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ABSTRACT

The use of autonomous, mobile professional service robots in diverse workplaces
is expected to grow substantially over the next decade. These robots often will
work side by side with people, collaborating with employees on tasks. Some
roboticists have argued that, in these cases, people will collaborate more natu-
rally and easily with humanoid robots as compared with machine-like robots. It
is also speculated that people will rely on and share responsibility more readily
with robots that are in a position of authority. This study sought to clarify the ef-
fects of robot appearance and relative status on human–robot collaboration by
investigating the extent to which people relied on and ceded responsibility to a
robot coworker.

In this study, a 3 × 3 experiment was conducted with human likeness (human,
human-like robot, and machine-like robot) and status (subordinate, peer, and su-
pervisor) as dimensions. As far as we know, this study is one of the first experi-
ments examining how people respond to robotic coworkers. As such, this study
attempts to design a robust and transferable sorting and assembly task that capi-
talizes on the types of tasks robots are expected to do and is embedded in a realis-
tic scenario in which the participant and confederate are interdependent. The
results show that participants retained more responsibility for the successful com-
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pletion of the task when working with a machine-like as compared with a human-
oid robot, especially when the machine-like robot was subordinate. These
findings suggest that humanoid robots may be appropriate for settings in which
people have to delegate responsibility to these robots or when the task is too de-
manding for people to do, and when complacency is not a major concern. Ma-
chine-like robots, however, may be more appropriate when robots are expected
to be unreliable, are less well-equipped for the task than people are, or in other sit-
uations in which personal responsibility should be emphasized.

1. INTRODUCTION

Advances inartificial intelligenceandspeechrecognition, lessexpensiveyet
more sophisticated mobile computing hardware, and even such mundane
changes as increasing ubiquity of ramps in public buildings have combined to
make professional service robots—robots that assist workers—more practical than
ever before. Autonomous mobile robots made with current technology can
identify and track people and objects, understand and respond to spoken ques-
tions, and travel to a destination while avoiding obstacles (see Fong,
Nourbakhsh, & Dautenhahn, 2002). Robots can be built to have abilities that
complement human abilities. They can go to places that are toxic or unsafe and
can tolerate repetitive,mundane tasks.Theycanhave largedatabasesofknowl-
edge and can connect through networks to vast sources of additional data.

With these ongoing advances, the use of robots in the workplace is likely to
grow substantially. The workplace in the near future will increasingly contain
robots and people working together, each using their own stronger skills, and
each relying on the other for parts of the tasks where the other has the better
skills. In a recent report (United Nations, 2002; see also Thrun, 2004), the
United Nations indicated that the use of these professional service robots will
grow substantially in the next few years in fields as diverse as the military,
medical services, and agriculture. Autonomous robots, for example, are ex-
pected to work in tandem with military personnel so that soldiers can better
understand the dangers of the battlefield; robots also will supply troops with
ammunition and provide surveillance (Squeo, 2001) and assist astronauts in
investigating distant planets (Ambrose, Askew, Bluethmann, & Diftler, 2001).
Already, robots perform the mundane chore of delivering medications from
pharmacies to nursing stations in hospitals, using their intelligence to avoid
obstacles as they travel (Okie, 2002; Siino & Hinds, 2004); people, however,
are required for loading and unloading the medications, and for programming
the robot’s destination. Sheridan (1992) described an “optimistic scenario” in
which robots will
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grow in number and variety, becoming available to us to do our beck
and call in our homes, schools, and government facilities, in our vehi-
cles, our hospitals, and across the entire spectrum of our
workplaces—factories, farms, offices, construction sites, mines, and
so on. (p. 336)

In many instances, these robots will share the same physical space with peo-
ple and work closely with people to accomplish joint tasks as part of their
day-to-day work.

Professional service robots, this newer class of robots, are specifically de-
signed to assist workers in accomplishing their goals (see Thrun, 2004).
These robots differ from industrial robots and many other technologies
found in the work environment (e.g., appliances, computers, navigation sys-
tems, etc.) because they are mobile, they do things without being com-
manded, and they are interactive. These differences suggest that
professional service robots may affect the work environment in socially im-
portant ways. Because of their ability to move with apparent intentionality
in physical space, they are likely to be perceived as animate, triggering so-
cial responses (for a review, see Scholl & Tremoulet, 2000). Their ability to
travel between different departments also may allow the unplanned move-
ment of information between distant coworkers.

If professional service robots are to share the workplace with people, we
need to understand what the interaction between them is likely to be like. Will
people trust robots to perform operations that the robots are capable of, with-
out oversight? If things go wrong, will people take appropriate responsibility
to correct the problem, or will they abdicate responsibility to the robot? In the
face of uncertainty, will people ask for and accept the guidance of expert ro-
bots? What aspects of the design of the robot will affect the way people and ro-
bots work together? The better we understand these questions, the better we
can design robots to be effective work partners.

For the study we report here, we conducted a laboratory experiment de-
signed to look at the effects of the robot’s appearance and the relative status of
the robot on how people work with robots. We also compare human–robot in-
teraction with human–human interaction to better understand how interact-
ing with robotic partners may alter the current work environment. We studied
the effects of robot appearance because roboticists are currently making at
least de facto decisions about appearance without the benefit of information on
the ramifications and perhaps with misconceptions of their effects. We chose
relative status as a second dimension because it also can be relatively easily
manipulated when introducing a robot into a team, and because status can
have a powerful effect on relationships between coworkers. Although these
are only two of many possible considerations for the design and implementa-
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tion of robots (e.g., speech mechanisms, autonomy levels, sensor types, etc.,
are other important design considerations), we believe appearance and status
are particularly important to the design of professional service robots because
they are, for most robots, “free variables” for the robot designer that are mini-
mally dependent on technological advances.

2. THEORY AND HYPOTHESES

2.1. Collaboration With Human-Like Versus Machine-Like
Robots

Current work in the field of robotics is flooded by efforts to make robots
more human-like. Roboticists are designing robots with heads, faces, necks,
eyes, ears, and human-like voices based on the premise that a humanoid robot
is the most appropriate form for human–robot interaction (Ambrose et al.,
2001; Brooks & O’Reilly, 2002; Hashimoto, Narita, Sugano, Takanishi, Shirai,
& Kobayashi, 2002; Ishiguro, 2003; Simmons & Nourbakhsh, 2002). Re-
searchers argue that a humanoid form will ease interaction because rules for
human social interaction will be invoked, and thus, humanoid robots will pro-
vide a more intuitive interface (Breazeal & Scassellati, 1999; Brooks, 2002).
Brooks, for example, suggested that, “it will be useful for a large mobile appli-
ance and a person to be able to negotiate who goes first in a tight corridor with
the same natural head, eye, and hand gestures all people understand already”
(p. 38). The premise that the humanoid form is the appropriate form for hu-
man–robot interaction, however, remains largely untested. Opponents of a
humanoid form suggest that robots are machines and that humanoid features
may generate unrealistic expectations and even fear (see Dautenhahn, 1999).
Turkle (1984) observed that it is important to people that we be able to see our-
selves as different from machines, asserting that the blurring of the line be-
tween people and machines can be disturbing and frightening. Brooks also
suggested that the current infatuation with humanoid robots may be a phase
through which we need to pass as we learn more about human–robot interac-
tion. These considerations about humanoid robots, both positive and nega-
tive, may affect people’s response to professional service robots in the
workplace, particularly with regard to their willingness to rely on robots to
help them achieve their goals. Therefore, it is important to conduct empirical
studies of human-like versus machine-like robots and to explore the trade-offs.

In this study, we examine how the appearance (humanoid vs. machine like)
of a robot might affect people’s willingness to rely on and share responsibility
with their robotic partner. We choose to focus on these dependent variables
because they are central to the collaboration process.
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The first response we examine is reliance on work partners. People rely on
others (both other people and machines) when those others have capabilities
that they, themselves, do not have (e.g., trusting sums computed on a calcula-
tor). What is more variable, however, is the extent to which people rely on oth-
ers when their relative abilities are less obvious a priori. The extent to which
people rely on a new technology instead of their own or other people’s input is
crucial to the success of technology and to the benefits of the technology being
realized (e.g., Wall, Jackson, & Davids, 1992). Although overreliance on tech-
nology can have disastrous effects (e.g., a 1994 midair collision resulted when
one pilot neglected to take manual control from the automated system;
Sparaco, 1994), we focus on underreliance. Our reasoning is that getting peo-
ple to rely on robots is the more pressing concern. There is substantial evi-
dence that people resist technologies that are programmed to augment human
decision making even when the technology is more accurate. Gawande
(2002), for example, reported that patients preferred the judgment of a cardiol-
ogist for interpreting electrocardiogram reports even when an automated sys-
tem provided correct responses 20% more often than the cardiologist. At this
point, however, little is known about when and why people will rely on robots
as compared with people, particularly advanced robots that have the ability to
engage in collaborative tasks and the discretion to make decisions.

The second response we examine in this research is the extent to which
people assume responsibility for the task. Roberts, Stout, and Halpern (1994;
also Grabowski & Roberts, 1997) extensively discussed the importance of ac-
countability and responsibility for organizational tasks. They argued that ac-
countability may improve the quality of decisions because decision makers
who feel responsible consider more alternatives (see also Tetlock, 1985). They
also, however, pointed out that too much responsibility can be unpleasant and
can lead to rigidity (Roberts et al., 1994).

Responsibility and reliance could be inversely related. That is, as people
rely more on a robot, they may assume less responsibility for the task, and
might care less about the resulting success and failure of the work. However,
just as a person might rely on a spell checker to provide correct spelling (e.g.,
“there” and “their,” but not “thier”), and might even allow a grammar checker
to suggest the right homonym, the person retains ultimate responsibility for
picking the correct spelling in context. Therefore, we argue that reliance on a
robot does not necessarily breed complacency or abdication of responsibility,
and that these two constructs and their antecedents must be examined sepa-
rately. The most appropriate mix of reliance and responsibility in human–ro-
bot collaboration, for example, may be one in which the human relies on the
robot for maximum input but does not abdicate responsibility.

We anticipate that people will rely more on and cede more responsibility to
human-like as compared with machine-like robots. Over the last decade, re-
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search has suggested that people may respond to computers and other technol-
ogy using the same social rules that they use with people (see Nass, Steuer,
Tauber, & Reeder, 1993; Reeves & Nass, 1996). People, for instance, are polite
to computers, use norms of reciprocity, and apply gender stereotyping (Reeves
& Nass, 1996). People respond to technology using social rules in part because
the primary model people have for dealing with an intelligent, autonomous
“other” is human-to-human social interaction. Although they do not necessar-
ily believe that computers and other technologies are human, they are drawn to
interact using social rules because cues such as natural language usage and
interactivity trigger these responses. Further, these researchers argued that the
extent to which social rules are applied depends, in part, on the number and
strength of cues conveyed by the technology. Steuer (1995), for example,
claimed that there are five characteristics that cue people to interact as though
their partner is a social actor: natural language use, interactivity, human social
roles, human-sounding speech, and human-like physical characteristics. This
line of thinking suggests that people also may use human social rules when in-
teracting with autonomous robots. As more of the factors Steuer listed are ex-
hibited, people may respond to robots in ways that more closely mirror
human–human interaction. Therefore, more human-like robots as compared
with machine-like robots should elicit higher levels of reliance.

Another reason we expect more reliance on human-like as compared with
machine-like robots is because human-like robots may be perceived as more
predictable or responsive than machines, and thus, people may be more com-
fortable interacting with them. When assigned collaborative tasks with collo-
cated colleagues, it is generally considered appropriate for people to share
ideas, interact with one another, and engage in collaborative decision making
(see Kraut, Fussell, Lerch, & Espinosa, 2002; Olson & Olson, 2000). Such col-
laboration, however, requires an understanding of how the person interacts
and makes decisions, and of the person’s knowledge and capabilities. Exten-
sive research on how people reach common ground with others has estab-
lished that people estimate the knowledge of others based on cues that they
receive from that person and from the environment, and that they subse-
quently tailor their own communications according to the common knowl-
edge they believe is shared (see Fussell & Krauss, 1992; Issacs & Clark, 1987).

People also will make estimations of the capabilities of robots as they de-
velop a mental model of what the robot knows. Human-like characteristics
are likely to engender a more human mental model of the robot (see
Kiesler & Goetz, 2002). That is, the conceptual framework that people use
to predict and interpret the robot’s behavior may be more similar to that
used to predict and interpret the behavior of people. With a more human
mental model, people are more likely to assume human-like traits and ca-
pabilities. Therefore, people may assume that more common ground is
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shared with the human-like as compared with the machine-like robot, thus
reducing uncertainty and facilitating collaboration. With human-like as
compared with machine-like robots, people may also feel a stronger sense
of shared identity. Parise, Kiesler, Sproull, and Waters (1996), for example,
found that participants cooperated more with human-like agents and less
with dog-like agents, although they found the dog-like agents more likeable.
Parise and his colleagues argued that this difference occurred because peo-
ple felt more similar to agents that were more human like, thus increasing
their sense of shared social identity.

The aforementioned lines of reasoning suggest that people will be more at
ease collaborating with human-like robots. Perceived common ground and
shared identity with a human-like robotic partner will facilitate collaboration
because the person is likely to be more confident in his or her estimates of the
robot’s knowledge and in his or her ability to interact effectively with it. There-
fore, we predict that when people are collaborating with robots on ambiguous
tasks, they will rely more on human-like as compared with machine-like ro-
bots. Using the same logic, we anticipate that people will relinquish more of
their sense of personal responsibility for the task to human-like as compared
with machine-like robots.

Hypothesis 1a: People will rely on a human-like robot partner
more than on a machine-like robot partner.

Hypothesis 1b: People will feel less responsible for the task
when collaborating with a human-like robot
partner than with a machine-like robot partner.

2.2. Relative Status of Robot Coworkers

The status hierarchy has historically been one of the more pronounced fea-
tures of social and organizational life. Our perceptions of others’ status can de-
termine our perceptions of the target’s capabilities (see Swim & Sanna, 1996)
and performance (Pfeffer, Cialdini, Hanna, & Knopoff, 1998), our willingness
to defer to the target’s opinion (e.g., Strodtbeck, James, & Hawkins, 1957), and
our willingness to assume responsibility versus allowing another to assume it
(Roberts et al., 1994).

Outside of science fiction, technology typically plays a subservient, lower
status role relative to those who use it. Technology products, including robots,
typically are perceived as servants or tools designed to help us to achieve our
goals. As robots gain more autonomy, however, there may be cases in which
the robots need increased authority to encourage people to defer to the robots’
expertise (see Nass, Fogg, & Moon, 1996). For example, in complex environ-
ments, people may not have complete information or the capacity to process
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information as rapidly as robots. In such cases, deferring to the robot may im-
prove the likelihood of task success. Consistent with this idea, Goetz, Kiesler,
and Powers (2003) recently reported that people complied more with a seri-
ous, more authoritative robot than with a playful robot when the task itself was
serious. It seems that how the robot is presented to those collaborating with it
may affect the extent to which people are willing to rely on it.

Research on status effects clearly demonstrates that even arbitrarily as-
signed status labels (e.g., leader, supervisor, expert, etc.) cause people to attrib-
ute more competence to those of higher status. Surprisingly, this effect holds
even outside of the target’s domain of expertise. For example, research many
years ago on jury decisions indicated that people rely more on the opinions of
those who hold more prestigious, although unrelated, professional positions
(e.g., Strodtbeck et al., 1957). More recent research shows that when people
are labeled as leaders, even when the label is clearly arbitrary, observers are
more likely to see the targets as evincing leader-like behaviors (Sande, Ellard,
& Ross, 1986).

Research also examines how workers’ sense of responsibility shifts when
they are in leadership positions. Supervisors and leaders typically see them-
selves as more competent and more responsible for the assigned task (see
Sande et al., 1986). Also, when supervising or when a supervisor is involved
in a task, people view the work product as better (Pfeffer et al. 1998). Often
times, organizations hold supervisors responsible for the actions of their
subordinates.

Assuming that people respond to robots’ roles using social rules similar to
those used with people, we hypothesize that people will rely more on the robot
partners and assume less responsibility for the task when working with robots
that are supervisors as compared with robots that are peers and subordinates.

Hypothesis 2a: People will rely on the robot partner more
when it is characterized as a supervisor than
when it is characterized as a subordinate or
peer.

Hypothesis 2b: People will feel less responsible for the task
when collaborating with a robot partner who is
a supervisor than with a robot partner who is a
subordinate or peer.

2.3. Interaction Between Human Likeness and Status

Although we expect a main effect for status, we also anticipate an interac-
tion between status and human likeness. Given our earlier hypotheses, we ex-
pect that people’s sense of responsibility for a task will be highest when the
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partner is more machine-like and in a subordinate role. We reason that people
will view the machine-like robotic partner as a tool intended to help them with
their task. Therefore, they should treat the robot as they would a pen, hammer,
or shovel—tools that have clearly defined, mechanical abilities but no will of
their own and can assume no responsibility. Therefore, we posit that people
will feel most responsible for the task when they are working with ma-
chine-like subordinate robots. We present no interaction hypotheses predict-
ing reliance, however, because we reason that people are accustomed to
relying on tools to help them in accomplishing their work.

Hypothesis 3: People will feel the greatest amount of responsi-
bility when collaborating with machine-like ro-
bot subord ina tes as compared wi th
machine-like robot peers and supervisors; and
as compared with human-like robot subordi-
nates, peers, and supervisors.

3. METHOD

To test our hypotheses, we conducted a 3 × 3 laboratory experiment. The
experiment was a between-subject design, manipulating human likeness (hu-
man, human-like robot, machine-like robot) and status (subordinate, peer, su-
pervisor) with the human condition as the baseline. Each participant was
asked to collaborate on a task with a confederate who reflected one of the nine
cells in the design. The confederate used the same script for all conditions and
was unaware of the status manipulation. In the robot conditions, we used a
Wizard of Oz approach in which the robot was teleoperated, appearing to be
operating autonomously. The same man teleoperated and spoke for the robot
in the two robot conditions, and he acted as the human confederate. The ex-
periment was videotaped with cameras suspended from the ceiling of the ex-
perimental lab.

3.1. Participants

Participants were 292 students recruited on a university campus, randomly
assigned to condition, and paid for their participation. The mean age of partici-
pants was 20.51 years old. Fifty-nine percent of the participants were women.
Because we thought it was important that participants believed that our robots
operated autonomously, the last question we asked those in the two robot con-
ditions was how they thought the robot worked, from a technical standpoint.
Forty-two (21.5%) of the participants who worked with one of the robots ex-
pressed suspicion about whether or not the robot was autonomous. Suspicious

160 RELIANCE ON ROBOTS

Do 
Not

 C
op

y



participants were approximately equally spread between the human-like and
machine-like robot conditions. When these cases were removed from the
analysis, there was no effect on the pattern of results, so the analyses we pres-
ent here include data from all participants.

3.2. Tasks and Procedures

In the experiment, we asked participants to work with a partner in a parts
depot for a company that develops innovative remote-control devices. They
were told that their job was to collect the parts required to assemble various ob-
jects that would be assembled by another team of workers. The task entailed
working with the confederate to jointly collect objects from a list, put them into
bins, and take the bins to a table near the door. Participants were told that the
confederate was familiar with the location of the parts and could carry the bins
on its tray, but did not know what was needed and would not be able to collect
parts. The division of labor helped establish interdependence between the
participant and the confederate, and created a plausible story for why the con-
federate was not able to open drawers and pick up items. The task was also de-
signed to capitalize on the unique capabilities of a robot (e.g., carrying
materials, moving around a room, and remembering detailed information
about the location of objects), although still making sense for a human confed-
erate. Finally, the task was one that could be credibly conducted in ways con-
sistent with each of the possible status conditions without any modification of
the script.

On arriving at the lab, participants were given a packet of instructions.
They completed a brief demographic survey and then were provided de-
tailed instructions on the task. After reading the instructions, participants
were given four pages, each containing a list of items that were to be col-
lected during the task; the items on each page were to be collected into a
single bin, one bin per page. Then, they were introduced to the confederate
(the human, the human-like robot, or the machine-like robot) with the ex-
perimenter saying, “I’d like to introduce Chip, who will work with you on
this study.” In all cases, the confederate entered the room ready to begin
the task and, after acknowledging the participant’s greeting, started the task
by asking, “What’s first on the list?” After that, the pace of the task was de-
termined by the participant reading the parts lists. The participant read out
the items from the list and the confederate identified which cabinet and
which drawer the parts were in. The participant collected the parts from the
drawers and put them into a bin on the tray that the confederate was hold-
ing. The confederate was prepared to answer questions about ambiguous
items, if asked. The task took about 20 min to complete.

HINDS, ROBERTS, JONES 161

Do 
Not

 C
op

y



Some ambiguity was built into the task to increase uncertainty and cause
the participant to make explicit decisions about whether or not to rely on the
confederate for more than just the rote aspects of the task. The opportunity for
errors also provided a basis on which the participant could assign responsibil-
ity and blame. For example, in one case, there were not enough parts of the
specified color. In another case, the confederate allegedly misunderstood the
participant’s instruction and directed the participant to the wrong drawer. Fig-
ure 1 provides a sample transcript for one session in which the participant was
interacting with a machine-like robot. In this scenario, there were not enough
“four-slot connectors” of the required color, so the participant had to figure out
how to handle this anomaly.

When all four sets of parts had been collected, the experimenter returned to
the room and removed the four bins. The confederate also left at this time. Af-
ter waiting a short time, the experimenter returned with a handwritten score-
sheet showing how well the dyad had performed. The scores were always the
same regardless of the participant’s actual performance. The scores for the
four bins ranged from 72% to 100%, so that the participant would perceive
both failure and success.

After receiving their scores, the participants filled out a survey with ques-
tions about their experience on the task.

3.3. Manipulations

Human Likeness

Human likeness had three levels in this study. The human baseline con-
dition was created by having a human confederate play the role of the part-
ner. For the human-like and machine-like robot conditions, we used a
single robot that could be teleoperated and whose appearance could be eas-
ily altered. The robot, which is available commercially and is frequently
used for trade shows, stood on a circular base that was 23.50 cm high.1 The
base contained wheels that allowed the robot to move. Radio controls al-
lowed the operator to make it roll forward and backward, and to turn. The
link between the operator and the robot was completely wireless. A camera
mounted in the robot’s head allowed the operator to see the experimental
lab from the robot’s view. The operator interacted with the participant (in
the next room) through microphones and speakers on the robot and on the
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operator’s headset. Using this Wizard of Oz technique, the experimenter and
operator acted as if the robot were autonomous.

To manipulate the human likeness versus machine likeness of the robot, we
altered the robot’s appearance by replacing the outer covering. Pictures of the
human-like and machine-like robots are provided in Figure 2. In the hu-
man-like robot condition, the robot had a face with eyes, nose, and mouth. It
also had ears and a full head of hair. The main part of the robot had a torso,
arms, and legs. Its texture was soft fabric. It had a White male appearance and
wore a denim shirt, khaki pants, and a baseball cap (the human confederate
was a White male and dressed in similar clothes). In the machine-like robot
condition, the robot covering was metallic and angular. The main part of the
machine-like robot was encased in a silver box. From research conducted by
DiSalvo, Gemperle, Forlizzi, and Kiesler (2002), human-like facial features
such as a nose, eyelids, and a mouth account for most of the variance in the
perception of human likeness in robot heads. Our human-like robot had a
nose, eyelids, and a mouth, whereas our machine-like robot had none of these
features.

To confirm that our manipulation of robot appearance was effective, we
conducted a pilot study. We took each robot (human-like and machine-like) to
a public plaza at Stanford University, where it interacted briefly with people.
The interaction consisted of the robot approaching a person and saying that it
was developing its language skills. It asked the respondent to describe three
objects that it was carrying on its tray. After the respondent described the ob-
jects (it did not matter what the person said, although if the person did not say
very much, the robot prompted the person with, “Can you tell me more about
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P: [Reading from packet.] Twelve bright green four-slot connectors. Bright green—
R: That’s in this cabinet here.
P: [Walks to specified cabinet.] This cabinet here?
R: In the left column, second drawer from the top.
P: [Pulls a piece out of the drawer to show to Chip.] Is this—whoa man—is this a bright

green four-slot connector?
R: Yes.
P: Okay. I’m going to put 12 of these into, uh, B. [Counting quietly to self, only gets to

11.] We might have a problem. [Counts pieces again, still only has 11 pieces.] Yeah,
is there any other drawer that has the bright green, uh, four-slot connectors?

R: No.
P: We’re, uh, can we use a dark green four-slot connector?
R: Yes.
P: [Puts all pieces in the bin.] Okay, I’m gonna use one dark green four slot connector

then. Okay. Now we need …

Figure 1. Excerpt from a session including a participant (P) and a machine-like robot
(R).
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Figure 2. Photographs of the human-like and machine-like robots.

Do 
Not

 C
op

y



it?”), the robot directed the person to a table, where she or he filled out a survey
that contained a series of questions asking his or her opinions about the robot.
Each person was rewarded with a premium-quality chocolate bar. The same
operator was used for both conditions, and he always followed the same script
and guidelines for what to say. Our dependent variable for the pilot study con-
sisted of seven phrases describing the robot as either human like or machine
like (see Figure 3). For each question, there was a 7-point scale ranging from 1
(strongly disagree) to 7 (strongly agree). A reliable scale (α = .80) was created for
human likeness by averaging across the seven items. In the pilot study, there
were 94 respondents: 46 interacting with the human-like robot and 48 interact-
ing with the machine-like robot. Forty-six percent of the respondents were
men, and the mean age was 26.95 years. The results of the pilot study con-
firmed that our human-like robot was perceived as significantly more human
like compared with our machine-like robot. Our human-like robot was rated
on average 3.69 (SD = 0.91), and our machine-like robot was rated on average
2.90 (SD = 0.83) on our 7-point scale of human likeness. An analysis of vari-
ance (ANOVA) shows a strong statistical difference between the ratings, F(1,
92) = 18.95, p < .001.

Status

Status was manipulated in the written instructions by telling the participant
that their partner was their supervisor, their peer, or their subordinate. Such
minimal labels have been used successfully in previous research to create sta-
tus effects (see Sande et al., 1986).

To check our status manipulation, we asked participants two questions
about the extent to which they were assigned a leadership versus a subservient
role on the task (α = .78). Consistent with our planned manipulation, the re-
sults indicate that participants who were told that they were working with a
subordinate confederate rated themselves as 4.54 (SD = 1.45), whereas those
who were told that they were working with a supervisory confederate rated
themselves as 3.58 (SD = 1.67) on our 7-point leadership scale. When told that
they were working with a peer, participants rated their own leadership in the
middle, 4.36 on average (SD = 1.39). A regression analysis suggests a strong
linear trend, β = (1, 291) = –.24, p < .001, in the desired direction.

3.4. Measures

Our primary dependent variables were reliance on the partner and sense of
responsibility for the task. Reliance was measured based on behaviors coded
from the videotapes recorded during the task. We looked particularly at reli-
ance in the more ambiguous situations, those in which the participant could
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choose to solicit input or not. We designed the task such that there were five
anomalies, providing the basis on which we could assess the extent to which
the participant relied on the confederate in ambiguous situations. Therefore,
we coded for behaviors indicating that the participant neglected to consult the
confederate when these anomalies occurred and the confederate had better in-
formation. We then reverse scored this variable. The videotapes were coded

166 RELIANCE ON ROBOTS

Scales Cronbach’s α

Human likeness
To what extent does the robot .80

have human-like attributes?
look like a machine or mechanical device?a

have characteristics that you would expect of a human?
look like a person?
have machine-like attributes?a

act like a person?
act like a machine?a

Responsibility .77
To what extent did you feel it was your job to perform well

on the task?
To what extent did you feel ownership for the task?
To what extent did you feel that your performance on this

task was out of your hands?a

To what extent did you feel that good performance relied
largely on you?

To what extent did you feel obligated to perform well on
this task?

Attribution of credit .66
Our success on the task was largely due to the things I said

or did.a
I am responsible for most of the things that we did well on

this task.a
Our success on this task was largely due to the things my

partner said or did.
My partner should get credit for most of what we

accomplished on this task.
Attribution of blame .85

I hold my partner responsible for any errors that we made
on this task.

My partner is to blame for most of the problems we
encountered in accomplishing this task.

Note. Where partner is indicated, this word was replaced with either subordinate, peer, or
supervisor depending on the status condition

a The item was reverse scored.

Figure 3. Table of survey questions used to create scales.
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by a single rater, but 10% were coded by another rater to assess reliability (Co-
hen’s κ = .81).

Sense of responsibility was measured directly and indirectly from questions
on the posttask survey. All survey items were measured on 7-point scales rang-
ing from 1 (less) to 7 (more) of the item. Our first measure asked participants di-
rectly about how responsible they felt for the task and for performance on the
task (see Figure 3). These five items were then averaged to create a scale mea-
suring their sense of responsibility. As a less direct indicator of responsibility, we
measured the extent to which people attributed credit to their partner and to
themselves (reverse scored). We then averaged across these four items (see
Figure 3) for a measure of attribution of credit. We also reasoned that, although
blame is not equivalent to the abdication of responsibility, people who feel
more responsible for a task are less likely to attribute all of the blame for errors
to their partner (see Goodnow, 1996), so we measured the extent to which par-
ticipants assigned blame to their partners. Two items (see Figure 3) were aver-
aged together to create a reliable attribution of blame scale.

To better evaluate the theory underlying our predictions, specifically that
human-like robots as compared with machine-like robots would be relied on
more because people would feel they were more similar to themselves, we
coded the videotapes for shared social identity. We did this by counting the num-
ber of times participants used individualistic language such as I, my, you, and
yourandthenumberof timesparticipantsusedmorecollective languagesuchas
us,we,and our.Wereasoned thatparticipantswho felt a stronger senseof shared
identity with the confederate would use more collective language, and that
those who felt more distant from the confederate would use more individualis-
tic language. In coding for individualistic and collective language, the coders
covered the video screen, coding only from the audio, so that they were blind to
condition and not biased by nonverbal cues from the tapes. For both measures,
the videotapes were coded by a single rater, but 10% were coded by another
rater to assess reliability (Cohen’s κ = .99 and .95, respectively). In our individu-
alistic language variable, there were two extreme outliers (in excess of 100 uses of
individualistic language). Although these outliers worked in favor of our hy-
potheses,weremovedthemtoallowamoreconservativeanalysisof thedata.

Similarly, to support theories about common ground, we coded the tapes
for the number of factual questions asked (Cohen’s κ = .85). We reasoned that
more factual questions would be asked to establish common ground when it
was thought to be missing or felt less strongly.2
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2. We also coded nonverbal indicators from the videotapes, including the prox-
imity of the participant to the robot and the extent to which the participant appeared
engaged in the task. These measures resulted in no significant effects, so they were
excluded to simplify presentation of the results.
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We also included two control variables in our analyses—gender and mood.
Mood can have a significant effect on the attributions that people make (e.g.,
Forgas, Bower, & Moylan, 1990), so we included a six-item indicator of the
participant’s mood ranging from 1 (a very negative mood) (depressed, sad, etc.) to
7 (a very positive mood) (happy, excited, etc.). Mood correlated with, and was
therefore included in, regressions predicting responsibility (r =.15, p < .01).
Gender was negatively correlated with attribution of credit (r = –.13, p < .10),
with men attributing somewhat less credit than women; therefore, gender was
included in regressions predicting attribution of credit.

4. RESULTS

Figure 4 displays the descriptive statistics for and correlations between vari-
ables. As expected, participants relied more on human as compared with ro-
botic confederates. Reliance and responsibility, however, were not strongly
correlated (r = –.06) and could, therefore, be treated as separate constructs.
Consistent with our arguments, responsibility was associated with less attribu-
tion of credit and blame, suggesting that when people feel more personally re-
sponsible for a task, they attribute less credit and blame to others.

4.1. Effects of Human Likeness

Notsurprisingly,wefoundthatparticipants reliedmoreonthehumanpartner
(M = 4.73, SD = 0.56; see Figure 5) than on robot partners (M = 4.50, SD = 0.86),
and the difference was significant in a two-way ANOVA with human versus ro-
bot andstatus as factors,F(2, 272)=5.09,p=.03.We found,however, littlediffer-
ence in peoples’ feelings of responsibility (M = 4.81 vs. 4.83), and only small
differences in the extent to which they attributed credit and blame to the human
versus therobotpartner (M=4.54vs.4.31andM=3.27vs.3.34, respectively).An
ANOVA with human confederate versus robot predicting responsibility con-
firms that this effect isnot significant evenwhencontrolling formood,F(2, 285)=
.03, p = .88. A similar analysis confirms a small but nonsignificant effect when
predicting the attribution of credit to human as compared with robot partners,
F(2,287)=3.32,p=.07,andnosignificanteffect forblame,F(2,287)=.18,p=.68.

In developing our hypotheses, we argued that the extent to which the robot ap-
pears human like as compared with machine like will affect participants’ willing-
ness torelyonit.Therewas,however, littledifference in theextent towhichpeople
relied on the human-like as compared with the machine-like robot (M = 4.60 vs.
4.42), F(2, 180) = 1.84, p = .18. We also predicted that people would cede more re-
sponsibility to a human-like as compared with a machine-like robot. Our analyses
ofparticipants’ senseof responsibilitysupport thishypothesis.Whencollaborating
with the human-like as compared with the machine-like robot, participants re-
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portedlower levelsofpersonal responsibility (M=4.64vs.5.02).AnANOVAcon-
trasting these two conditions confirms that the effect is significant, F(2, 189) = 6.37,
p = .01, even when mood is included in the analysis, F(2, 187) = 5.29, p = .02. Our
measureofattributionof credit showsa similarpatternwith less creditbeingattrib-
uted to the robot in the machine-like as compared with the human-like conditions
(M = 4.13 vs. 4.50). An ANOVA contrasting the human-like and machine-like ro-
bot conditions suggests that the effect on attribution of credit, F(2, 189) = 8.41, p =
.004, is significantlydifferent in thetwoconditionsevenwhengender is includedas
a covariate, F(2, 188) = 8.35, p = .004. There was not, however, a significant differ-
ence when predicting attribution of blame, F(2, 188) = .24, p = .63. Therefore, al-
though little support isprovided forHypothesis1a, substantial support isprovided
for Hypothesis 1b in which we argue that robots with a human-like as compared
withamachine-likeappearancewill reducetheextent towhichpeople feel respon-
sible for the task.

In an additional analysis of the effect of appearance, we estimated linear re-
gression equations including the human confederate (baseline condition) as
part of the human-likeness scale (machine-like robot, human-like robot, hu-
man confederate). Doing so allowed us to test the reasoning that people would
rely more on partners and share more responsibility for the task when the part-
ners were more human-like (including being human). Although no strong lin-
ear effect was found for responsibility, there was a strong positive relation with
reliance (β = .16, p = .007) and attribution of credit (β = .17, p = .004), indicating
thatpeopleexhibitedmore relianceandattributedmorecredit to theirpartners
as their partners displayed more human-like (or human) characteristics.

In the logical arguments leading to our hypotheses, we reasoned that peo-
ple will feel a stronger sense of social identity with human-like robots than they
will with machine-like robots, and that shared identity might contribute to
more reliance and shared responsibility. From the videotapes, we coded indi-
vidualistic language (e.g., I, me, you, your) and collective language (e.g., us, we,
our) as a means of measuring the extent to which the participants were express-
ing a sense of shared social identity with the robot. Although not statistically
significant, participants used less individualistic language with human-like ro-
bots than with machine-like robots (M = 10.23 vs. 11.13), F(2, 177) = .31, p =
.58.3 However, they also used less collective language (M = 2.93 vs. 4.05), F(1,
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3. We also conducted the analyses including the two outliers (in excess of 100 uses
of individualistic language). Both of the outliers were in the human-like robot super-
visor conditions. When included, the mean for the human-like robot supervisor con-
dition is 17.76 (SD = 35.04), and the mean for the human-like robot conditions is
13.18 (SD = 21.99). When we include the outliers in the analysis of variance, the dif-
ference between the human-like and machine-like robot conditions is not statisti-
cally significant, F(2, 179) = .68, p = .41.
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179) = 1.42, p = .25. These data provide conflicting results and, thus, little sup-
port for our arguments about shared identity being at the root of differences in
reliance and responsibility when working with human-like versus ma-
chine-like robots. Normalizing the data to get the fraction of all pronouns used
that were collective or individualistic produced no statistically significant ef-
fects. The pattern of these data suggests that people were more talkative over-
all with machine-like robots as compared with human-like robots. The data
could be interpreted as support for a common ground explanation. That is,
when people perceive less common ground between themselves and a part-
ner, they tend to talk more (Fussell & Krauss, 1992). They talk more, in part, to
provide the partner with the background required to interpret future interac-
tions and, in part, to gather more information about what the partner knows.
To evaluate this possibility further, we coded the videotapes for the number of
factual questions that the participant asked of the confederate. Consistent with
a common-ground explanation, participants who worked with the human-like
robot asked fewer factual questions on average (M = 2.58) than those who
worked with the machine-like robots (M = 3.45), although this difference was
not significant, F(1, 182) = 1.29, p = .26.

4.2. Effects of Status

In Hypotheses 2a and 2b, we argued for a main effect of status. We posited
that people will rely more on a robotic partner and feel less responsible for the
task when the partner is assigned a supervisory as compared with a subordi-
nate or peer position relative to the participant. We found little support for Hy-
pothesis 2a. People relied more on the robot peers than they did robot
subordinates or supervisors (M = 4.41 supervisors vs. 4.60 peers vs. 4.51 subor-
dinates), and the difference between the supervisor and the other status condi-
tions was not significant, F(1, 182) = 1.13, p = .29. Analyzing Hypothesis 2b,
participants reported feeling less responsible when collaborating with a robot
supervisor as compared with a robot peer or subordinate (M = 4.74, 4.80, 4.94,
respectively), but participants also reported that less credit was due to the part-
ner when it was a supervisor, which is the opposite of what we had hypothe-
sized (M = 4.08, 4.39, 4.47, respectively). Although the effect for responsibility
was not significant, F(1, 191) = .66, p = .42, when conducting two-way
ANOVAs contrasting the supervisor condition with the other status condi-
tions, the effect of status on attribution of credit was significant, F(1, 191) =
6.73, p = .01. That is, participants attributed significantly less credit to the ro-
bot supervisor as compared with the robot peer and subordinate. Paradoxi-
cally, we also found that participants were more likely to blame robot
supervisors as compared with robot peers and subordinates for errors and mis-
takes that were made (M = 3.83, 3.07, 3.13, respectively) and that this differ-
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ence was highly significant, F(1, 191) = 13.53, p < .001. Overall, it seems that
participants were much more critical of the robot in a supervisory position.

As with our Hypotheses 1a and 1b, we had an underlying linear assumption
in our status variable, suggesting that status would increase the extent to which
people relied on the partner and would decrease their sense of responsibility
for the task. Therefore, we conducted linear regressions with status as a scale
(supervisor, peer, subordinate) and human likeness as a variable. The only sig-
nificant linear effects were found when predicting attribution of credit (β =
–.137, p = .001) and attribution of blame (β = .21, p = .003), suggesting that as
the status of the robot target increases, people attribute less credit for successes
and more blame for failures in performance.

4.3. Interaction Between Human Likeness and Status

Our final hypothesis predicted an interaction effect between human like-
ness of the robots and the robot’s status. In Hypothesis 3, we argued that peo-
ple will feel most responsibility for the task when they work with a
machine-like robot subordinate. To test this hypothesis, we conducted a
two-way ANOVA analysis with only the robot conditions included in the
analysis. We found a significant effect in the expected direction for responsi-
bility when contrasting the machine-like subordinate conditions with all other
robot conditions, F(1, 193) = 6.37, p = .01. We found little effect for attribution
of credit, F(1, 193) = .26, p = .61; or attribution of blame, F(1, 193) = .58, p =
.45. These analyses provide some evidence that people will feel most responsi-
ble for the task when they are collaborating with a machine-like robot that is
presented as a subordinate. A similar test predicting reliance showed no signif-
icant effect, as we expected, F(1, 184) = .36, p = .55.

A summary of the support found for each of our hypotheses is detailed in
Figure 6.

5. DISCUSSION

As far as we know, ours is one of the first systematic, controlled experiments
comparing people’s responses to human coworkers versus robot coworkers;
and to more humanoid versus less humanoid robots. Our findings suggest that
there are significant differences in the extent to which people will rely on ro-
bots as compared with human work partners. When working with a person in-
stead of a robot, participants relied more on the partner’s advice and were less
likely to ignore their counsel. We found, however, only marginal support for
the idea that people would feel less burden of responsibility when interacting
with another person as compared with a robot. It appears from these data that
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participants collaborated more with the human partners than with the robot
partners but still did not necessarily cede responsibility to them.

Comparing robots with different appearances, our data show that interact-
ing with a more machine-like robot may increase the personal responsibility
that people feel for the task. This effect was increased when status was added to
the manipulation. Our data indicate that participants felt most responsible
when interacting with the machine-like subordinate, suggesting that a ma-
chine-like appearance coupled with the framing of a subordinate position may
result in the highest levels of human responsibility. Knowing this may be use-
ful when it is important for workers to feel the full weight of responsibility for
the task in which they are engaged. When people feel more responsibility for
the task, mishaps may be avoided because people explore more options and
are more diligent about finding an appropriate solution (see Roberts et al.,
1994). When people feel responsibility for the task, they may also be less likely
to trust the robotic partner to perform tasks for which the robot is ill equipped
or when the robot becomes ill equipped due to unanticipated changes to the
task requirements or the environment. On the other hand, our results suggest
that humanoid robots may be appropriate for situations in which the burden of
responsibility can or should be attenuated for the people involved in the task.

174 RELIANCE ON ROBOTS

Hypotheses Results

Human-like versus machine-like robots
Hypothesis 1a: People will rely on a human-like robot partner

more than on a machine-like robot partner.
Not supported

Hypothesis 1b: People will feel less responsible for the task when
collaborating with a human-like robot partner than with a
machine-like robot partner.

Supported

Relative status of robot coworkers
Hypothesis 2a: People will rely on the robot partner more when it

is characterized as a supervisor than when it is characterized as a
subordinate or peer.

Not supported

Hypothesis 2b: People will feel less responsible for the task when
collaborating with a robot partner who is a supervisor than with
a robot partner who is a subordinate or peer.

Mixed support

Interactions between human-likeness and status
Hypothesis 3: People will feel the greatest amount of responsibility

when collaborating with machine-like robot subordinates as
compared with machine-like robot peers and supervisors; and as
compared with human-like robot subordinates, peers, and
supervisors.

Mixed support

Figure 6. Summary of hypotheses and results.
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For example, humanoid robots may be preferred when human complacency
is not a concern or when the consequences of a risky task would be too difficult
for a human to bear.

We hypothesized, as have others (e.g., Parise et al., 1996), that one of the
reasons that people may respond differently to human-like technologies than
to machine-like technologies is because they feel more similar to the former
and thus experience more shared identity with them. Our behavioral mea-
sures of shared identity, however, provided little evidence to this effect. We
did not see a difference in the individualistic or collective language used by
participants in the different conditions. On the other hand, participants in the
machine-like robot conditions appeared to talk more with the robot than did
participants in the human-like robot conditions, suggesting that they might
have perceived less common ground with these robots, and felt they had to ex-
plain themselves more, or provide more instruction.

Our status manipulation generated mixed effects. When collaborating with
supervisors, participants attributed less credit and more blame to their part-
ner. This effect suggests that, as in the popular Dilbert cartoon (see
www.dilbert.com), the supervisor was viewed as undeserving and was blamed
for most of the problems encountered on the task. Additional research is
needed to assess the robustness of this effect. It is possible that the effect in our
study is specific to the task being performed and to the role we assigned to the
supervisor. The task was relatively straightforward, albeit with some ambigu-
ity, and did not allow the supervisor to display a particularly impressive level
of skill or competence. Our results may suggest that when people or robots are
put in supervisory positions without commensurate skills or authority, their
subordinates will respond negatively. A situation in which the partner has sub-
stantially more skill or knowledge relative to the participant might reveal
somewhat different effects. It is also possible, however, that the comparatively
young student population in our sample have beliefs that are consistent with
the “Dilbert effect,” maintaining fairly negative impressions of those in super-
visory roles.

This study is an early foray into the examination of people’s responses to
professional service robots. As such, many questions remain, and additional
studies are needed to fully understand how people will respond to and work
with professional service robots on collaborative tasks. One area that merits
exploration, for example, is the nature of the task being performed. The task
we utilized here was a relatively mundane parts-sorting task that required
movement and knowledge on the part of the robot. Even in the ambiguous
parts of the task, participants demonstrated high levels of reliance on their
partner (M = 4.58 out of 5). We expect that reliance was high because the task
was routine and posed little risk, and the robot was clearly equipped to per-
form the role assigned to it. Over time, robots are likely to assume tasks that
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are substantially more complex, risky, and uncertain than this experimental
task (e.g., Burke, Murphy, Coovert, & Riddle, 2004). Situations in which peo-
ple working with a robot are already cognitively overloaded and do not have
the capacity to monitor the robot’s actions are also likely. For example, search
and rescue robots may work in tandem with rescue workers in extreme
weather conditions, such as in the aftermath of a hurricane. In such situations,
people are overworked and experience stress, uncertainty, and physical dan-
ger. Based on the research reported here, we anticipate that humanoid robots
may be appropriate for tasks that are complex or risky because people will
more readily delegate responsibility to them. Although our task did not pres-
ent high risk to the participants, our participants reported being reasonably
well motivated to participate (M = 6.97 on a 10-point scale); we anticipate that
stronger motivation and higher risk might strengthen these results. Substantial
research, however, is needed to fully understand the interplay between the de-
sign of the robot, the task being performed, the interaction between the person
and the robot’s skill and knowledge, the amount of perceived risk, and peo-
ple’s willingness to rely on the robot.

Although the focus of our research was on robots in the work environment,
this studywasconducted inacontrolled laboratory setting.Doingsoenabledus
to maintain control over the conditions being tested. At the same time, realistic
aspectsof theworkenvironmentwere intentionallydesignedout.Forexample,
participants in our study worked in dyads and did not interact with other co-
workers or friends. We believe that people’s responses to robots in the work en-
vironment will be significantly influenced by the social and organizational
context in which they are embedded (see Siino & Hinds, 2004). Robots also
could have a significant and unanticipated effect on the dynamics of work
teams. Existing research suggests that the nature of effective team processes
may be different when automated systems are introduced (see Bowers, Oser,
Salas, & Cannon-Bowers, 1996). It will be fruitful to investigate the effect of hu-
man-likeandmachine-likerobotson thedynamicsof teamsandorganizations.

In examining human likeness versus machine likeness of the robot, we
chose to create robots that were a composite of a variety of human-like and
machine-like features. The human-like robot had facial features, a torso, arms,
and legs. It had the appearance of a man clothed in a denim shirt, khaki pants,
and a baseball cap. The machine-like robot was metallic and angular with
none of the physical human-like features previously described. We created
these two conditions to make an initial determination of the impact of human
likeness in a robot partner. We believe, however, that it will be important to
decompose and examine the independent effects of features such as eyes,
mouth, and legs. One also could look individually at features that we held con-
stant: a human-like voice, the absence of human-like gestures, and the robot’s
movements (e.g., rolling vs. walking). Along with others (e.g., Jensen, Farn-
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ham, Drucker, & Kollock, 2000; Nass & Lee, 2000), we think it quite likely that
each of these features may have some effect on perceived human likeness and
on perceptions of the robot coworker. Given the power of voice, it is possible
that the effects that we found could be duplicated by manipulating only the
voice (natural human voice vs. machine-generated voice). Similarly, behav-
ioral manipulations may provide a powerful way to convey human likeness in
robots (see Breazeal, 1999) and may generate similar effects. Research into
each of these dimensions would be a contribution to this field of work.

It is also important to note that although we manipulated human likeness of
the robot, the robot we used was nowhere near as human like as advanced ro-
bots are and can be. For example, Honda’s ASIMO has a more humanoid
form than we were able to produce in this study. In our pretest, our ma-
chine-like robot was rated on average 2.90, and our human-like robot on aver-
age 3.69, on a 7-point scale of human likeness. It is possible that our effects for
reliance are weak because our human-like robot was not extremely human
like and the task did not require advanced human-like behaviors. We antici-
pate that future research examining human reliance using increasingly hu-
manoid robotic forms and behaviors will find stronger effects. This work also
will help us understand the so-called uncanny valley—a space in which robots
evoke expectations of human likeness but are not quite human and, therefore,
create discomfort (see DiSalvo et al., 2002; Reichard, 1978).

Other factors that we anticipate will have a significant effect on human–ro-
bot interaction are the expectations that people have of robots and the experi-
ence they have with them. As people gain experience, the novelty of the
technology wears off and people develop ways to adapt the technology to
better fit their needs (e.g., Barley, 1986; Orlikowski, 2000). In this study, hav-
ing some experience with robots (e.g., a class or two) did not affect our results.
Having taken a class or two about robotics, however, may not be enough to es-
tablish clear expectations about the capabilities of robots in general or about a
specific robot in particular. As people gain more experience with robots and
with the particular robot with which they are working, we expect they will de-
velop new mental models of the robots’ capabilities, revise their perceptions of
how the robot fits into the work environment, and make alterations to the ro-
bot or their use of it to better accommodate their needs. This gain in experi-
ence will no doubt affect people’s collaboration with the robot. Ideally,
longitudinal studies will help to inform these questions.

Although there is substantial research required to fully understand hu-
man–robot interaction on collaborative tasks, the research reported here pro-
vides some initial findings that suggest how people may respond to humanoid
professional service robots and the conditions under which humanoid robots
may be preferable to machine-like robots. These findings provide input to
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guide the decisions of those designing robots and determining the roles that ro-
bots will play in the work setting.

More broadly, we view this research as an early effort using the theoretical
and empirical foundations of social psychology and organizational behavior
to inform the design of robots for the work environment. We believe that con-
tinued work in this area and ongoing collaboration between social scientists
and roboticists to identify and explore questions of importance can make a sig-
nificant contribution to the field of robotics and improve the likelihood for suc-
cessful implementation of professional service robots.
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