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The present work combines the Spectral Difference method with an artificial viscosity based approach to
enable high-order computation of compressible fluid flows with discontinuities. The study uses an arti-
ficial viscosity approach similar to the high-wavenumber biased artificial viscosity approach (Cook and
Cabot, 2005, 2004; Kawai and Lele, 2008) [1-3], extended to an unstructured grid setup. The model

employs a bulk viscosity for treating shocks, a shear viscosity for treating turbulence, and an artificial
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conductivity to handle contact discontinuities. The high-wavenumber biased viscosity is found to stabi-
lize numerical calculations and reduce oscillations near discontinuities. Promising results are demon-
strated for 1D and 2D test problems.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Until recently, compressible flow computations on unstructured
meshes have generally been dominated by schemes restricted to
second order accuracy. However, the need for highly accurate
methods in applications such as large eddy simulation, direct
numerical simulation and computational aeroacoustics, has seen
the development of higher order schemes for unstructured meshes.
In particular, there has been a rise in the popularity and application
of locally discontinuous formulations. Methods such as Discontinu-
ous Galerkin (DG) method [4,5], Spectral Volume (SV) method [6,7]
and Spectral Difference (SD) method [8,9], Lifting Collocation
Penalty (LCP) approach [10], etc. fall under this category.

The SD method is a high-order approach based on the differen-
tial form of the conservative equations. This method combines ele-
ments from Finite-Volume and Finite-Difference techniques and is
particularly attractive because it is conservative, has a simple for-
mulation and straightforward implementation. The absence of vol-
ume or surface integrals also makes this method efficient. The
origins of the SD method can be traced back to 1996, when Kopriva
and Kolias [11] and Kopriva [12] introduced their formulation for
the solution of the 2D compressible Euler equations on unstruc-
tured quadrilateral meshes, which they called the ‘Conservative
Staggered-Grid Chebyshev Multi-Domain method’. Liu et al. [8]
developed a general formulation of this approach on simplex cells
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and applied it to wave equations on triangular grids. Wang et al. [9]
extended it to 2D Euler equations on triangular grids. It was further
extended to the 2D N-S equations by May and Jameson [13], and
Wang et al. [14]. Sun et al. [15] further developed it for three-
dimensional Navier-Stokes equations on hexahedral unstructured
meshes. Recently, Jameson [16] obtained a theoretical proof that
the SD method is stable for all orders of accuracy in a Sobolev norm
provided that the interior flux points are located at the zeros of the
corresponding Legendre polynomial. This is valid for the 1D formu-
lation and applies to tensor-product based quadrilateral and hexa-
hedral cells. However, the SD scheme is not stable on simplex
elements. In this regard, Balan et al. [17] proposed an alternate for-
mulation of the SD scheme, featuring a flux interpolation technique
using Raviart-Thomas spaces, which exhibits linear stability for
triangular elements.

One of the greatest challenges with using high-order methods is
their inability to handle flow discontinuities. When flows involve
steep gradients such as shock waves or contact surfaces, non-phys-
ical spurious oscillations arise that contaminate the solution in
smooth regions of the flow often causing the simulations to go
unstable. Higher order approximations are less dissipative than
their low-order counterparts, and hence it is typically necessary
to add explicit dissipation in order to obtain a stable solution.
However this has a negative effect on accuracy in the vicinity of
the discontinuity. It may also degrade the resolution of turbulent
scales due to excessive damping. The development of numerical
algorithms that can capture discontinuities and also resolve the
scales of turbulence in compressible turbulent flows remains a
significant challenge.
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A classical approach to shock capturing is the addition of artifi-
cial viscosity (AV), pioneered by von Neumann and Richtmeyer
[18]. The concept of flexible addition of artificial viscosity/dissipa-
tion has been used very successfully by Jameson et al. [19-22],
thus producing non-oscillatory and sharp resolution of shocks for
structured and unstructured finite volume calculations. Cook and
Cabot proposed such a method for high-order centered differenc-
ing schemes, wherein a spectral-like high-wavenumber biased
artificial viscosity and diffusivity were dynamically added [1,2].
This was followed up with work by Fiorina and Lele [23], on
high-order compact difference schemes, wherein artificial diffusiv-
ity was added in addition to artificial viscosity. Kawai and Lele [3]
extended the method to non-uniform and curvilinear meshes. This
method involves the dynamic addition of grid-dependent localized
transport coefficients such as artificial bulk viscosity, shear viscos-
ity and artificial conductivity where needed. This facilitates the
capturing of discontinuities by smearing the discontinuity over a
numerically resolvable scale. The application of this form of artifi-
cial viscosity (hyperviscosity) has been limited to structured grid
computations.

Other forms of artificial viscosity have been applied to high-or-
der unstructured grid calculations. Persson and Peraire [24] intro-
duced a p-dependent artificial viscosity and demonstrated that
higher-order representations and a piecewise-constant artificial
viscosity can be combined to produce sub-cell shock resolution.
Barter and Darmofal [25] proposed shock-capturing using a combi-
nation of higher-order PDE-based artificial viscosity and enthalpy-
preserving dissipation operator. The above methods were pro-
posed for high-order Discontinuous Galerkin (DG) discretizations.
Nguyen and Peraire [26] proposed an adaptive shock-capturing ap-
proach for the hybridizable DG method. Yang and Wang [27] sug-
gested the use of limiters with SD schemes for shock capturing but
reported issues with convergence when using limiters.

The current study focuses on extending the artificial viscosity
approach proposed by Cook and Cabot [1,2], and modified by Ka-
wai and Lele [3] to computations on unstructured quadrilateral
grids using the Spectral Difference scheme. It must be mentioned
that the present manuscript is an extended version of the work
submitted to the 2009 AIAA CFD Conference [28]. This paper will
discuss the salient aspects of implementing artificial viscosity
within the Spectral Difference setup. The applicability and limita-
tions of this approach will be demonstrated with test cases in 1D
and 2D. The current implementation of artificial viscosity can also
be extended to the 3D Spectral Difference scheme.

In Section 2, we look at the formulation of the SD method on
unstructured quadrilateral meshes. Section 3 discusses the details
of the artificial viscosity method used. In Section 4, we look at the
numerical results obtained from the application of the artificial vis-
cosity method to multiple test cases. Section 5 discusses the con-
clusions of our study and the direction of future efforts.

2. Formulation of 2D Spectral Difference scheme on
quadrilateral meshes

The formulation of the equations for the 2D SD scheme on
quadrilateral meshes is similar to the formulation of Sun et al.
[15] for unstructured hexahedral grids.

Consider the unsteady compressible 2D Navier Stokes equations
in conservative form
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where Q is the vector of conserved variables; F and G are the total
flux vectors in the x and y direction respectively. F and G can be split
into inviscid and viscous parts, F = F; + F, and G = G; + G,.

The conservative variables and the inviscid components of the
fluxes are given by,
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where p is the density of the fluid, u and v are the cartesian velocity
components of the flow, p is the pressure, and E is the specific total
energy.
The viscous flux vectors can be written as
0
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where the 7's are components of the shear stress tensor, and x is the
thermal conductivity of the fluid. The shear stress tensor is related
to the velocity gradients as given below.
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where p is the dynamic (shear) viscosity coefficient, and g is the
bulk viscosity coefficient. The latter is related to the viscous
stress caused by a volume change. However, under the Stokes’
hypothesis, the bulk viscosity is related to the dynamic viscosity
as f = —(2/3)u, and the trace of the shear stress tensor vanishes.
To achieve an efficient implementation, all elements in the
physical domain (x,y) are transformed into a standard square ele-
ment, 0 < ¢ <1, 0 <y < 1. The transformation can be written as:

()= 2meen () 5

where K is the number of points used to define the physical ele-
ment, (x;,y;) are the cartesian coordinates at those points, and
M;(¢,n) are the shape functions. The metrics and the Jacobian of
the transformation can be computed for the standard element.
The governing equations in the physical domain are then trans-
ferred into the computational domain, and the transformed equa-
tions take the following form:
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where Q =|J| - Q and
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In the standard element, two sets of points are defined, namely
the solution points and the flux points, illustrated in Fig. 1. In order
to construct a degree (N — 1) polynomial in each coordinate direc-
tion, the solution at N points are required. The solution points in 1D
are chosen to be the Gauss points defined by:
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The flux points were selected to be Legendre-Gauss quadrature
points plus the two end points 0 and 1, as suggested by Huynh
[29]. Choosing P_1(¢) =0 and Po(¢) =1, we can determine the
higher-degree Legendre polynomials as
2n-1 n-1
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The locations of these Legendre-Gauss quadrature points are
the roots of equation Py_1(¢) = 0. They are stable (in contrast to
the Gauss-Lobatto flux points) and produce more accurate solu-
tions for the SD scheme [30].

Using the solutions at N solution points, a degree (N —1)
polynomial can be built using the following Lagrange basis
defined as:
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Similarly, using the fluxes at (N + 1) flux points, a degree N
polynomial can be built for the flux using a similar Lagrange basis

defined as:
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The reconstructed solution for the conserved variables in the
standard element is just the tensor products of the two one-dimen-
sional polynomials,
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form:
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Fig. 1. Position of solution (circles) and flux (squares) points on a standard square
element for 3rd order SD.

The reconstructed fluxes are only element-wise continuous, but
discontinuous across cell interfaces. For the inviscid flux, a Rie-
mann solver is employed to compute a common flux at interfaces
to ensure conservation and stability. In our case, we have used the
Rusanov solver [31] to compute the interface fluxes.

In summary, the algorithm to compute the inviscid flux deriva-
tives consists of the following steps:

1. Given the conservative variables at the solution points, the con-
servative variables are computed at the flux points.

2. The inviscid fluxes at the interior flux points are computed
using the solutions computed at Step 1.

3. The inviscid fluxes at the element interfaces are computed
using the Rusanov solver.

4. The derivative of the fluxes are computed at the solution points
according to (equation)
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The viscous flux is a function of both the conserved variables and
their gradients. Therefore, the solution gradients have to be calcu-
lated at the flux points. In our solver, the average approach described
in Ref. [15] is used to compute the viscous fluxes. The procedure to
compute the viscous fluxes can be described as follows.

1. Reconstruct Q; at the flux points from the Q at the solution
points using Eq. (12).

2. At the element interfaces, find the average of left and right val-
ues of Qs;Qs =1(Qf +Qf). For interior flux points, Q = Q.
Appropriate boundary conditions are applied at flux points on
boundary edges.

3. Evaluate VQ at the solution points from Q; using equation sim-
ilar to Eq. (14), where VQ = { 8; } and Q, = %2¢, + ?fj 1, etc.

4, Reconstruct VQ to the flux points, apply appropriate boundary
conditions for boundary flux points, and average them on the
element interfaces as VQ; = %(VQ} + VQF).

5. Use Qs and VQy in order to compute viscous flux vectors at the
flux points.

It should be mentioned that all explicit time-marching calcula-
tions for steady flows have been done using a Jameson type four-
stage Runge-Kutta scheme (RK4), which is 2nd order accurate in
time. For the unsteady problems, we have used a 4th order accu-
rate, strong-stability-preserving five-stage Runge-Kutta scheme
[32] to advance in time.

3. Artificial viscosity

The current work proposes the use of an artificial viscosity ap-
proach similar to the ‘Local artificial viscosity and diffusivity’ ap-
proach of Kawai and Lele [3]. Their method was a modification of
the original high-wavenumber biased artificial viscosity approach
introduced by Cook and Cabot [1], extended to anisotropic and cur-
vilinear structured grids. The present formulation attempts to ex-
tend this approach to a SD setup on unstructured quadrilateral
meshes.

This approach adds grid-dependent components to the viscosity
coefficients, as proposed by Kawai and Lele,
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where p is the dynamic (shear) viscosity,  is the bulk viscosity, and
K is the thermal conductivity (see Eqs. (3) and (4)). The fand A sub-
scripts denote the fluid and artificial transport coefficients
respectively.

These artificial transport coefficients are defined by:
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where C,, Cg and C, are user-specified constants. ¢ refers to the
computational coordinates and x,, refer to the physical coordinates.
p, ¢s and T are the density, speed of sound and temperature respec-
tively. A, is the physical grid spacing along a grid line in the &, direc-
tion. The magnitude of the strain rate tensor (S), the dilatation
(V -u), and the internal energy (e) are the sensors corresponding
to artificial shear viscosity, bulk viscosity and conductivity respec-
tively. Studies on structured grids suggest that r equals 4 or higher
[33]. For a given wavenumber k and sufficiently high r, the high-
wavenumber bias (k") results in damping of wavenumbers close
to the unresolved wavenumbers. The overbar denotes a filter to
smooth the artificial transport coefficients. In structured grid calcu-
lations, a truncated Gaussian filter is used [1]. The filter is also
meant to eliminate cusps introduced by the absolute value opera-
tor, which in turn ensures that artificial viscosities are positive.

It must be noted that such a formulation results in the addition
of artificial viscosity terms that are O(A™"?) in smooth regions of
the flow and O(A) in the vicinity of the shock. This can in fact be
compared to the blended diffusion used by Jameson et al. [21], in
schemes like JST (Jameson-Schmidt-Turkel) and SLIP (Symmetric
Limited Positive), where the artificial dissipation is 3rd order in
smooth regions of the flow and first order when there is a
discontinuity.

An advantage of such an artificial viscosity scheme is that it
eliminates the need for limiters and switches to turn off the artifi-
cial bulk viscosity in regions of expansion and isentropic compres-
sion. Also, the artificial shear viscosity is automatically zero in
regions of uniform shear. The artificial viscosity/conductivity is cal-
culated at each flux point. This is computationally expensive, but it
ensures smooth variation of artificial transport coefficients. A
smooth representation of artificial viscosity within mesh elements
is advantageous over piecewise-constant artificial viscosity formu-
lations, as element-to-element variations can lead to oscillations in
state gradients due to disparate artificial fluxes across neighboring
elements near the shock location.

The steps involved in the implementation of the artificial vis-
cosity method to the SD solver can be explained as follows. Con-
sider the calculation of artificial shear viscosity.

1. The sensor S (strain rate) is computed at the solution points.

2. It is then extrapolated to the flux points, and averaged (left and
right cells values) at the interface flux points.

3. g—sl is computed at the solution points, then reconstructed to the
flux points, and averaged at the interface flux points.

4. Another differentiation operation, gives gz 5 at the solution
points.

5. The above steps can be repeated required number of times to
obtain ”’5 at the solution points.

6. Slmllarly, the partial derivatives of the other sensors can also be
computed.

7. The artificial transport coefficients are computed at the solution
points using Eq. (17).

8. The coefficients are then filtered and reconstructed to the flux
points.

Since the approach requires the computation of higher order
derivatives, there is an implied limitation on the order of the meth-
od. For instance, when using r = 2, we would like the solution
accuracy to be 3rd order or higher. To explain this, consider the
3rd order computation. Step 1 begins with the velocity values at
4 flux points to compute the strain rate S at the 3 solution points.
This S, which is a degree 2 polynomial, is differentiated twice (with
interface averaging at each step) to get the artificial viscosity. It is
clear that any further differentiation would only add error into the
system. This also implies that for 3rd and 4th order computations,
using r = 4 may be undesirable.

3.1. Filter for unstructured SD setup

The filter plays an important role in artificial viscosity computa-
tions as it ensures smooth variation of artificial transport coeffi-
cients within the domain. For calculations using artificial
viscosity on structured grids, a truncated Gaussian filter is used.
A 7-point or 9-point stencil is generally used for this purpose [1].
For calculations in 2D, the Gaussian filter is applied along each
grid-line separately. However, for unstructured grids it is not rea-
sonable to implement the Gaussian filter in its existing form, as
obtaining a stencil for each solution/flux point can be tedious.
The stencil would lie across cells, and the non-uniform spacing
would have to be taken into account, thus making it cumbersome
to implement. This motivated the development of a filter that
would be suited to the current SD setup.

In the current study we use an element-wise restriction-prolon-
gation filter (we will refer to it as the R-P filter). The concept is sim-
ilar to the one used by Blackburn and Schmidt [34] for spectral
element filtering. It involves the projection of the quantity in con-
cern to a lower-order basis (restriction), smoothing at this level,
and then extrapolation back to original basis (prolongation). The
basic steps in the implementation of the R-P filter can be described
in 1D as follows,

1. Consider a 4th order SD element. The artificial viscosity terms
have been computed at the 4 solution points (Fig. 2(a)).

2. The function (represented by a cubic polynomial through the 4
solution points) is restricted to 2 solution points (corresponding
to 2nd order SD) (Fig. 2(b)). The polynomial fit through the
interpolated function is reduced to linear. The function is now
extrapolated to the 3 flux points corresponding to second order
solution.

3. The function values are averaged at the interface for all element
interfaces (Fig. 2(c)). This is equivalent to smoothing of the
function at the lowest level. A quadratic polynomial is fitted
through this smoothed function through the 3 flux points.

4. It is then extrapolated to the flux points at the highest level (4th
order) (Fig. 2(d)).

To illustrate the effect of the R-P filter, we use Fig. 3(a) which
corresponds to the initial condition of the Sod shock tube case with
a density discontinuity at x = 0.5. The artificial conductivity is non-
zero in the vicinity of x = 0.5. The artificial coefficients were com-
puted using r = 2. The figure shows that prior to filtering the artifi-
cial conductivity field is noisy and may have oscillatory behavior.
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Fig. 2. Steps involved in the implementation of the filter for 4th order SD. Circles represent the solution points and squares the flux points.
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Fig. 3. (a) Effect of filtering on the smoothness of artificial viscosity/conductivity
coefficients (at T = 0). (b) Effect of filtering on density profile for shock (at T = 0.15).

The filtered coefficient is smoother and results in a better solution.
Fig. 3(b) shows the density jump for the advancing shock front at
time 7 = 0.15. It is clear that non-smoothed artificial viscosity pro-
file is not as effective in eliminating the non-spurious oscillations.
Also, in 1D, this filter performs comparably (in the qualitative
sense) to the Gaussian filter applied on flux points. It must be men-
tioned that the effect of the filter is more significant for higher val-
ues of r. Since the solution representation in multiple dimensions is
just a tensor product of 1D polynomials, the extension of this filter
to 2D and 3D is straight-forward.

4. Results

It must be mentioned that the SD scheme has been imple-
mented in 1D and 2D solvers which have been tested, validated
and found to exhibit formal order accuracy [35,36]. In this section,
the results obtained from the application of SD scheme with artifi-
cial viscosity to problems with shocks, are discussed. It must be
mentioned that all the test-cases correspond to inviscid flows
and involve the solution of the Euler equations along with viscous
terms corresponding to the artificial viscosity terms. Firstly, three
1D cases are demonstrated, namely the Sod shock-tube case, the
Shu-Osher shock-entropy wave interaction case and the stationary
shock case. Then the application of artificial viscosity for shock-
capturing in 2D is demonstrated with the reflecting oblique shock
wave test case and the supersonic flow past bump test case. In the
artificial viscosity formulation, the value of parameter r used was 2
for all the test cases presented here. As explained previously, using
r = 4 for 3rd and 4th order computations only results in additional
computational effort and possibly higher error from high-order
derivative calculations. To obtain the user-defined coefficients for
the 1D problems, we started with a high starting value (¢(1)) to
obtain a starting solution. The value was then reduced until we
got to the smallest value that enabled a stable and sharp capture
of the discontinuity with small overshoot (< 1%).

4.1. Sod Shock-tube problem

The first 1D test case is the shock-tube problem introduced by
Sod [37]. The initial left and right-side conditions are
p, =10, u; =00 and p=10 for x<0.5, and
p, =0.125, u, =0.0 and p, =0.1 for x > 0.5, where p, u and p
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correspond to the flow density, velocity and pressure respectively.
Simulations are performed on a uniformly spaced grid in the region
0 < x < 1. Artificial bulk viscosity and conductivity are used. The
coefficients used were C; = 0.06 and C, = 0.01, along with r =2
(in Eq. (17)), corresponding to second order derivatives of the sen-
sor quantities. C,, was set to zero. Computations were also con-
ducted using r = 4, but the results obtained were very similar to
those obtained for r = 2. For r =4, C; =0.001 and C, = 0.0001
were used.

Figs. 4(a), (b) and 5(a) shows the comparison between density,
velocity and pressure for the exact solution and 4th order SD com-
putation with 100 cells at time T = 0.15. The shock and the contact
discontinuity are captured well without significant spurious oscil-
lations, and show reasonable agreement with the exact solution.
Fig. 5(b) shows the variation of density profile with grid-refine-
ment. It is observed that as the grid is refined, the solution con-
verges closer to the exact solution. It should also be noted that
for all grid spacings, the shock is spread over two cells and the con-
tact discontinuity is spread over 3 cells. Fig. 6(a) shows the artifi-
cial bulk viscosity coefficient. It is seen to be maximum in the
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vicinity of the shock. Fig. 6(b) shows the artificial conductivity.
There are two peaks corresponding to the shock and the contact
discontinuity. In the Sod problem, artificial conductivity plays an
important role because the artificial viscosity sensor does not sense
the contact discontinuity.

4.2. Shu-Osher problem

The second 1D test case is the shock-entropy wave interaction
introduced by Shu and Osher [38]. Because the entropy waves
are sensitive to the numerical dissipation, excessive numerical dis-
sipation damps the entropy waves. Initial left- and right-side con-
ditions are given by: p,=3.857143, u;=2.629369 and
p;=10.33333 for x< -4, and p,=1+0.2 % sin(5x), u =0.0
and p, = 1.0 for x > —4. Simulations are performed on a uniformly
spaced grid in the region —5 < x < 5.1 = 2 was used with the user-
defined coefficients same as those used in the Sod case.

Fig. 7(a) shows the comparison between the reference solution
and 4th order SD simulations with 100, 200 and 400 cells. The ref-
erence solution is obtained using 5th order WENO on 2000 grid
points. The density profile obtained using 400 cells shows excellent
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Fig. 5. Sod shock tube case, (c) pressure vs. x; (d) effect of grid-refinement on
density (Nx = number of cells).
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Fig. 6. Sod shock tube case (a) Artificial bulk viscosity; (b) artificial conductivity at
7=0.15.

agreement with the reference solution. Fig. 7(b) shows a close up of
the density plot in the region of the entropy waves. It is clear that
the solution with 200 cells also qualitatively shows reasonable
agreement. The velocity and pressure profiles (Fig. 8(a) and (b))
highlight the favorable effect of mesh refinement on solution qual-
ity in the close vicinity of the sharp discontinuity (near x = 2.4).

4.3. Stationary shock in 1D test case

This 1D test case corresponds to stationary normal shock at
Mach number 3.0. The initial conditions for the flow are prescribed
using the Rankine-Hugoniot relations for a stationary shock. The
computational domain extends between 0 < x < 1 and the shock
is located at x =0.5. For this case, we used r=2 with C; = 0.01.
3rd order computations were done with 50, 100, 200 and 400 cells.
The stationary shock is captured well without significant oscilla-
tions or overshoot (see Fig. 9(a)). As the mesh is refined, the shock
profile becomes sharper and the result converges to the exact solu-
tion. We also see that the shock profiles have a very small over-
shoot. Fig. 9(b) plots the percentage overshoot (normalized by
the shock pressure jump) versus the grid spacing. It is clear that
as the grid spacing decreases, the percentage overshoot decreases.
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Fig. 7. Shu-Osher shock turbulence interaction. Density is presented at T = 1.8.

4.4. Two-dimensional oblique shock-reflection

The first 2D shock test case is the oblique shock reflection on an
inviscid wall. The free-stream Mach number is 3 and the oblique
shock angle is 33°. The computational domain extends from
x=-15tox=15and y =0 toy = 1. Supersonic inlet and outlet
boundary conditions are used. The exact shock jump conditions
corresponding to oblique shock at M =3, o =33° at x = —1, are
imposed on the upper boundary. The lower boundary is an inviscid
wall.3rd order SD simulations were run. Fig. 10 shows the pressure
contours obtained using a 60 x 20 mesh (1200 cells). The next fig-
ure (Fig. 11) gives a comparison of pressure contours obtained
using the coarse mesh and a finer 120 x 40 mesh (4800 cells). As
expected the finer mesh gives a sharper shock profile, and smooth-
er pressure contours. Pressure profiles along the y = 0.18 line for
both meshes are shown in Fig. 12. The pressure profiles compare
well with the pressure profile obtained using artificial viscosity
with 6th order Compact Difference on a structured 301 x 101 mesh
[3].

The above computations were computed using r=2 and
Cy = 0.01. Also, the artificial shear viscosity and artificial conduc-
tivity are set to zero. This is because there are no large shear
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Fig. 8. Shu-Osher shock turbulence interaction. Plot of (a) velocity, (b) pressure, at
T=138.

gradients, and no contact discontinuities, and hence artificial bulk
viscosity is sufficient to stabilize the calculations.

4.5. Inviscid supersonic flow past bump

This test case consists of inviscid supersonic flow in a channel
with a 4% thick circular bump on the bottom. The length of the
channel is 3 units and its height 1 unit. The inlet Mach number
is 1.4. This test case has been used by Ripley et al. [39] in compu-
tations using adaptive unstructured mesh refinement. 3rd and 4th
order SD computations were conducted on two meshes. The coarse
computational mesh has 1200 elements, and 20 nodes to resolve
the bump, as depicted in Fig. 13. The fine mesh has 4800 cells,
and has twice the number of nodes in the x and y directions. The
surface of the bump is represented as a quadratic and cubic bound-
ary for 3rd and 4th order calculations respectively. The above com-
putations were computed using r=2 and C; = 0.008.

The pressure contours obtained using the 3rd order SD scheme
with artificial viscosity on the coarse mesh is shown in Fig. 14(a),
and compares well with those obtained using adaptive unstruc-
tured mesh refinement [39]. The pressure contours obtained for
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Fig. 9. Stationary shock test case. (a) Pressure profiles for shock discontinuity. (b)
Variation of percentage overshoot with grid spacing.
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Fig. 10. Computational mesh and non-dimensional pressure contours for reflecting
oblique shock test case. 20 equally spaced contours between 1 and 7.2.

the fine mesh are shown in Fig. 14(b). It is observed that on the fi-
ner mesh, the shock profiles are sharper, and smoother contours
are obtained. Fig. 17 shows the drop in global residual, indicating
a stable, convergent solution for both 3rd and 4th order cases. It
must be mentioned that in the absence of artificial viscosity, the
solution develops spurious oscillations and the simulation be-
comes unstable.
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Fig. 11. Comparison of pressure contours for (a) 60 x 20 mesh, (b) 120 x 40 mesh.
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Fig. 12. Non-dimensional pressure along y=0.18. Comparison with 6th order
Compact Difference with artificial viscosity [3].

0.5

Fig. 13. Computational grid (60 x 20 cells) for supersonic flow past bump
(thickness=4%).

Fig. 15 shows the pressure along the horizontal line correspond-
ing to y = 0.4 units. It is observed that the shocks are resolved
sharply, without any significant spurious oscillations. Also note
that the first two shocks are captured within two cells for both
the coarse and fine mesh. The last pressure jump lies close to the
joining point of two oblique shocks and hence is not resolved on
the coarse mesh. However, on the finer mesh, two distinct shock
pressure jumps are obtained. Fig. 16 gives a plot of the sensor,
which is the dilatation in this case. The dilatation is highly negative
in the region of shocks. Fig. 14(c) shows the variation of artificial

@

1
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Fig. 14. 3rd order SD computation with artificial viscosity. Non-dimensional
pressure contours for (a) 60 x 20 mesh (b) 120 x 40 mesh. 20 equally spaced
contours from 0.6 to 2.00 (c) Artificial bulk viscosity for 120 x 40 mesh.
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3rd order SD (120X40 mesh)
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0.8 IR

Fig. 15. Non-dimensional pressure along y = 0.4 line using 3rd order SD.

bulk viscosity. We see that artificial viscosity is added only in re-
gions with sharp gradients of dilatation, corresponding to shocks.

Fig. 18(a) shows the pressure contours obtained using 4th order
SD. It is observed that the shock profiles are slightly sharper than in
the case of the 3rd order computation. Also, 4th order on finer
mesh gives sharper shock resolution and more accurate contours
in comparison to the coarse mesh (see Fig. 18(b)).
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Fig. 16. Plot of the dilatation sensor for 3rd order SD computation on 120 x 40
mesh.
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Fig. 17. Convergence plot for supersonic bump flow case using 3rd and 4th order
SD with artificial viscosity.

(@ f

0.5

N —

Fig. 18. 4th order SD computation with artificial viscosity. Non-dimensional
pressure contours for (a) 60 x 20 mesh (b) 120 x 40 mesh. 20 equally spaced
contours from 0.6 to 2.

5. Conclusions

A high wave-number biased artificial viscosity scheme has been
implemented in order to enable high-order computation of flows

with discontinuities on unstructured grids. The application of arti-
ficial viscosity with the Spectral Difference method for the compu-
tation of flows with shocks is demonstrated with test cases in 1D
and 2D. Promising results have been obtained for these cases, with
the method being able to produce a stable solution with sharp res-
olution of shocks, and no significant spurious oscillations. An ele-
ment-based restriction-prolongation filter has been developed.
Further efforts will be directed towards the testing and validation
of the proposed method, using a variety of shock-related problems
in 2D. Efforts will also be directed towards the study of the effect of
using irregular meshes, and the effect of adding artificial viscosity
on the global accuracy of the SD scheme. The present artificial vis-
cosity formulation can be extended to the 3D SD Scheme on hexa-
hedral mesh elements.
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