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1. Introduction

During the last decade there has been widespread interest in
the Discontinuous Galerkin (DG) method for conservation laws,
for which the theoretical basis has been provided in Refs.
[5,4,3,6-8]. In this formulation the solution is represented in terms
of basis polynomials of degree p in each element, which are not re-
quired to match at the element interfaces. Then the inner product
of the residual and each basis function is required to vanish in
every element. Using integration by parts to evaluate the inner
product, the flux at the element interfaces is calculated from the
left and right states by an upwind formula corresponding to an
approximate Riemann solution as in a Finite Volume (FV) scheme.
Thus the DG approach combines the flavors of finite element and
FV methods. The expected order of accuracy is n=p+1 using
polynomial basis functions of degree p, but for linear problems
on uniform meshes super accuracy of order 2p + 1 can be attained.
For three-dimensional simulations on hexahedral elements tensor
products may be used. Then to support polynomials of degree p
one needs p+1 collocation points in each direction leading to
(p + 1)° Degrees of Freedom (DoF) for each dependent variable in
a single element. Furthermore, the stiffness of the system of equa-
tions increases with p.

The rapid growth of computational complexity of DG methods
with increasing order has spurred the search for more efficient
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variants or alternatives. One such approach is the Nodal DG
(NDG) scheme [10] in which the solution is represented by La-
grange interpolation at a set of collocation points in each element,
and the quadratures required are pre-integrated to produce local
mass and stiffness matrices. Another alternative is the Spectral Dif-
ference (SD) method, first put forward by Kopriva and Kolias [17],
under the name staggered grid multi domain method and subse-
quently extended to both quadrilateral and triangular elements
[18,27]. Like the NDG method, the SD method represents the solu-
tion by Lagrange interpolation at n = p + 1 collocation points in
each element. The flux is then represented by a polynomial of de-
gree p+ 1 at n+ 1 interlocking flux points which include the ele-
ment boundaries, where a Riemann flux is used as in the NDG
scheme. While the SD method has proved robust and productive
in a variety of applications, doubts have been raised about its sta-
bility on simplex elements, and it can be weakly unstable in one
dimension depending on the choice of flux collocation points.
The Flux Reconstruction (FR) method by Huynh [11,12] further
simplifies the treatment of the equations in differential form.
Instead of calculating the flux at a separate set of flux collocation
points, Huynh proposed simply to modify the flux f(u;) calculated
from the solution at the interior nodal points by corrections from
the left and right boundaries of each element based on the differ-
ence between the Riemann flux at the interface and the flux value
calculated from the internal solution polynomial in the element.
These corrections are propagated from each boundary by polyno-
mials of degree p + 1 which vanish at the opposite boundary. Thus
the corrected flux is represented by a polynomial of degree p + 1,
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so that its derivative is a polynomial of degree p, consistent with
the polynomial representing the solution. For the linear case
Huynh was able to show that by appropriate choices of the correc-
tion polynomial he could recover both the standard NDG scheme
and the SD scheme, as well as a variety of hitherto unexplored vari-
ations which might have some potential advantages. He also used
Fourier analysis to verify the stability of some of these schemes for
third-order accuracy. In nonlinear cases the FR schemes are no
longer exactly equivalent to NDG or SD.

Utilizing the FR approach of Huynh [11,12], it was proved by
Jameson [14] that (for 1D linear advection) a particular SD method
is stable for all orders of accuracy in a broken norm of Sobolev type.
Recently, this result has been extended by Vincent et al. [24], who
identified a class of FR schemes which are guaranteed to be linearly

2
stable for norms of the form [ {uﬁ +c(u,(1”)> ] dx where c can be

varied over a wide range including values which recover the
NDG and SD schemes. The extension of the stability proof to sim-
plex elements and to advection-diffusion type equations has also
been recently addressed [2,15,16,25,26,28].

In this study, the numerical dissipation term accompanying the
energy stable FR discretization is carefully analyzed from the analyt-
ical point of view. Note however, that the relevant estimate of the
numerical dissipation term is quite general and applies to a broad
range of discontinuous FE schemes for which similar interface flux
formulations are adopted and provided that the relevant discrete
solution satisfies a particular form of the energy estimate (cf. Eq.
(19)), as it will be explained in the following sections. The SD scheme
and the whole set of discretizations within the energy stable FR
methodology fall into this category. This further insight into the ana-
lytical form of the numerical dissipation term allows to better
understand some fundamental differences that occur when differ-
ent polynomial orders are used to represent the solution.

Adopting a 1D energy stable FR solver and focusing on the par-
ticular value of the parameter ¢ which recovers the SD discretiza-
tion, numerical tests are then included in Section 5 to measure
the impact of the above mentioned differences. Although these
tests are carried out using one specific scheme within the FR class,
the results are expected to be sufficiently general to reflect the
behavior of a broader range of discretizations belonging to the FR
family. For simplicity, all the developments and tests will be car-
ried out in the 1D case, and hence, the relevant results can be at
least generalized to quadrilateral (2D) and hexahedral (3D) ele-
ments by virtue of the tensor product.

2. Mathematical formulation

For completeness, the main building block of the FR and SD
schemes are summarized in the present section (see Refs. [11,22]
for more details). This will be useful in order to later introduce
the relevant energy estimate, and to point out that similar conclu-
sions can be drawn regarding the dissipative nature of these two
schemes. The energy estimate, in particular, will enable a clear
identification of the total contribution to numerical dissipation,
which will be thoroughly analyzed in Sections 3 and 4. It is worth-
while recalling that, as anticipated in the introduction, both
schemes can be obtained from the more general energy stable FR
methodology [24]. Furthermore, the above mentioned energy esti-
mate holds valid for every discontinuous finite element scheme
within the energy stable FR family.

2.1. Domain discretization

Consider the 1D scalar conservation law
Ol + 0yf =0, (1)

within an arbitrary domain @, where x is a spatial coordinate, t is
time, u = u(x,t) is a conserved scalar quantity and f = f(u) is the
flux of u in the x direction. The domain is partitioned into N distinct
elements Q; = {x | x € (x; : X;;1)} such that

Q= LNJQi, and 0= ﬁ‘Q’ (2)
i=1 i=1

In order to achieve an efficient implementation, all elements in
the physical domain are transformed to a standard element de-
scribed by local coordinates ¢ € [—1 : 1]. The relevant transforma-
tion can be written via the mapping

X — X;
E=Ti(x)=2 ! -1, 3
=T =201, 3)
. 1=¢ 1+¢
x:l"il(g):—2 Xi+—2 Xit1- (4)

The governing equations in the physical domain are then trans-
ferred into the computational domain, and they take the form

Ot + 0:f =0, (5)

where

=0t =wI'(),t), and f=f(E0)=fT7E).0/ (6)
with ]i = (Xi+1 — X,')/Z.

2.2. The FR numerical scheme

In order to construct a degree p = n — 1 polynomial inside each
standard element, a set of n solution points is defined. Although
the linear analysis of FR schemes implies that stability is indepen-
dent of solution point location, in a recent work, Jameson [16]
pointed out that, for the non-linear case, the choice of locating
the solution points at the Gauss-Legendre quadrature points is
optimal in reducing aliasing errors and providing good condition-
ing. Accordingly, the n solution points are obtained as the roots
of the equation

2n—-1 n-1

Pn(f) =

EPp1(8) - Pn2(8)=0 (7)
where P,(¢) is the Legendre polynomial of order n,P;(¢) = ¢ and
Po(¢) = 1. The approximating polynomials for the solution can be
built using a Lagrange base defined as

m =TI £ ®)
s=17" >¢
S#I

which can be used to obtain the (discontinuous) reconstructed solu-
tion and fluxes in the standard element as

(&) =y _ihi(©), ©)

F© =S Fili(e), (10)
i-1

where ii; and f; are the solution and the flux evaluated at the ith
solution point, respectively. The superscript ‘d’ is adopted to indi-
cate that the above functions are, in general, discontinuous across
the elements. Using Eq. (9), in particular, the approximate solution
is evaluated at either end of the standard element. These values are
used in conjunction with analogous information from adjoining ele-
ments to calculate common numerical interface fluxes from a two-
point (upwind biased) flux formula.

In order to construct a continuous flux polynomial of order
p+1, a correction flux f< of order p+ 1 is added to the approxi-
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mate discontinuous flux. The correction flux is constructed such as
to satisfy the following requirements: (a) the sum of the correction
flux and the discontinuous flux equals the common numerical
fluxes at the element interfaces; (b) the corrected flux follows (in
some sense) the approximate discontinuous flux in the interior of
each element. These requirements are satisfied by defining the cor-
rection flux as

F@ =1y = FA-=1)gu@) + [ — (1)), (11)

where f; and f; are the numerical interface fluxes at the left and
right element interfaces, respectively; g;(¢) and gi(¢) are suitable
polynomials of order p + 1 such that

&(-1)=g1) =1, g(1)=g(-1)=0, g(d)=2g(-<9. (12)

The total (continuous of order p + 1) flux polynomial function is
finally computed from Eqs. (10)-(11) as

F@&) =f4&) +5@)

—th )+ 1 = =18 + [ — FD)lga(0): (13)

A

2.3. The SD numerical scheme

Within each standard element, two sets of points are defined,
namely the solution points and the flux points, as schematically
illustrated in Fig. 1 for a one-dimensional element. In order to con-
struct a degree p = n — 1 polynomial, the solution at n points are
required. In a recent work, Jameson [14] utilized a flux reconstruc-
tion [11] formulation to prove that the SD method is stable for all
orders of accuracy, provided that the interior flux points are placed
at the Gauss-Legendre quadrature points. In the non-linear case, as
already mentioned, Gauss-Legendre solution points provide mini-
mal aliasing errors [16]. Accordingly, the n solution points are ob-
tained as the roots of Eq. (7), and the flux points are selected to be
the Gauss-Legendre quadrature points of order n — 1 plus the two
end points 0 and 1.

The approximating polynomials for the solution (n points) and
the fluxes (n + 1 points) can be built using Lagrange bases defined
as

ﬁ - li12() :ﬁyfiﬂ (14)
- =0 Cir12 — Es1p2
s#x S#1

Hence, the reconstructed solution and fluxes in the standard ele-
ment are, respectively,

= En:ﬂihf(é), (15)
i1
f(f) = me/z li2(9), (16)

i=0

where i; is the solution evaluated at the ith solution point, and
fm/z, withi=1,...,n—1, are the fluxes evaluated at the interior
flux points from the interpolated states defined by the solution
polynomial. The fluxes f 12 and an ,2 are set equal to the numerical

oo

1 5
e i @ @ i o
1 2 3 4

@ Solution Points B Flux Points

Fig. 1. Position of solution (circles) and flux (squares) points on the standard one-
dimensional element for 3rd-order SD.

interface fluxes f; and f; at the left and right element interfaces,
respectively. Hence, the (continuous of order p + 1) flux polynomial
function can be also written as

. n-1

F(&) =Y Fiplian(©) + 5 b @) + filua (). (17)

i=1

2.4. The energy estimate and the source of dissipation

For both the FR and SD schemes described above, the fluxes at
the interior points are calculated (in some sense) from the solution
polynomial, while the fluxes at each end-point is calculated as a
common interface flux depending on the left and right values at
the interface using a Lax-Friedrichs type [23]| numerical flux. A Rie-
mann solver is employed to compute the common inviscid flux at
each cell interface to ensure both conservation and stability (e.g., a
Rusanov flux [21] or a Roe solver [20] with entropy fix [9]). The left
and right states represent here the solution on both sides of the
shared edge flux point. In Ref. [14] it was proved that NDG and
SD schemes are linearly stable at any order of accuracy. In partic-
ular, let u; and ug be the values of u(x) on the left and right sides
of the cell interface, respectively. A Lax-Friedrichs type numerical
flux for the linear case is defined as
f*:%a(uk+uL)—%oc|a|(uR—uL), 0<axl, (18)
where the parameter « determines the amount of upwinding at the
element interface. As demonstrated in Ref. [14], the discrete solu-
tion satisfies the energy estimate
d g, - N-1
a/X] [u + P cu® ] x <

{0‘\5” (ug —uyg) ]

27XN+1
j+1/2 B [au L‘l ’

(19)

=

where the summation includes the contributions from all the inte-
rior interfaces, B(x) = (i1 —x;)/2 =J; for x € (x; : xi,1) is a piece-
wise constant scaling factor and c is a coefficient that depends on
the polynomial order p and the relevant leading coefficient a,:

_» 1 1
S 2p+1pp+1)a

(20)

Eq. (19) implies energy stability for the linear advection equation,
and indicates that the total contribution to dissipation when Lax-
Friedrichs type numerical fluxes are adopted comes from terms pro-
portional to (uz — u;)?, evaluated from left and right states at each
element interface. Similar conclusions were later drawn for the
whole family of FR schemes that can be obtained by a suitable
choice of flux correction functions [24]. Linear stability for this par-
ticular family of FR schemes, which includes NDG and SD schemes
as a special case, does not depend on the choice of the solution
points. For the non-linear case, as mentioned, the use of Gauss—
Legendre quadrature points is optimal in terms of aliasing errors
and good conditioning [16]. In what follows, the error estimate
for the polynomial reconstruction will be used to derive the analyt-
ical form of the dissipation term o |a | (ug —u;)/2 in the case of
equidistant solution points, and for the most optimal Gauss-Legen-
dre quadrature points.

3. The numerical dissipation for equi-spaced solution points

In this section, the most simple and intuitive case of equidistant
solution points within the standard element is first analyzed. Con-
sider n equidistant solution points &;,. .., &, and the corresponding
(equidistant) flux points ¢4, with j=0,...,n. From Eq. (A.7) the
reconstructed solution can be expressed as
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IS 1)

for some value ¢* in the standard element. Note that the hat accent
will be henceforth omitted under the implicit assumption that
quantities are those associated with the standard transformed ele-
ment in computational space. By introducing an equivalent resolu-
tion h = 2/n (h represents the resolution a FV code would have if
the standard element was filled with n identical cells), it is straight-
forward to show that

; h3h5h (2n-1)h n
On (&) 2577---%=Ku(n)h , (22)
—-h -3h -5h —(2n-1)h n
onOl =5 ot S I ey, @3)
with
) = e 125 1) (24)
j=1

For n =2, 3,4 and 5, the extrapolated solution at the element inter-
faces are

P = a1 -2 ue), ey —un - une, @)
P = a1+ e, e —u - I, @)
Pt =u-1) - By, pyn) —um -2 e, @)
P —u-1) + eyt —un) - B usie). 2s)

Consider two contiguous elements; as mentioned, the numeri-
cal flux at the common interface is computed by a Lax-Friedrichs
type formula, in which the left and right states are the rightmost
extrapolated solution from the left element, and the leftmost
extrapolated solution from the right element, respectively. Hence

U =[Pea(D], and  ug = [Pra(=1g, (29)

where the notation [-], (resp. [-];) is a shorthand to indicate a quan-
tity that is evaluated inside the left (resp. right) element. The
numerical flux at the interface is evaluated as
1 1

f= 5l +f ) - e |a] (e —u). 0<a<1, (30)
where a is some suitable numerical approximation of the wave
speed Jf /ou. The second term on the RHS of Eq. (30) represents
the dissipative flux d" introduced by the scheme. Form Egs. (21)-
(29), this can be evaluated as
wlaj

{0 - 0 ) - -1

d =
n!

where ¢, and & are some locations inside the left and right ele-
ments, respectively. Note that, when the true solution is continuous
across the elements, the difference [u(—1)]; — [u(1)], is identically
zero, and the numerical dissipation term becomes

Cl* _ | |h Ku( ) )(iL) (n>(§vR)
2 n! M) +u™ (&)

By Taylor expansion around the location of the interface, u™ (¢;)
and u™ (&) can be expressed as

u® (&) = (1)), - 0hu™ V1)), + O(h?), (33)
U™ (&) = U (~1)]g + Oh[u™ V(= 1)]g + O(H), (34)

if n is even,
if n is odd.

(32)

where 6, and 6 are two numbers in the interval [0 : n], such that
tgr=0rh—1 and ¢, =1 - 6.h. Moreover, for sufficiently smooth
solutions, [u™(1)], = u™(=1)], =ul’, and [u™D(1)], = U™+
(=D = u (D) Therefore by using Eq. (34) and retaining leading

terms only in the Taylor expansions, Eq. (32) can be further simpli-
fied as

olal (0 + 0g)hul™™ + O(h®) if n is even,

£ ﬂI<U(n) -
d = h
2 n! 2ul" + O(h) if n is odd.

(35)

From Eq. (35), two main observations are made: (a) when n is an
even number, the numerical dissipation term is of the order of
h""!, whereas for odd values of n, the numerical dissipation is of
the order of h"; (b) whatever the order of the scheme, the numerical
dissipation term is always proportional to some odd-order deriva-
tive of the solution. The first point represents one of the main re-
sults of this study: the numerical dissipation term for the whole
family of energy stable FR schemes with an even number of colloca-
tion points is one order of magnitude smaller than in the case an
odd number of points is used. In other words, for the same number
of DoF, hence for the same overall resolution, odd orders are ex-
pected to be a bit more dissipative than even orders. In any case,
the overall dissipation operator in each element, which is obtained
from the difference of right and left interface contributions, is pro-
portional to an (undivided) high derivative of even order of the
solution, thus providing more efficient absorption of the energy of
the unresolved modes [19]. In the next section, the above results
will be generalized to the case of Gauss-Legendre quadrature
points.

4. The numerical dissipation for Gauss-Legendre solution
points

When the solution points are the zeros of a Legendre polyno-
mial, the term w,(¢) in Eq. (21) represents, by definition, a Legen-
dre polynomial of degree n with unitary leading coefficient. It is
worthwhile recalling that by Rodrigues’ formula, the Legendre
polynomial of degree k can be written as

1 d(k)
L&) = o 4 [(52—1)"], (36)

hence the corresponding coefficient of the leading monomial term

is equal to a; = (2k)!/[2*(k)?]. In evaluating w,(¢), this coefficient
is carried along as a factor. Furthermore, Legendre polynomials in
the interval [-1 : 1] satisfy the conditions

Le(=1) = (-1)",

Therefore, after rescaling over an element of size nh, the values of
wy(¢) at the interfaces become

and Lg(1)=1. (37)

= Ky (n)h", (38)

n4n 2
Onl®) oy = ("z—h> 2(523 L)

naon 2
0n@lr = (3) Zgm (1) = Kutn) (- (39)
with
02
1<L(n)="(2(z!))! . (40)

Due to the similarities between Eqgs. (38) and (39) and Egs. (22) and
(23), analogous reasoning as in the previous section leads to the dis-
sipative flux term, which in this case is equal to
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Table 1

Values of K, (n)/n!,Ky(n)/n! and c (cf. Eq. (20)) up to order 8.
n Ky (n)/n! Kyi(n)/n! c
2 3.750 x 107! 3.333 x 107! 3.333 x 107!
3 3.125 x 107! 2.250 x 107! 2.963 x 1072
4 2.734 x 107! 1.524 x 107! 9.524 x 1074
5 2.461x 107" 1.033x 107" 1612 x107°
6 2256 x 107! 7.013 x 1072 1.697 x 1077
7 2.095 x 107! 4.761 x 1072 1.220 x 107°
8 1.964 x 107" 3.233 x 1072 6.389 x 10712

h (n+1) h2 'f .
a |a |h” Ki(n) | —(0p + Og)huy " 4+ O(h®) if n is even,
2 nt| 2ul” + o(h) if n is odd,

(41)

thus proving that similar conclusions about the numerical dissipa-
tion hold in the case of Gauss-Legendre solution points. Some val-
ues of the factors K,(n)/n! and K (n)/n! are reported in Table 1 for
different orders n. Notice that both factors are decreasing functions
of n, Ky (n)/n! showing a slightly faster decay.

5. Numerical tests

In the present section, the anticipated scaling for the dissipative
flux d" is verified numerically. The numerical platform adopted is a
one-dimensional solver based on the energy stable FR method [24].
Tests are performed setting the ¢ parameter of the FR method such
as to recover the SD type scheme adopted by Jameson [14]. Accord-
ingly, the solution points are the zeroes of Legendre polynomials
and the dissipative flux is expected to scale according to Eq. (41).
The solution is initialized over a periodic computational domain
of length L using a gaussian profile,

(x-L/2)’

(0.1L) “42)

Up(x) = exp {1 - } with xe[0:1L].

Hence the average dissipative flux is computed for different polyno-
mial orders and for different numbers of elements N as

1 172
=3 2
d = I:N;(UR — UL)I-:| s

where the index i refers to the elements’ interfaces.

The relevant results are represented in Fig. 2, where the initial
average dissipative fluxes are plotted with logarithmic scales for
N ranging between 32 and 512 and for n € [2 : 9]. The plot clearly
shows how the dissipative flux from even orders scales approxi-
mately as the dissipative flux of the following odd orders. The
quantitative evaluation of the relevant scaling orders, which is re-
ported on the right of Fig. 2, proves that when n is an even (resp.
odd) number, the numerical dissipation term is of order of n + 1
(resp. n), as anticipated in Section 4.

Fig. 3 shows the time evolution of the average dissipative fluxes
(a) and the relevant scaling (b) after the equation is integrated in
time for two periods (only half period is plotted to better show
the initial behavior). Time integration was done explicitly with a
fourth-order Runge-Kutta method (RK4), having care to keep the
time step small enough for the relevant error to have a negligible
impact on the measured scalings. For analogous reasons, tests were
performed for n less than 4, such as to ensure that the discretiza-
tion error was dominant over the time integration error (read com-
ment below). Although the measured initial dissipative flux
follows perfectly the analytical predicted scaling, its time evolution
is characterized by a short initial transient followed by an extre-
mely well defined asymptotic value. As it is shown in Fig. 3(b),
the scaling of the final asymptotic values of the average dissipative

(43)

\

108 F
102} .\.
16 L

n=2|-299271
n=3|-298187
n=4 | -498712
n= -4.96647
n= -6.92434
n= -6.9393

n= -8.81791
n=9 | -8.78117

10

1000

Fig. 2. Dissipation term scaling as a function of the number of elements N: o, n = 2 (open), n = 3 (solid); A, n = 4 (open), n = 5 (solid); ¢, n = 6 (open), n = 7 (solid); ,n = 8

(open), n = 9 (solid). The measured slopes are listed on the right.

10 3 N 128
107
N = 256
(e _____N-G&_]
L N=s2
f/, Nz ] w0t
107 ¢
JE RS N=64
100 10
0 0.1 0.2 0.3 0.4 0.5 10 100 1000
T N
(@) (b)
Fig. 3. Time evolution of the average dissipative fluxes (a) and scaling of the relevant asymptotic value (b). In plot (a): —, n = 2; ----- L n=3; .. ,n = 4. In plot (b): the

measured slopes are —1.92657, —2.98101 and —3.94368 for n =2 (o), 3 (A) and 4 (0OJ), respectively.
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10°
el n=2| -587155
n=73 -9.4329
n=4|-12.7831
lO-m L
10 160 1000

N

Fig. 4. Scaling of the rate of change of the pth derivative term in the Sobolev energy norm (divided by N): o, n = 2; A, n = 3; O, n = 4. The measured slopes are listed on the

right.

fluxes does not follow the theoretical prediction, but rather reflects
the expected order of accuracy of the scheme—namely, n, as antic-
ipated in Section 1—regardless of n being even or odd. Hence, for
the linear advection case, apart from a relatively short initial tran-
sient, the anticipated difference in behavior between even and odd
orders does not seem to have any major impact on the numerical
accuracy, for which even and odd orders have similar behavior.
Furthermore, by virtue of Eq. (19), the Sobolev type energy
norm of the solution is supposed to decrease in time following
the same scaling observed for the dissipative fluxes. More pre-
cisely, in the case that periodic boundaries are used (i.e., the second
term on the RHS of Eq. (19) is identically zero), from Eqgs. (19) and
(43) it is expected that the rate of change of the energy norm

exhibits the same order scaling of N x (f)z, ie.,

1d

N dt 4

/ [uz 1 fPeu®?|dx ~ 2 x O(d).
0

With regards to the latter, in particular, from Eqgs. (14) and (15),
it can be easily shown that the (piecewise constant) pth derivative
of the polynomial solution is

((2F
a® — d™h

o oo dPh 1
=Y 0;—, with c=p [——.
>t FED azm P HCI‘ _Z

(45)

i=1

which can be transformed in physical space after rescaling over an
element of size nh, namely,

uo (P27 z": H (46)
nh (nh)® - &

i=

with p=n-1. Recalling that g from Eq. (19) is equal to
(Xix1 —Xi)/2 = nh/2, the pth derivative term in the Sobolev energy
norm finally becomes

The two terms in the energy norm, namely, the kinetic energy term Vi cu®? — Zu H 47)
u? and the one involving the pth derivative of the solution are Al g
analyzed below. =
0 0 =
-0.0001 -4e-05
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Fig. 5. Time evolution of the normalized error in total kinetic energy at different orders n and for different numbers of elements N: —, with upwind term; - - -- , without

upwind term.
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n=2|-3.84411
n=73 1 -596602
n=4 | -7.82705

100
N

1000

Fig. 6. Scaling of the rate of change of the total kinetic energy ms (divided by N): o, n = 2; A, n=3; 0, n = 4. The measured slopes are listed on the right.

where the coefficient c is obtained from Eq. (20). The scaling of the
relevant time derivative—divided by N according to Eq. (44)—as a
function of the number of elements N is reported in Fig. 4. As it
can be seen, the time derivatives of these terms exhibits a relatively
fast decay of the order of N>" (cf. Fig. 4 right). Moreover, their val-
ues, which fall below 107, are extremely small compared to the
corresponding average dissipative fluxes. Therefore, their contribu-
tion in Eq. (44) can be neglected. Note that the slight bend observed

for n = 4 is probably due to uncertainties in the evaluation of slopes
of the order of 107'° and smaller.

Turning to the kinetic energy term, since the average dissipative
fluxes are almost constant in time (this was observed for suffi-
ciently resolved computations as those shown in Fig. 3), by virtue
of Eq. (44), this is expected to decrease linearly in time. This is
readily verified in Fig. 5, where the time history of the normalized
error in total kinetic energy—namely

(e) sharp steps after 20 periods

Fig. 7. Advected sharp (a and c¢) and smooth (b and d) steps: —, n = 6;
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Jw? — i3

_Jo
= (48)
with ug from Eq. (42)—is shown for computations of order 3 and 4.
Note how, increasing the order n and/or the grid resolution, the
numerical dissipation from the time integration scheme tends to
become dominant over the effect of the dissipative fluxes. For
n = 5 and RK4 (not shown) the rate of change of kinetic energy from
computations performed with and without dissipative fluxes were
indistinguishable, the numerical diffusion from the RK4 being dom-
inant over the spatial discretization counterpart.

The fully centered preliminary computations, in particular, can
be used to establish a baseline numerical solution and to better iso-
late the effect of spatial discretization on the decrease of kinetic
energy. In fact, the relevant kinetic energy (also approximately lin-
ear in time), which is supposedly only affected by the numerical
dissipation introduced by the time integration scheme, allows to
perform the decomposition

~ _

L
/ (Ll2 — u%)dx < IFR(t) —+ IRI((t) ~ —Mgrt — Mgk, (49)
0

where Img(t) and Ixc(t) represent the (time dependent and
approximately linear) contributions from the spatial and tempo-
ral discretizations, respectively. The relevant linear approxima-
tions, expressed by the slopes mg and mg, have been
evaluated by linear regression of the actual data. Hence, the rate
of change due to the RK4, namely, mgk, has been subtracted
from the slope measured with the dissipative fluxes switched
on, such as to ensure the correct evaluation of the relevant
scaling. The actual scaling of the rate of change of kinetic energy
mer is plotted in Fig. 6. Compared to the second term in the
Sobolev energy norm (see Fig. 4), the total kinetic energy is of
leading order and, as expected, the same scalings observed for
the (asymptotic) average dissipative fluxes are fully recovered

0.5

(a) n = 3, sharp steps after 1 period

(c) n = 3, sharp steps after 20 periods

Fig. 8. Advected sharp steps: —, initial discontinuity location inside the element;
abscissa to enhance clarity).
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(note that, according to Eq. (44), the slopes in Fig. 6 have to
be twice the slopes in Fig. 3b).

In order to further check for different dissipative behaviors of
even and odd order polynomial reconstructions, tests are per-
formed involving the advection of step functions as reported by
Bouche et al. [1] in the case of standard finite-difference schemes.
The relevant results are plotted in Fig. 7 for sharp and smooth step
functions (note that the curves obtained for different values of n
are shifted along the abscissa to enhance clarity). Several computa-
tions have been performed at constant number of DoF (ie.,
n x N = cnst.) for n ranging from 3 to 6. Note that the computa-
tional domain is periodic and that the sharp step involves the ini-
tialization of the flow with two Heaviside step functions where the
change in value occurs over a single solution point, whereas, in the
case of smooth steps, the two Heaviside step functions are smeared
along an interval A =12L/(n x N) using hyperbolic tangent
functions:

1

2
where the plus sign within the argument of the hyperbolic tangent
holds for x < 0 and the minus sign otherwise. The above value of A,
which is designed to be the same regardless of n, was purposely se-
lected by trial and error to produce an almost oscillation free solu-
tion when running with n = 6.

In contrast with the results reported for standard finite-differ-
ence schemes [1], in the case of sharp initial step functions (cf.
Figs. 7a, ¢ and e), similar short range oscillatory behavior is ob-
served regardless of the order of accuracy n. This confirms previous
observations, according to which, the theoretically predicted dif-
ferent amount of numerical dissipation from even and odd orders
is not observed in practice in the long time behavior of the solu-
tion. Although all the curves are characterized by weakly damped
short range oscillations on both sides of the step functions, stron-
ger oscillations are observed upwind of the step functions and their

04+£x

u(x) A

1+tanh (4 (50)
e

0.5
x

(b) n = 4, sharp steps after 1 period

0 0.

-0.5

5
x

(d) n = 4, sharp steps after 20 periods

, initial discontinuity location at the element interface. (curves are shifted along the
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Fig. 9. Time history of the normalized total kinetic energy from the advected sharp (a) and smooth (b) steps: —, n = 6; -----, ,n=>5 .- ,n=4;, —. —,n=3

amplitude appears weakened when the order is increased due to
the improved resolving power of the scheme (cf. discussion below).

Note that the tests reported in Fig. 7 have been performed cen-
tering the initial sharp steps such as to locate the discontinuity at
the element interface. Analogous tests performed having care to
set the initial location of the discontinuity inside the element dem-
onstrate that the solution does not exhibit any significant depen-
dency on the initial location of the discontinuity. The solutions
obtained initializing the discontinuity inside the element or at
the element interface (curves from Figs. 7) are compared in Fig. 8
for n =3 and 4 (n=5 and 6 exhibit an identical behavior and are
omitted).

When a smoothed step function is adopted (see Fig. 7b, d and f),
even if the geometrical resolution of the grid is kept constant (i.e.,
constant number of DoF), the computation performed with the
highest value of n produces improved results with very small fluc-
tuations around the (smoothed) step functions. It is worthwhile
noting that the initial smoothed profile has been designed to be
completely independent of the grid (viz. N) and the order (viz. n),
therefore, regardless of the value of n, the number of solution
points across the step is almost fixed. As a result, the observed
improvement in the solution can be exclusively attributed to the
increased resolving power of the scheme, which is the only param-
eter that changes across the different computations. As it is shown
in Fig. 9, the total kinetic energy of the solution is monotonically
decreasing for both the sharp and smooth step functions. This pro-
vides further evidence of stability in the energy norm. Notice that
similar results (not shown) have been obtained with the ¢ param-
eter set to zero such to recover the nodal DG scheme [24]. Com-
pared to the presented results, oscillations where in this case
somewhat reduced and predominantly downwind of the step
functions.

6. Conclusions

The source of numerical dissipation which is embedded in the
relatively broad class of energy stable FR schemes has been thor-
oughly evaluated from both the analytical and numerical points
of view.

Starting from the error estimate accompanying the polynomial
reconstruction of the solution within each element, the analytical
form of the dissipative fluxes—namely, the upwind terms of the
interface fluxes—has been derived. The relevant scaling as a func-
tion of the mesh resolution shows a peculiar “asymmetry” when
the order of the adopted polynomial reconstruction is, respectively,
even or odd. In particular, it has been proven that the theoretical
scaling of numerical dissipation term produced by even and odd
polynomial reconstructions shows different behaviors. At the same
time, it has been shown that the numerical dissipation term is

consistently proportional to an approximation of an odd-order
derivative of the solution, which provides efficient selection of
high-frequency modes.

Numerical tests performed on the most simple case of the linear
advection equation, fully support the anticipated scaling, at least at
the beginning of the simulation. Nonetheless, after the solution is
advanced in time, the numerical error of the discretization scheme
is quickly propagated throughout the computational domain, such
that the theoretical scaling of the dissipative fluxes is lost and a dif-
ferent asymptotic scaling is recovered. More precisely, although
the theoretical scaling of the dissipative flux accompanying poly-
nomial reconstructions of odd order p is expected to be equal to
p+2 (instead of p+ 1 as in the case of even orders), numerical
tests have given evidence that the relevant asymptotic scaling is
p + 1 regardless of the order p being even or odd.

Regarding the Sobolev type energy norm under which the
scheme is provable stable, it is shown that the term proportional
the pth derivative of the polynomial solution is negligible com-
pared to the Kkinetic energy term. Accordingly, identical scaling
has been observed for the rate of decrease of the total kinetic en-
ergy and the sum, extended over the whole domain, of the dissipa-
tive fluxes, thus confirming that the interface upwind terms
represent the main source of numerical damping (the other main
source comes from the numerical error introduced by the time
integration scheme). Hence, although the analytical form of the up-
wind terms suggests that computations involving polynomials of
odd order are characterized by a somewhat weaker numerical dis-
sipation, the evolution of the upwind terms themselves, in the case
of linear advection, appears to be dominated by the numerical er-
ror, thus reflecting the nominal order of accuracy of the scheme.
This notwithstanding, one might conjecture that the reduced
numerical damping of high-frequency modes yielded by odd order
computations might tend to produce more marked effects in the
nonlinear case, where the energy can be “transversally” redistrib-
uted across different frequencies. Future work will be devoted to
further analyze potential differences in terms of the numerical dis-
sipation produced by even and odd order polynomial reconstruc-
tions in the non-linear case and in more realistic applications
involving the integration of the Navier-Stokes equations (e.g.,
freely decaying homogeneous isotropic turbulence).
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Appendix A. The error from interpolating polynomials

Consider n points Xy, ..., X, and a function f(x) € C" in the inter-
val [X; : X,]. The remainder of the interpolating polynomial P,_;(x)
is then

(X —X1)(X —X3) - (X — Xp)
n!

fX) = Poa(x) = F), (AT)

where f® is the nth derivative of f, and ¢ € [x; : X;]. The proof of this
equation can be found in textbooks (see for instance Ref. [13]) and is
here reported for the sake of completeness.

Let Sy(x) be defined by

fx) = Pno1(x) = on(X)Sn (), (A2)
where wp(x) = (X — X1)(X — X2) - - - (X — X). The function
F(2) = f(2) = Pn-1(2) — 0n(2)Sn(X). (A3)

is then continuous in z and vanishes at n+1 points xq,...,X;,X.
Therefore, by Rolle’s theorem, F'(z) vanishes at n points, F’(z) van-
ishes at n — 1 points, ..., and finally F™ (z) vanishes at one point ¢.
Since

d(") d(")
WP,H(Z) =0, and an(z)sn(x) = n!S,(x), (A4)
then
F"(2) = f(z) — niS,(x), (A5)
and setting z = ¢ and using Eq. (A.2)

1
Su(¥) = 1 f"(0), (A.6)
= £ =P = 228 go ey (A7)

n!
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