, 5Ω

g∗ = 1, M = 0.10, Re = 050 ω = 1Ω, 2Ω, 3Ω, 4Ω, 5Ω

g∗ = 1, M = 0.10, Re = 100 ω = 1Ω, 2Ω, 3Ω, 4Ω, 5Ω

Before presenting the above results, we first discuss the computational mesh and the boundary conditions
pertaining to our two rotating cylinders flow geometry, and then carry out some further accuracy studies
that are related to two rotating cylinders flow.

A. Computation Geometry and Conditions

The computation configuration is shown in Figure 4. In our computation, the geometry is non-dimensionalized
so that the diameters of the cylinders are both equal to unity D = 1. The two cylinders are spaced at 2 units
apart, measured from center to center, so that the gap to diameter ratio g∗ = 1. The cylindrical rotation
speed ω is measured in terms of Ω, which is defined as Ω = 2U∞/D.
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The computational mesh has a cell number of 5, 106, with a total degree of freedom(DOFs) of 45,954
for the 3rd order SD method, and 81,696 DOFs for the 4th order SD method. There are 60 cells along the
periphery of the cylinder surface. The first cell near the cylinder wall is located at a distance of about 2.8%
of the cylinder radius. A cubic curved boundary condition is applied for the wall. The present near wall grid
resolution is finer than the one used by Kang17(2003) with immersed boundary method.

X

Y

-20 0 20 40
-30

-20

-10

0

10

20

30

X

Y

-2 0 2
-2

-1

0

1

2

Figure 4. Computation geometry and mesh. The left figure shows the entire flow field. The right figure shows
the grid near the cylinders

For the computational boundary conditions, we use iso-thermal wall boundary conditions. Dirichlet
boundary condition is applied for the left inlet boundary. Symmetrical slip conditions are applied to the top
and bottom boundaries. Fixed pressure is specified at the right boundary, and other values are extrapolated.
The time step size used is: h2nd = 0.005 for the second order SD method; h3rd = 0.001 for the third order
SD method; h4th = 0.0005 for the fourth order SD method; and h5th = 0.0001 for the fifth order SD method.

B. Numerical Accuracy Study

The numerical accuracy and mesh independence study were carried out by implementing the 2nd, 3rd, 4th,
and 5th order SD method at the same flow conditions of Mach = 0.1, Re = 100, ω = 3Ω, and g∗ = 1. The
results are tabulated in Table 4.

Table 4. Numerical Accuracy and Grid Independence Study

SD Order CDpressure CDshear CDtotal CLpressure CLshear CLtotal

2nd -0.3187 0.3405 2.18E-02 5.9843 0.3984 6.3827

3rd -0.3122 0.3184 6.13E-03 5.8001 0.3793 6.1795

4th -0.3154 0.3173 1.95E-03 5.7768 0.3783 6.1551

5th -0.3153 0.3173 1.95E-03 5.7756 0.3783 6.1539

It is observed that, the 4th order approximation will be sufficient to lead to a mesh-independent result.
The simulations presented in the following section were performed with the 3rd order SD method unless

otherwise noted.

C. Result Comparison for Flow over Two Rotating Cylinders

Numerical study of flow past two rotating circular cylinders in a side-by-side arrangement has been carried
out by several authors. In this section, we compare the numerical results of our SD simulations with those
in the literature.
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1. Flow Condition: Re = 100, g∗ = 1.5, ω = 1.2Ω

Yoon et al.9(2007) performed simulation, with immersed boundary method, at a range of low rotational
speeds for four different gap spacings at Reynolds number of 100. This method used a two-step time-split
scheme, and second-order accurate central difference scheme for the spatial discretization. The total number
of mesh points used is 483 by 451. We performed the same simulation for the case with g∗ = 1.5, ω = 1.2Ω,
and Re = 100. The comparison is tabulated in Table 5.

Table 5. Result Comparison with g∗ = 1.5, ω = 1.2Ω, and Re = 100

Numerical Scheme CDtotal−max CDtotal−min CDtotal−ave CLupper−ave CLlower−ave

2nd Order SD 0.82 0.68 0.75 3.1278 -3.1279

Yoon etl(2007) 0.76 0.68 0.72 3 -3

We compare the vorticity contour from Yoon (07) with our current SD method in Figure 5. The vorticity
patterns look very similar.

Figure 5. Vorticity contours comparison between work by Yoon and the current SD method

2. Flow Condition: Re = 150, g∗ = 1, ω = 1Ω, 2Ω, 3Ω

Chan and Jameson11 (2008) obtained numerical results of flow past two spinning cylinders using a commercial
code CFD-ACE. The number of mesh cells used range between 150,000 and 200,000, with 280 grids along
the cylinder surface. The simulations were performed at Re = 150, g∗ = 1, and a wide range of rotation
speeds. It was found that unsteady vortex wakes can be suppressed by increasing the rotation speed, and a
virtual elliptic body formed by a closed streamline is observed. To make comparison, We performed the same
simulations with the spectral difference method for the case with g∗ = 1, ω = 1Ω, 2Ω, 3Ω, and Re = 150.
The comparison is tabulated in Table 6.

We also performed the simulations under the same conditions with the industrial code StarCCM+. In
Figure 6, we plot StarCCM+ results together with those of Chan and Jameson, and current SD method.
The results match one another very closely.

For the remaining part of this section, we will present the numerical results for flow with various cylindrical
rotation speeds, Reynolds numbers, and Mach numbers. We will start by investigating the change of flow
characteristics at a fixed Reynolds number as the rotation speed increases, then studying the effects of
changing the Reynolds numbers and freestream Mach numbers.
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Table 6. Results Comparison with work by Chan and Jameson (2008) for the case with g∗ = 1,Ω = 1, 2, 3, and
Re = 150

Numerical Scheme CDtotal CDpressure CDshear CLtotal CLupper CLlower

Ω = 1

Spectral Difference 0.809 0.271 0.538 0 2.528 -2.528

Chan&Jameson 0.781 0.292 0.491 0 2.702 -2.702

Ω = 2

Spectral Difference 0.169 -0.115 0.284 0 5.025 -5.025

Chan&Jameson 0.186 -0.099 0.285 0 5 -5

Ω = 3

Spectral Difference 0.012 -0.239 0.251 0 5.8 -5.8

Chan&Jameson 0.0188 -0.258 0.277 0 6 -6
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Figure 6. Lift and Drag Coefficients Comparison for Flow Past Two Rotating Cylinders with Re = 150, g∗ = 1,
and ω = 1Ω, 2Ω, 3Ω

D. Effect of Rotation Speeds

For flow past two counter rotation cylinders in a side-by-side configurations in a viscous fluid, early work
by Jeffery1(1922) predicted that, as the rotation speed increases, a certain rotation rate will be reached
whereby the force acting on the cylinders vanishes. Although Jeffery’s theoretical work involves simplifica-
tions of the full flow physics, as his work was being refined by many other authors,2–5 it was recognized that
counter-spinning cylinders in this fashion can lead to significant drag reduction. This has been demonstrated
numerically by various authors.8, 9, 11

Most of the existing literature, except Chan and Jameson (2008), have simulations performed at rotation
speeds less than 2.5Ω. The lift and drag and the flow characteristics beyond that rotation rate are not well
known. More significantly, Jeffery’s approximate theoretical derivation points to a zero net-force solution
at a rotation speed of 4Ω. To see this, the counter-rotating equal cylinders induced far field steady flow

speed is given by U∞ = ωr2

d , as derived by Jeffery, and since the gap spacing g∗ = 1 leads to a center-
to-center distance of d = 2D, the rotation speed that will induce a freestream velocity of U∞ is given by:
ω = 4·2U∞

D = 4Ω.
In this section, we present the lift and drag coefficients as a function of rotation speeds from 1Ω to 5Ω.

The cases of a low Reynolds number flow(Re = 1), and moderate Reynolds number flow(Re = 50) are
discussed. We note here that the flow characteristics for Reynolds number 20, 50, 100, and 150 are very
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similar. We select Re = 50 case to avoid unnecessary repetition. The effect of changing Reynolds number
will be further discussed in the following section.

The lift coefficient, CL, and the drag coefficient, CD, consist of a pressure component and a shear
component. We denote the pressure component by a subscript p, and the shear component by a subscript s
such that CL = CLp + CLs, and CD = CDp + CDs.

Due to the symmetry of the flow under steady state condition, which can generally be achieved by rotating
faster than about 1.5Ω, the drag coefficients for the upper cylinder, the lower cylinder, and the combined
cylinders pair are the same. Hence, unless otherwise stated, the term CD in the rest of the section refers to
all of the above.

Again, under the steady flow at fast enough rotation rate, the lift coefficients for the upper and lower
cylinders are mirror image of each other. Therefore, the total lift coefficient of the combined cylinders pair
is zero. Hence, unless otherwise stated, the term CL in the rest of the section refers to the lift coefficient on
the upper cylinder. The CL for the lower cylinder will have the same value with an opposite sign.

1. Effect of Rotation at Low Reynolds number

The variations of CL, CLp, CLs, CD, CDp, and CDs with rotation speed ω are tabulated and plotted in Table
7 and Figure 7.

Table 7. Variation of force coefficients as a function of rotation speeds, with g∗ = 1, Mach = 0.1, and Re = 1

Rotation CDtotal CDpressure CDshear CLtotal CLupper CLlower

1Ω 6.6432 3.3552 3.2881 3.2406 1.8872 1.3534

2Ω 4.5685 2.2479 2.3206 3.6030 2.1824 1.4206

3Ω 2.5149 1.1378 1.3772 3.6638 2.2637 1.4002

4Ω 0.4192 -0.0119 0.4311 3.4592 2.1717 1.2876

5Ω -1.8938 -1.3060 -0.5878 2.9762 1.9270 1.0492

At low Reynolds number, CD, CDp, and CDs decrease monotonically with the rotation speed ω. The
drag on the cylinders vanishes at a rotation rate of 4.2Ω. Further increasing the rotation speed, a thrust is
produced on the cylinders. The system becomes self-propelling.

The streamline patterns at increasing rotation speeds are plotted in Figure 8. We find that the flow is
not separated even at very low rotation speed. A virtual ellipse around the cylinders pair is formed by the
enclosed streamline. We observe a pattern that is very similar to a doublet potential flow.

2. Effect of Rotation at moderate Reynolds number

Table 8. Variation of force coefficients as a function of rotation speeds, with g∗ = 1, Mach = 0.1, and Re = 50

Rotation CDtotal CDpressure CDshear CLtotal CLupper CLlower

1Ω 1.0504 0.5633 0.4871 2.7852 2.4773 0.3078

2Ω 0.3817 -0.1143 0.4961 5.2852 4.7749 0.5103

3Ω -0.0522 -0.5668 0.5146 7.3001 6.6562 0.6439

4Ω -0.1880 -0.1175 0.987 1.3944 1.2958 0.0986

5Ω -0.543 0.2325 -0.2868 -5.7816 -5.3176 -0.4640

Flow at higher Reynolds numbers has different characteristics. As shown in Figure 10, increasing the
rotation rate leads to a drag reduction as before. However, the drag no longer decreases linearly with
increasing rotation speed. Instead, it becomes very small when the rotation speed is around 3Ω, and stays
close to zero as the rotation increases further.
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Figure 7. Lift and Drag Coefficients with Increasing Rotation Speeds with Re = 1, g∗ = 1, and M = 0.1

We can divide the analysis into two parts. For rotation rate less than 3Ω, the pressure drag CDp decreases
rapidly while the shear drag CDs stays more or less constant. Hence rotating the cylinders has a much more
significant effect on the pressure drag, CDp, than on the shear drag, CDs. At moderate Reynolds numbers,
the flow will usually separate behind non-rotating cylinders and form vortex wake. By increasing the rotation
speed, we observe that the wake can be completely suppressed. The required rotation rate is near 2Ω. The
decrease in pressure drag CDp in this region is mainly due to this wake suppression effect. This can be
readily perceived from the streamline patterns in Figure 11.

From 2Ω to 3Ω, the streamline pattern changes drastically. The flow transits from a flow past two disjoint
cylinders to a flow past a doublet-like body of cylinders pair. This changes the effective geometry of the
system, and helps to reduce the drag of the system. We also observe that CDp turns negative from around
2Ω, and its magnitude increases until it is about the same order of magnitude as CDs at around 3Ω.

As the cylinders rotate faster beyond 3Ω, and the ellipse becomes more developed, the pressure contour
shows this change clearly. A continuous pressure distribution in the shape of figure-of-8 is developed between
the gap and the cylinders. The shear stress coefficient begins to decrease, as in the low Reynolds number
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Figure 8. Streamline Patterns with Re = 1, g∗ = 1,M = 0.1 and ω = 1Ω, 2Ω, 3Ω, 4Ω

case, while the pressure drag coefficient begins to increase in roughly the same proportion. A self-equilibrium
point is reached at around 4.2Ω whereby both the shear stress and pressure drag components nearly vanish.

However, unlike the low Reynolds number flow, the system of cylinders pair is no longer self-propelling
beyond this critical rotation speed. Instead, the drag remains close to zero. We observe that, while the
shear stress coefficient CDs decreases monotonically in both low and moderate Reynolds number flow, the
behavior of the pressure drag coefficient CDp is very different. The increase in pressure drag component
closely matches the increase in negative shear drag component, effectively producing very small net force on
the cylinders.

3. Critical Rotation Rate for Minimum Force on Individual Cylinder

The simulation results show the existence of a critical rotation rate for minimum absolute force acting on
each individual cylinder and the combined cylinders pair.

For the low Reynolds number flow, the pressure and shear drag coefficients vanish at a rotation speed
of about 4.2Ω. For the moderate Reynolds number flow, the CD becomes zero near 2.5Ω when the virtual
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(a)Pressure Contour,Re=1,ω = 2Ω (b)Pressure Contour,Re=1,ω = 3Ω

(c)Pressure Contour, Re=1,ω = 4Ω (d)Pressure Contour, Re=1,ω = 5Ω

Figure 9. Pressure Contour for Flow Past Two Rotating Cylinders with Re = 1, g∗ = 1,M = 0.1 and ω =
2Ω, 3Ω, 4Ω, 5Ω

elliptical body is beginning to form, but all six components (CL, CLp, CLs, CD, CDp, and CDs) vanish
almost concurrently also around 4.2Ω.

To more clearly identify this critical rotation speed, the total absolute force coefficients at various rotation
speeds and Reynolds numbers are plotted in Figure 13.

We observe that, regardless of Reynolds numbers, the rotation speed for minimum force acting on the
individual cylinder invariably occurs at around 4Ω. Hence, by rotating at this speed, each individual cylinder
is in the most equilibrium state with its surrounding fluid flow, and hence is subjected to minimum external
stress. This is consistent with Jeffery’s approximate theoretical result by matching the rotation speed ω with
the self-induced freestream velocity U∞. For the non-dimensionalized cylinders gap g∗ = 1, this rotation
speed is, as shown previously, ω = 4Ω.

E. Effect of Reynolds Number

In the previous section, we investigate the effect of rotation speeds on the flow characteristics at low and
moderate Reynolds numbers. We notice that the flow behaves somewhat differently when the Reynolds
number is different.

In particular, to summarize the key findings in the previous section, we observe that at low Reynolds
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Figure 10. Lift and Drag Coefficients with Increasing Rotation Speeds with Re = 50, g∗ = 1, and M = 0.1

number, firstly, the drag coefficients decreases almost linearly with increasing rotation speed; secondly, thrust
is produced on the cylinders when the rotation speed is higher than the critical rotation rate; thirdly, the effect
of rotation on the pressure and shear force components is very similar; and lastly the elliptical streamline
pattern forms readily even at very low rotation speed. In contrast, at moderate Reynolds number, the
drag decreases rapidly as the wake is being suppressed by cylinder rotation motion, then, once the elliptical
streamline pattern enclosing the cylinders pair is formed, the streamwise force on the cylinders stays constant
and remains very close to zero. The effect of rotation on pressure and shear drag is now equal and opposite
so that, as they grow in magnitude but in the opposite direction, they effectively cancel each other out. In
essence, the major difference between the low Reynolds number flow and the moderate Reynolds number
flow can be largely attributed to the very different behavior of the pressure force component as the Reynolds
number changes. The behavior of shear force component seems largely unaffected by Reynolds number.

In this section, we will quantify the difference by examining the flow at various rotation speeds at Reynolds
numbers of 1, 20, 50, and 100. The force coefficients as a function of rotation speeds at various Reynolds
numbers are plotted together in Figure 14.
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(c) Streamline at Re=50,ω = 3Ω (d)Streamline at Re=50,ω = 4Ω

Figure 11. Streamline Patterns with Re = 50, g∗ = 1,M = 0.1 and ω = 1Ω, 2Ω, 3Ω, 4Ω

Except for very low Reynolds number, the flow for a wide range of moderate Reynolds numbers behave
more or less the same as the rotation speed changes, and for rotation speed less than the critical rotation
rate, the major effect of increasing Reynolds number on each individual cylinder here is to decrease the drag
and increase the lift; on the combined cylinders pair, the net effect is a decrease in drag, as the net lift has
always remained zero. This trend can be more clearly seen by plotting the force coefficients as a function of
the Reynolds number at a fixed rotation speed of 3Ω in Figure 15.

From these two sets of figures, we can make the following observations: firstly, for rotation speed less
than the critical rotation rate, a critical Reynolds number exists whereby the drag on the cylinders reduces
rapidly. This occurs in the Re = 10 − 20 region; secondly, the effect of the Reynolds number on drag is
significant only for rotation speeds less than about 3Ω, beyond which the effect of Reynolds number is very
small.
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(a)Pressure Contour,Re=50,ω = 2Ω (b)Pressure Contour,Re=50,ω = 3Ω

(c)Pressure Contour, Re=50,ω = 4Ω (d)Pressure Contour, Re=50,ω = 5Ω

Figure 12. Pressure Contour with Re = 50, g∗ = 1,M = 0.1 and ω = 2Ω, 3Ω, 4Ω, 5Ω

F. Effect of Compressibility

In this section, we investigate the effect of compressibility by performing the simulations at three different
Mach numbers, M = 0.05, 0.10, 0.20, at a fixed Reynolds number and rotation speed of Re = 100, and
ω = 3Ω.

Table 9. Variation of force coefficients as a function of Mach number, with g∗ = 1, ω = 3Ω, and Re = 100

Mach Number CDtotal CDpressure CDshear CLtotal CLupper CLlower

0.05 0.0363 -0.2966 0.3330 6.2682 5.8872 0.3809

0.10 0.0217 -0.3187 0.3404 6.3827 5.9843 0.3983

0.20 -0.0036 -0.4053 0.4017 7.3728 6.8637 0.5091

The variation of the force coefficients are plotted in Figure 16. Increasing the Mach number increases
the shear drag, decreases the pressure drag, and leads to a small decrease in the overall drag. Increasing the
Mach number increases the pressure lift,and the overall lift acting on each cylinder, but the net lift on the
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Figure 13. Total Absolute Force Coefficients with Increasing Rotation Speeds with Re = 1, 20, 50, 100, g∗ = 1,
and M = 0.1

cylinders pair, as always, remain zero.
The Mach and density contours are plotted in Figure 17. As the Mach number increases from 0.05 to

0.10 to 0.20, the density changes by 2%, 8%, and 30% respectively, and the maximum local Mach number
increases from 0.16 to 0.3 to 0.65. We observe that, when the Mach numbers are low, the density and Mach
contours look very similar. However, we do see a change in pattern as the Mach number increases. In
particular, the figure-of-8 like pressure contour in between the cylinders is disappearing, implying that the
elliptical streamline pattern is being weakened as the Mach number increases.

VI. Conclusion

Flow past two counter rotating cylinders in a side-by-side arrangement has not been extensively studied
numerically. The existing literature is limited both in terms of the physical scope of the numerical study
as well as the numerical methods used to carry out those study. The goal of this paper is to implement a
high-order accurate method to study such a flow over a wider range of Reynolds number, Mach number,
and cylindrical rotation speed. To this end, we applied the 4th order spectral difference method in space,
and five stage Runge-Kutta time stepping scheme, and cubic curved wall fitting to achieve high order of
accuracy. Our obtained results compare favorably with existing data in the literature.

With our SD numerical scheme, we investigated the two rotating cylinders flow up to high rotation
speeds. We find that counter rotating the cylinders results in the formation of an elliptical streamline
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Figure 14. Lift and Drag Coefficients as a function of Reynolds number, with Mach = 0.1, g∗ = 1, and
ω = 1Ω, 2Ω, 3Ω, 4Ω, 5Ω
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Figure 15. Lift and Drag Coefficients as a function of Reynolds number, with Mach = 0.1, g∗ = 1, and ω = 3Ω

pattern enclosing the cylinders pair, which helps to suppress vortex wake and dramatically reduce the drag
on the cylinders to a value very close to zero. For a wide range of moderate Reynolds number, the rotation
speed required for the formation of elliptical streamline pattern is around 3Ω. Also, in the context of Jeffery’s
work on two counter-rotating cylinders in viscous flow, we identify a critical rotation rate of about 4.2Ω, at
which the resultant force acting on each cylinder is minimum regardless of Reynolds number.

Our investigation of the Reynolds number effect shows that a Reynolds number of around Re = 10 − 20
exists which divide the flow physics into two rather different regimes. For lower Reynolds number, the
cylinders pair is capable of self-propelling itself by rotating faster than the critical rotation rate of around
4.2Ω. For higher Reynolds number, fast rotation can at best achieve near zero drag. The flow in this regime
is also not very sensitive to Reynolds number change.

Lastly, we study the effect of compressibility and show that compressibility can have a slight drag benefit,
and can also weaken the elliptical streamline pattern as the local Mach number becomes large.
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Figure 16. Lift and Drag Coefficients as a function of Mach number, with Re = 100, g∗ = 1, and ω = 3Ω
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Figure 17. Pressure (Top) and Mach (Bottom) Contour for Flow Past Two Rotating Cylinders with Re = 100,
g∗ = 1,M = 0.05, 0.10, 0.20 and ω = 3Ω
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