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T he use of robots, especially autonomous mobilerobots, to support work isexpected

toincrease over the next few decades.* However, little empirical research examines

how usersform mental models of robots, how they collaborate with them, and what factors

contribute to the success or failure of human-robot collaboration. A few observationa

studies report on people and robots working together
inthe unstructured “ real world,” 2 but they remain rel-
aively rare.

Through adetailed field study, we aimed to better
understand how different levels and types of auton-
omy affect how users make sense of the actions of
remotely located robots. The context for our field
observations was the Life in the Atacama project.
LITA used arobot to investigate microorganismsin
Chile'sAtacamaDesert in away analogousto plan-
etary exploration. The project goals were twofold:
to use the Atacama Desert as a testing ground to
devel op technol ogies and methodol ogiesrelevant to
Mars exploration and to generate new scientific
knowledge about the Atacama Desert itself. The
technology development focused on a series of mo-
bile robots and science instrument payloads.

Our observations of users collaborating with the
remote robot showed differences in how the users
reached common ground with the robot in terms of
an accurate, shared understanding of therobot’s con-
text, planning, and actions—a process called ground-
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ing. We focus on how the types and levels of robot
autonomy affect grounding. We also examine the
challenges a highly autonomous system presents to
peopl € sahility to maintain ashared mental model of
the robot.

Related work

Understanding how people work with robots and
how to design robots to better support peopleisthe
focus of the research area known as human-robot
interaction. Jenny Burke and Robin Murphy sum-
marize the open HRI research questions,? which
include the type of modeling issues we addressin
this study. We use behavioral theory from the fields
of communication, organizational behavior, and
human-computer interaction to describe how under-
standing the process of building common ground can
inform the design of human-robot systemsand HRI.

Common-ground theory

Astwo individuals participate in a joint activity,
they accumulate common ground—that is, “the
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knowledge, beliefs, and suppositions they
believe they share about the activity.”® For
example, the common ground between two
people playing atennis match would include
knowledge of tennis rules, who won the last
match, and how to hold the racket.

Herbert Clark and Deanna Wilkes-Gibbs
propose that successful collaboration re-
quires common ground: it helps collabora-
tors know what information their partners
need, how to present information so that it's
understood, and whether partners have inter-
preted information correctly.® At an interac-
tion’s start, collaborators share a certain
amount of common ground. For example, if
they’re members of the same discipline, they
likely have a common language and per-
spective that facilitates communication.”
Common ground can increase over time as
collaborators share common experiences,?
but it also can be disrupted by factors such
as being in and drawing information from
different physical contexts.® Thisinteractive
process establishes the common ground be-
tween collaborators.

Common ground and
human-robot interaction

Although researchers devel oped the com-
mon-ground framework to understand con-
versation and collaboration among people, not
between peopl e and machines, recent work has
extended the framework to human-computer
interaction.1%11 Thisresearch suggeststhat we
can improve interfaces by thinking about the
user’s experience as a conversation in which
to develop shared meaning between the user
and the machine interface.

Inthe HRI field, Hank Jones and Pamela
Hinds observed SWAT (specia weaponsand
tactics) teams and used their findings to in-
formthe design of robot contral architectures
for coordinating multiple robots. 2 Although
their observations didn’t include robots, their
findings emphasi ze the importance of com-
mon ground between a robot and its user,
especially when the two aren’t collocated.
Morerecently, SaraKiesler described exper-
iments reporting more effective communi-
cation between people and robots when com-
mon ground is greater.13 Other researchers
found that information exchangeis more ef-
fective when arobot can adapt its dialogue
to fit auser'sknowledge.*

Situation awareness

Although generally focused more on di-
aogue and communication, the common-
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ground framework overlapswith work on sit-
uation awareness, which Mica Endsley de-
fines as “knowing what is going on around
you.” 15 Researchersrecently examined SA in
HRI, particularly with urban search and rescue
(USAR) robots. 1618 Empirical work indicates
that USAR operators spend significantly more
timetrying to gain SA—assessing the state of
therobot and environment—than they do nav-
igating therobot.1617 Thiswork tendsto focus
on “rea time” interaction (with teleoperated
robots), soitsapplicability islessclear for HRI
with autonomousrobotsthat areremotely and
asynchronously commanded.

From their observations in the USAR do-
main, Burkeand Murphy proposethat shared
mental models contributeto SA and that com-

munication is critical to refining these mod-
els? However, they don't test thisrel ationship
directly. Inthework wereport here, we aimed
to examine more closely how grounding
occurs or is disrupted between users and a
robot as the robot’s autonomy increases. The
science team we observed had difficulty
knowing what the robot was doing and what
was going on in the robot’s environment, and
therobot—Iacking information about the sci-
ence team—was unabl e to respond appropri-
ately. Weaim to better understand how auton-
omy affects the information that both the
scienceteam and the robot need to build com-
mon ground. The common-ground framework
facilitatesafocuson the entire conversation”

between auser and arobot rather than solely
ontheuser’sinformation needsasin previous
SA research.

Autonomy and the
grounding process

We base our analysis of robot autonomy
on the work of Raja Parasuraman, Thomas
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Sheridan, and Christopher Wickens,*® who
define automation as*“adevice or system that
accomplishes (partially or fully) a function
that was previously, or conceivably could be,
carried out (partially or fully) by a human
operator.” They distinguish between auton-
omy types and levels, describing four basic
types: information acquisition, information
analysis, decision selection, and action im-
plementation. In robotics, these autonomy
types are commonly collapsed into three:2°

* autonomous sensing (information acqui-
sition and data transformation)—making
observations and refining information,

 autonomous planning (information inter-
pretation and decision selection)—react-
ing toinformation or deciding actionsand
schedule, and

e autonomous acting (action implementa-
tion)—executing a planned task or pro-
ducing reflexive reactions.

These types decompose information analy-
sisinto data transformation during sensing
and interpretation during planning.

One robotic system can have a different
autonomy level for each type—that is, sens-
ing, planning, and acting. Inthe LI TA project,
we categorized the levels according to the
extent of external guidancethe system required
to function:

« low autonomy—some basic automation
might be present, but both information and
procedures must be provided externaly;

* moderate autonomy—some required in-
formation will come from an external
source, such asintermediate stepsor proper
system settings, but all procedures func-
tion independently; and

* high autonomy—systems can both derive
needed information and proceed indepen-
dently over extended periods.

Our work’s most significant contributionisa
better understanding of how different auton-
omy types and levels affect grounding be-
tween people and robots, particularly teams
of people and aremote robot.

Study methodology

The LITA project robot, Zog, is a four-
wheeled, solar-powered robot equipped with
several scientificinstruments, including cam-
eras and an underbelly fluorescence imager
(FI) for detecting organic molecules such as
proteins and amino acids (seefigure 1).
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Figure 1.

Figure 2. Science team members discuss data returned from the robot.

For this study, we focused on a particular
part of the LITA field season known as
remote science operations. During these peri-
ods, a team of biologists, geologists, and
instrument specialists (in Pittsburgh) used
the robot to search for signs of life in the
desert. This science team issued daily com-
mandsto therobot and received and analyzed
the data productsit generated (seefigure 2).
An engineering team of roboticists and
instrument specialists (in Chile) monitored
therobot, conducted troubleshooting onsite,
and ensured that the science team could
gather data successfully.

To collect dataabout both sites, wehad one
researcher observe the Pittsburgh science
team while one to two others observed the
Chile engineering team and robot. The obser-
vationsinvolved writing detailed field notes,
drawing diagrams, and taking photographs
and video clips. Communication between
observersacrosssiteswaslimited so that each
observer could focus completely onthelocal
situation and better understand the observed
group’s perspective at the time. We told the
scientists and engineers that our research
aimed to better understand how they work
with remote rovers and that the observations
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would continue throughout field operations.
During the 2004 field season, the Pittsburgh
observers logged 138 hours of observations
and the Chilean observerslogged 241 hours.
In 2005, the observations totaled 254 hours
in Pittsburgh and 239 hoursin Chile.

Our dataset consisted of the observers field
notestogether with artifact documents, such as
PowerPoint presentations, emails, and robot
plansthat the science team generated. Anini-
tial reading of the data revealed many com-
munication and coordination problems be-
tween sites. Next, we identified the specific
errors and miscommunications that occurred
and classified them (for example, “Error in
plan sent to robot” or “Miscommunication re-
garding interpretation of plan”). We refer to
these errors and miscommunications collec-
tively as problems.

We identified those problems related to
common ground according to whether the sci-
ence team and robot lacked mutual know!-
edge and, if so, what kind (for example,
“Missing contextual information,” “Lack of
transparency into robot’s behavior”). Our
2004 data coding revealed 57 separate com-
mon-ground problems during the two weeks
of remote science operations; the 2005 data
revealed 91 common-ground problems dur-
ing 23 days of remote operations. We then
used the datato trace what caused these prob-
lems, particularly those related to the robot’s
autonomous capabilities.

Operational autonomy levels

Figure 3 depicts the type (sensing, plan-
ning, acting) and level (low, moderate, high)
of Zoé& s autonomous capabilities throughout
this study. During regular operationsin 2004
and 2005, the science team sent the robot plans
for executing low to medium autonomous
sensing or planning. In 2005, the engineering
team al so introduced a science autonomy sys-
tem that let Zoé collect data on its own with-
out specific commandsfrom the scienceteam
about where to do so. This gave Zoé& much
greater autonomy than it had during regular
operationsand | et us observe autonomy’sim-
pact on grounding.

2004 regular operations:
Low autonomy

Z0é had limited autonomous capabilities
in 2004. It could record data about its inter-
nal state, detect somefailure conditions, and
detect obstacles; but it had difficulty accu-
rately estimating its position over the long
term. (The project’s planetary-exploration
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goal precluded using GPS.) Therobot didn’t
interpret any science data and performed
only basic planning for scheduling science
actions. As figure 3 shows, autonomy with
respect to planning and acting was low, and
engineers often had to drive the robot man-
ually. They a so had to command instrument
operations.

Problems. The problemswe saw in the 2004
data related predominantly to understanding
references to objects of interest—problems
that emerged from lack of copresence between
the scienceteam and therobot. Herbert Clark
and Susan Brennan argue that grounding be-
comes moredifficult when people are not cop-
resent.8 Catherine Cramton’s work on geo-
graphically distributed teams supports this
argument.®

According to Clark and Brennan, missing
contextual information jeopardizes shared
understanding because “the addressee must
imagine appropriate contexts for both the
sender and the message.” 8 We observed nu-
merous problemswith contextua information
that bear on challenges usersfacewheninter-
acting with a remote robot. Receiving erro-
neous data from arobot is aways a possibil-
ity. Without sufficient information about data
and the context of itscollection, making sound
scientific judgments is difficult. In one in-
stance, the team received afluorescenceimage
inwhich nearly half thefield of view appeared
tobefluorescing, signaing the possible pres-
enceof life. Thiscaused agreat deal of excite-
ment, but it was unclear whether the data
indeed represented life, the camera had mal-
functioned, or some other unforeseen event
had occurred. After nearly aday investigating
the image, the team concluded that sunlight
wasresponsiblefor the strange glow they had
observed. In this case, the lack of contextual
information about the data resulted in confu-
sion and much time spent trying to deduce
what could have gonewrong.

Effective reference in communication re-
quires perspective-taking—that is, a speaker
must take into account the listener’s perspec-
tivewhen formulating areferring expression.
When two people are physically separated,
gaining insight into the other’s perspective is
difficult. In particular, feedback islessimme-
diate, harder to interpret, and sometimes even
nonexistent. Feedback about how well thelis-
tener understands the speaker’s messages is
crucial to conversational grounding.22 In 2004,
the science team lacked enough information
from the robot to effectively take the robot’s
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Figure 3. Types and levels of robot autonomy in regular LITA operations and with the

science autonomy system.

perspective, and the robot had no means to
detect or improvethat Situation.

Discussion. During the 2004 season, the sci-
ence team relied primarily on data the robot
collected as well as information from engi-
neerscollocated with the science team to build
common ground with the robot. At a basic
level, the science team could determine what
datahad and hadn’t been collected. However,
they didn’t have easy accessto feedback about
errorsor instrument failures, sothey turned to
the collocated engineers, who could contact
thefield engineersand obtain additional con-
textual information about what was happen-
ing in Chile. Had these resources not been
available, the grounding process would have
been further impaired.

Themost significant constraint on ground-
ing at these low autonomy levels was in
understanding the robot’s perspective. Had
the science team been able to observe the
robot executing commandsin the desert, they
would have had enough contextual informa-
tion to disambiguate problems. However, the
lack of copresence combined with the lack
of feedback from the robot about its actions
inhibited grounding and led to frustration and
errors. This observation issimilar to studies
of situation awareness, although we add to
thiswork by considering the “ conversation”
between the science team and the robot,
wherethe breakdowns occurred, and how the
science team attempted to create common

www.computer.org/intelligent

ground with the robot. In particular, we
noticed that feedback from the robot was
missing, as was robot awareness of and
adjustment to the science team’s confusion.
In common-ground parlance, the conversa-
tion’s acceptance phase was missing. The
robot engaged in the presentation phase by
providing information, but it didn’t seek evi-
dence of the science team’s understanding.
The conversation was therefore incomplete
and led to misunderstandings.®

2005 regular operations:
Moderate autonomy

In 2005, Zo€'s autonomous navigation
improved substantially during regular oper-
ations. Zoé could sense nearby obstacles,
develop basic plansto avoid them, and act on
those plans with minimal human interven-
tion. It could drive autonomously between
locations that the science team specified. In
addition, as aresult of problems in estab-
lishing common ground during the 2004 field
season, the LI TA field engineers sent adaily
“robot report” to the scienceteam asaproxy
for theinformation that the robot should have
provided autonomously. Thereport included
which actions Zoé executed, which actions
had and hadn’t succeeded, instrument fail-
ures, and other contextual information.

Problems. One technique the LITA science
team used in both 2004 and 2005 to improve
their understanding of the robot’s context
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2005 regular operations (low to moderate autonomy)
Problem: Interpreting context images

2005 science autonomy system (high autonomy)
Problem: Missing fluorescence image follow-ups

On day 3, one scientist (X) mentioned that a stereo panoramic
imager image, which was supposed to include a field-of-view
context for a fluorescence image, wasn’t taken correctly:

X looks at a particular SPl image and says that “this is the
messed up one.” X says that this was supposed to be a context
image. X reads the robot report. X says that the robot moved
before taking the SPI image. X says, “I'm not sure why that
happened.”

Scientists X and Y spent time trying to find the Fl field of view in
SPI context images, but when the SPI images haven't been
taken correctly, this is impossible. The science team used both
the images returned from the robot as well as the robot reports
to figure out what happened. On day 4, the science team talked
about adjusting the commands sent to the robot to account for
its backward movement and plowing (scraping away a shallow
layer of soil to expose the ground beneath) 0.5 meters after an
Fl, before the SPI takes the context image. One scientist con-
cluded that the robot should have moved only 1 meter, not 1.5
meters, before taking the context image:

At 2:09 p.m., X tells Y that “we” might have to adjust the drive
precise command for the Fl context image. X explains that after
the Fl, the rover moves back 0.5 meters for the marker plow. Y
says that they are imaging the marker instead of the FI. X says
that they might get the FI. X says that “we” may need to adjust.
X says s/he thinks that the plow is right after the FI.

At 4:14 p.m., X says that s/he and Y were talking. They talked
about the fact that since the marker plow is done at the end of
the Fl, “we” need to adjust how much to move [the robot] back
up. X says “we” should have asked to move 1 meter.

After this, the science team adjusted their commands to move
the robot 1 meter (days 5, 6, 7, 9, 10) and later commanded the
robot to move 1.5 meters (days 9, 11, 12). On day 11, one sci-
entist explained that the team realized they had to change back
to requesting 1.5 meters instead of 1 meter:

X says that they need the plow as a marker, so they found they
did have to move up to 1.5 meters to get into the initial position.

On day 1, one scientist (X) observed that the science autonomy
system should have taken a full FI sequence in response to a
positive chlorophyll signature (a “follow-up”), but it didn’t. An
engineer (Z) confirms that the system should have taken a fol-
low-up image:

At 10:20 p.m., X is looking at a fluorescence image on the tran-
sect associated with locale 40 and asks, “Why didn’t we have a
follow-up on that?” X turns to Z and asks, “Shouldn’t that have
initiated a follow-up?” Z replies that yes, it should have.

On day 1, engineer Z explained that rounding errors contributed
to the problem and that the system was originally designed for
much longer transects than what the scientists were using:

At 11:45 p.m., Z explains to X about some of the science on-
the-fly problems that [the engineering team] had with the fluo-
rescence imager. Z says the problem had to do with “round off”
and “resource juggling.” Z says that for fractional distances, the
rover will always round up. X says that [the robot] went 180
meters. Z explains that the algorithm was designed for much
longer distances. X explains that [the scientists] want to make
the 180-meter traverse a standard procedure.

On day 15, members of the science team and the engineer
talked about other reasons why the follow-ups might not have
been initiated:

X says that s/he is going to look at the transect between 800
and 810 to try and figure out why there were three full FIs and
three chlorophyll only, but it doesn’t look like there was a
chlorophyll follow-up. A says this has happened before. Riley
suggests that it could be the result of the delta in the signal
between the pre and post (the difference in the signal). Z says
that the algorithm uses raw signal values.

This technical discussion continued without resolving why the
robot hadn’t performed follow-ups as expected.

Figure 4. Example common-ground problems from LITA project field notes. Italics indicates exact excerpts from field notes.

wasto haveits stereo panoramic imager cam-
eratake a context image of the area it had
examined using the FI. The SPl image gave
scientists additional information about the
larger area in which the FI had taken its
image. However, therobot didn’t alwaystake
these context images correctly, and the sci-
ence team had to detect these errors and de-
termine what had happened. This problem
occurred on days 3, 4, and 10. The left col-
umn of figure 4 givesdetailson this scenario.

Throughout this scenario, the scientists
relied on the robot’s data and robot report to
establish common ground regarding how the
robot was operating, and they used thisinfor-

mation to adjust the commands they sent to
therobot. Thisprocessmirrors conversational
grounding between peoplein that the science
team attended to the robot’s feedback and
adjusted their communications in hopes of
being more effective. However, the adjustment
was one-sided. Therobot didn't learn how to
better communi cate with the scienceteam; as
aresult, the science team wasn't alway's suc-
cessful at deducing the robot’s actions.

In a second scenario, the science team
wanted to understand exactly how far therobot
traveled and whereit collected data products.
This task was complicated because different
software programs computed distancesin dif-
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ferent ways. Asareault, thedistancesmeasured
in the plan-creation tool differed from dis-
tances shown in the human-readable plan, and
these differed from the odometric distances
that Zoé reported to have traveled, the tele-
metric estimates of how far Zoé traveled, and
the actual distances Zoétraveled.

Our datasuggest that even though some sci-
ence team members understood Zoé€'s odom-
etry and telemetry data, it didn’t help them
plan paths for the robot. The team used the
robot report as adefinitive source for how far
therobot travel ed between locales. Thismight
have been becausethereport wastheonly eas-
ily accessible source of thisinformation.
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Discussion. Without the benefit of copresence,
the scienceteam used the robot reportsand the
data from the robot as their main sources of
information about what had happened in the
field. However, this feedback wasn't inade-
quate to establish common ground with the
robot. The science team couldn’t understand
the robot, and the robot didn’t verify the sci-
ence team'’s understanding through an accep-
tance phase. Nor did therobot learn how to bet-
ter refer to objects, locations, and other
environmental factorsso that it and the science
team could expand their common ground.

In our 2004—2005 regular operations data,
themajor issues of copresence and inadequate
feedback appear to be most associated with
moderateto highlevels of autonomousacting
(seefigure 3). The robot was acting autono-
moudly (abeit sometimesat low levels) by dri-
ving and deploying instruments with little or
no human interaction. Without contextual
information or adequate feedback, the science
team found it difficult to understand the au-
tonomous actions. The robot had no meansto
maintainitsend of the conversation by detect-
ing the science team'’s difficulty in under-
standing theinformation it presented to them.

2005 science operations:
High autonomy

The science autonomy system added to
Z0éduring 2005 consisted primarily of soft-
wareto collect and interpret sensor, camera,
and instrument data and software to plan a
response, if any, to these observations. The
engineering team had designed the system to
let the robot collect science data as it trav-
eled between locations of scientific interest.
The scienceteam could usethe systemto re-
quest autonomous collection of normal cam-
era images and chlorophyll-only fluores-
cenceimages. If therobot detected that such
a fluorescence image showed evidence of
life, it would follow up by taking afull fluo-
rescence image set. The science autonomy
system gave Zoé much greater autonomy
(seefigure3). It could sense, plan, and deploy
instruments with little to no human inter-
vention. The system also forced the science
team to adopt adifferent strategy for ground-
ing. In particular, we noticed that issues arose
around why the robot made certain decisions
in addition to recurring questions about ob-
jects of reference as described in regular
operations.

Problems. Ondays 1, 2, 3, 4, and 15, the sci-
enceteam discussed therobot’sfailureto per-
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form follow-upswhen it should have. The sci-
enceteam attempted to find out why (seefig-
ure4, column 2, for details on this scenario).
In contrast to theexamplesfrom regular oper-
ations, in this scenario the science team under-
stands what has and hasn’t been done but is
baffled about why the robot made particular
decisions. They attempt to reason among
themselves and with an engineer about what
Zoémight be“thinking,” but they don’t under-
stand the robot’ s decision-making algorithms
well enough or have enough feedback from
therobot to communicate and get the datathey
want. The robot has no meansto represent or
reason about why the science team has cho-
sen particular actions, so it can’t ensure that
the rationale for its actions is understood or

that its decisions are consistent with the sci-
enceteam’slarger goals.

In the field, the engineering team was
awarethat some problemswith thefollow-up
mechanism resulted from water on rocks or
sunlight shining under therobot. Becausethe
science team lacked this information about
the context, they had to try to deducewhy the
robot decided not to take follow-up fluores-
cent images. Their grounding strategies in-
cluded examining the chlorophyll fluorescent
imagesto see how strong the signal was; they
a so calculated the time when the Fl took the
images to determine whether sunlight might
have been an issue. This example shows evi-
dence of breakdownsin shared perspectives
on what was located where and why actions
were or weren't taken.

Discussion. With the high levels of sensing,
planning, and action autonomy that the robot
possessed when using the science autonomy
system, the science team’s problems were
focused less on exactly what the robot was
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doing than on why the robot was making par-
ticular decisions.

The lack of copresence continued to be a
constraint and was particularly pronounced
when the science team tried to understand the
robot’s high-level autonomous sensing and
action. In addition, we observed that trans-
parency became a constraint with high-level
autonomous planning. Even if the science
team had been watching the robot while the
science autonomy system was working, they
wouldn’t necessarily have had enough infor-
mation to determinewhy therobot stoppedin
particular locations or failed to perform fol-
low-up fluorescent images. The scienceteam
had totry to understand not only how therobot
would react to positive or negative evidence
of life but also what its analysis process was.

On the basis of the science team'’s strate-
giesto understand the science autonomy sys-
tem, we argue that the lack of transparency
into the robot’s decision-making process
becamethe primary constraint on grounding.
Therobot report provided only factual infor-
mation and nothing about why the robot per-
formed measurementsor follow-ups. Instead,
the science team used the data to determine
what might have happened and then relied
on engineersto explain the algorithms behind
how the robot made decisions.

Some researchers have defined transparent
interactions as those in which a user can “see
through” the logic behind amachine's opera-
tion. Some of this research focuses on users
understanding,? some on robots’ explanations
of their actions,?* and some on transparency
that requires no mental model.2> Consistent
with the common-ground framework, we
approach trangparency asadynamic feature of
the science team'’s interaction with the robot.
Transparency thereforerefersto the process of
developing common ground between them.
Jakob Bardram and Olav Bertelsen® similarly
suggest that transparency can't be understood
asadtatic feature but must reflect adeliberate
formulation and refinement of understanding
during the course of human-computer interac-
tion. Although people certainly ask questions
and converse about reasons for their thoughts
and actions, thisidea of understanding some-
one's logic isn't well articulated in current
common-ground research. From our LITA
project observations, we argue that the
dynamic creation of transparency becomes a
more crucial element for creating common
ground as robots acquire higher levels of
autonomy, particularly autonomous planning.

Figure 5 illustrates this shift from a focus
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Figure 5. Common-ground issues for problems relating to autonomy.

onmissing contextual information to alack of
transparency. From 148 total problemsrelated
to common ground that weidentified fromthe
2004 and 2005 data, thefigure showsthe num-
ber for which missing contextual information
or alack of transparency wasthe most signif-
icant cause. Asthe graphindicates, the nature
of the problems shifted almost entirely away
from problemswith missing context toissues
of transparency about the robots' decisions
and logic in the high-autonomy scenario.
These results are even more dramatic when
you consider that each problem might have
occurred on multiple days and that problems
related to alack of transparency generally took
more days to resolve than those related to
missing contextual information.

Implications for system design
Our results suggest that for HRI grounding
to occur, particularly with remote robots, the
robots must learn and adjust their behaviors
on the basis of “conversations’ with people.
Some researchers have demonstrated a robot
that can automatically adjust its dialogue in
real time by exploiting its ability to create
models of people or teams according to their
backgrounds.} In addition, software systems
can perfectly recall prior conversations with
users, so robots might use thisinformation to
learn and adapt, just as humans do in conver-
sational grounding. Implementing such adap-
tation might not be easy with current technol -
ogy, but our resultssuggest thisisapromising
direction for future work and might address

therecurring issue we observed with missing
contextual information and confusion about
objects of reference.

For remote-exploration robotics, the cost
of mistakes in data collection is extremely
high. Datathat’snot useful to the scienceteam
wastesval uabletimeand resources. However,
delay costs are extremely low: given that the
plan goesto therobot after it finishesitsdaily
operations, the science team doesn’t pay a
penalty in terms of data return on the time
spent revising the plan. We therefore recom-
mend creating asoftware system that can par-
ticipate in grounding during plan creation.
This system would act as arobot proxy, pro-
viding crucial feedback to the science team
and supporting transparency without con-
suming time or resources during plan execu-
tion. Such a system would improve the con-
versational grounding, which requires both
parties availability. The system could exactly
recreate the robot’s behavior without requiring
the actual robot’s participation. This helps
peopleinteracting with aremote robot under-
stand exactly how it would respond to their
requests, and it provides theimmediate feed-
back so critical to grounding.

In addition, the system could promote
transparency by actively detecting errorsina
user’s understanding. When a user provides
inappropriate responses to questions or ex-
presses confusion, the system could detect
these grounding problems and automatically
disclose its logic by providing additional
information, such as the evidence it used to
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make a particular decision. Situation aware-
ness research hasn't generally considered a
robot with capabilities to detect and respond
to grounding opportunities because SA his-
torically hasn’t focused on the conversation
between users and the robot.

Software designers can use the presenta-
tion-acceptance processto driveinteractions
at thelevel of theindividual actionsand para-
meters to be sent to the robot. In particular,
Herbert Clark and Deanna Wilkes-Gibbs's
detailed description of the acceptance process
provides specific guidance for interaction
design at this low level .8 In conversation,
when a speaker presents an initia reference
that isn’t acceptable, either the speaker or the
listener can repair, expand, or replace it (or
request such arepair, expansion, or replace-
ment). In the context of exploration robotics,
we can consider an individual action and its
parameters to be analogousto areferencein
conversation. If need be, a scientist could
repair an action by editing its parameters,
expand an action by providing additional
information such as a target’s name, or
replace an action in the plan with a different
action. Presentation-acceptance for oneaction
could then proceed asfollows:

Scientist presents an action &;.

Proxy system checksif a; is adequate
(free of errors, consistent with other
actions, and so on).

If g isadequate:

Proxy system accepts ;.

Proxy system provides positive
evidence of acceptance.

Else:

Proxy system presents negative
evidence.

Proxy system requests arepair
(arevision, expansion, or
replacement).

While scientist needsinformation:
Scientist requests an expansion

(further information about the
inadequacy).

Scientist presents the requested repair,
a'

Let a1 = " Repeat.

As Clark and Wilkes-Gibbs observe, the
acceptance processisrecursive. From asoft-
ware design point of view, it's potentially
infinite; the system must be appropriately
scaled to strike a balance between support-
ing transparency and ensuring that aplan can
be completed. In addition, we're investigat-
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ing how the robot can use thisinformation to
reason about higher-level science goals
beyond the execution of individua actions.
Beyond letting the user simulate the robot’s
actions,?” this will alow the robot to build
common ground with the science team
regarding the relationships between differ-
ent actionsand the environment. If an action
failsin the field, the robot can then exploit
thisinformation torepair itsplan in amanner
consistent with the scientists' goals.

The human-robot system that we observed
wasn't a mixed-initiative system, in which
the division of authority between the robot
and the users could be adjusted in real time.28
Inthe LITA project, only therobot could per-
form certain actions, and the science team
couldn’t exert authority in those situations.
Inamixed-initiative HRI system, the ground-
ing processwould likely differ from what we
observedin thisstudy. For example, ground-
ing between the users and robot would need
toinclude ashared understanding of how and
why authority shifts. The problem of ground-
ing in mixed-initiative systems poses an
interesting research topic.

We spent more than 800 hours ob-
serving the LITA mission and doc-
umenting the grounding process between the
science team and the robot. As autonomy
increased, we saw the science team’s confu-
sion about the robot’s actions move away
questions about the data-collection context
to questions about why the robot was doing
what it was doing. We also observed the
grounding process become more complicated
when the entire team tried to work together
with the science autonomy system. Our data
suggest that ateam’s shared mental model of
an autonomous robot is more complex and
variablethanitisfor ssimple devicesand that
it needs to be more consistent.

Higher autonomy didn’t necessarily lead
to better or moreerror-freeinteraction. Com-
mon-ground problems emerged whether au-
tonomy was low or high. Our data suggests
that designers must be aware of how auton-
omy changesthetype of information needed
from therobot and the type of “ conversation”
HRI requires. For grounding to occur with
low-autonomy robots, contextual informa-
tion and feedback are particularly critical; at
high autonomy levels, particularly for auto-
nomous planning, users need transparency
with respect to therobot’s decision making. &
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