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An advanced NURBS fitting procedure for

post-processing of grid-based shape optimizations
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An advanced NURBS fitting procedure for shape optimizers in 2D as well as 3D is
presented. This approach utilizes a two step fitting process to approximate given sets of
structured and unstructured grid points with NURBS curves or surfaces. This back end
can be used for instance as post processor for Jameson’s well known shape optimization
codes SYN83 and SYN107. Hence, the proposed procedure allows an easy transfer of the
optimized, grid-based shapes into, for CAD users easy to implement NURBS curves or
surfaces.

I. Introduction

Nowadays shape optimization of grid-based aerodynamic simulations has been performed for several years
in academia as well as industry. Most of these approaches use a computational grid to alter the wing’s

shape, e.g Jameson’s SYN83 and SYN107 (see Ref. 1). Hence, the optimized grid point positions are usually
the final output. In most industrial applications, however CAD software is used to represent shapes with
high-order surface descriptions, e.g. NURBS surfaces. Thus, a demand for an accurate and easy to use post
processor which translates a given set of grid points into a NURBS surface representation has arisen.

Therefore, within this paper we present a new and advanced two-stage NURBS surface fitting scheme to
approximate given surface points with high accuracy and minimal deviations. The approach is based on the
work of Ref. 2–6 and proposes an improved fitting scheme which includes the optimization of the NURBS
weight values, which even allows exact circular shape representations. In addition to an approach in 2D and
for structured grids in 3D, a new and advanced fitting scheme for unstructured grids in 3D is presented.

II. About NURBS

In this section we like to present a brief overview of nonuniform rational B-spline (NURBS) curves and
surfaces which are extensively used in the CAD world. Therefore, a short introduction about splines and the
derivation of NURBS surfaces in R

3 with a regular parameterization is given. However, later in this section
we need to distinguish between the derivation of NURBS curves and NURBS surfaces for structured as well
as unstructured grids.

A. Background

According to Piegl in Ref. 7, NURBS curves are vector-valued piecewise rational polynomial functions (see
Ref. 8–10 for further reference). NURBS are used within this work to calculate an approximation of given
surface grid points which represent the optimized shape. This is a powerful technique to change the grid
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point position and therefore the shape of the objects by adjusting the control points. In contrast to the
amount of grid points the amount of control points is rather small. Starting from splines the definition of
NURBS surfaces is shown step by step.

Later a linear regression problem is solved in order to fit a NURBS surface to the provided surface grid
points and gives us a first set of control points.

B. B-spline-surfaces

B-splines are constructed using a particular class of polynomial functions. These functions are called B-spline
basis functions.10

The finite polynomial B-spline surface S : [0, 1] × [0, 1] → R
3 is a product of two piecewise defined

polynomial functions of order p, q as well as n̂,m̂ denote the number of supporting points in each direction.
Therefore, we define two knot vectors ξ = (ξ1, ξ2, . . . , ξn̂+p) and ν = (ν1, ν2, . . . , νm̂+q) by

ξi =

⎧⎪⎪⎨
⎪⎪⎩

0 if i < p
i−p
n̂−p if p ≤ i ≤ n̂

1 if i > n̂

for i = 1, . . . , n̂ + p (1)

and ν analogously.
According to Ref. 11 the above definition generates a uniform knot vector, which leads to a uniform

B-spline surface. Furthermore, the end knots are repeated p (resp. q) times. As a consequence the sur-
face’s corner points coincide with the corresponding control points. This allows a direct manipulation. A
nonuniform knot vector would lead to a nonuniform B-spline surface. Section V will show details about the
nonuniform knot vector computation used in our context.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 1. B-spline basis functions Np=3
i∈{1,...,6} using the nonuniform knot vector ξ = (0, 0, 0, 0.2, 0.6, 0.8, 1, 1, 1).

The B-Spline basis functions Np, Nq : [0, 1] → R, with Np
i := Np

|[ξi,ξi+1]
(Nq

j using ν analogously) are

computed piece wisely and recursively with the Cox-deBoor recurrence12 (see also Fig. 1). Note, that we
follow the convention of Farin et al. (Ref. 13): 0/0 := 0.

N1
i (u) =

⎧⎨
⎩ 1 if ξi ≤ u < ξi+1

0 otherwise,

Np
i (u) =

u − ξi

ξi+p − ξi
Np−1

i (u) +
ξi+p+1 − u

ξi+p+1 − ξi+1
Np−1

i+1 (u), (Nq
j (v) analogously). (2)

Therefore, following Piegl and Tiller in Ref. 14,

S(u, v) =
n̂∑

i=1

m̂∑
j=1

Np
i (u)Nq

j (v)Pi,j , u, v ∈ [0, 1], (3)

where Pi,j ∈ R
3 denotes the (i, j)th entry of the control points P ∈ R

n̂ × R
m̂ × R

3.
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C. Nonuniform rational B-spline surfaces (NURBS surfaces)

A NURBS surface is a B-spline surface with a nonuniform knot vector10 and is defined as follows:

S(u, v) =

n̂∑
i=1

m̂∑
j=1

wi,jPi,jN
p
i (u)Nq

j (v)

n̂∑
i=1

m̂∑
j=1

wi,jN
p
i (u)Nq

j (v)
, u, v ∈ [0, 1] (4)

with weights w = (wi,j)i=1,...,n̂;j=1,...,m̂. The computation of the nonuniform knot vectors ξ, ν will be
discussed in Section V.

III. Remarks about discrete NURBS computation

After defining general NURBS surfaces, this section presents the derivation of discrete NURBS descrip-
tions and their notation in R

2 and R
3 which will be used throughout this paper. For the proposed reverse

engineering process (i.e. the computation of the control point locations based on given grid points) the
parameterization and the knot vector generation is essential. Thus, in Sections IV and V we present detailed
algorithms for the parameterization and knot vector computation of three grid types (2-d, 3-d quadrilateral
structured and 3-d triangular unstructured).

However, we will first present the notation of discrete NURBS curves and surfaces. Please note, that the
literature usually uses a matrix representation of the grid points and control points in 3-d as you can see in
Eq. (3) and Eq. (4). For our purpose it is more useful, especially for unstructured grids, to use a list of grid
points and control points as we naturally use in 2-d.

A. Notation in R
2

The curve points
X = (X1, . . . , Xn), where Xi ∈ R

2, i ∈ {1, . . . , n} (5)

are represented by a set of control points

P = (P1, . . . , Pn̂), where Pj ∈ R
2, j ∈ {1, . . . , n̂}, (6)

with their respective weights w = (wj)j=1,...,n̂ and the B-Spline basis functions of order p

Np = (Np
i,j)i=1,...,n;j=1,...,n̂. (7)

In addition we need a suitable parameterization

u = (u1, . . . , un), where ui ∈ [0, 1], i ∈ {1, . . . , n} (8)

as well as a knot vector ξ = (ξ1, . . . , ξn̂+p) to compute Np using Eq. (2). The automatic generation of u
and ξ based on a given X is presented in Sections IV and V. Applying the above leads to the to following
NURBS equation in 2-d

Xi =

∑n̂
j=1 PjwjN

p
i,j∑n̂

j=1 wjN
p
i,j

, i ∈ {1, . . . , n}. (9)

B. Notation in R
3

In 3-d we distinguish between structured and unstructured grids, but we can use the same NURBS equation
for computation. However, please note that the parameterization and knot vector generation has to be
handled differently. This will be presented in Sections IV and V. Let

X = (X1, . . . , Xn), where Xi ∈ R
3, i ∈ {1, . . . , n} (10)

be a list of grid points, which is represented by a list of control points of length k̂ = n̂m̂:

P = (P1, . . . , Pn̂m̂), where Pj ∈ R
3, j ∈ {1, . . . , k̂}. (11)
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n̂ denotes the number of control points in the first direction and m̂ in the second direction. Furthermore,
we define w = (wj)j=1,...,k̂ to be their respective weights and the B-Spline basis functions in each direction
of order p and q

Np = (Np
i,j)i=1,...,n;j=1,...,n̂ (12)

Nq = (Nq
i,k)i=1,...,n;k=1,...,m̂. (13)

To be able to solve the matrix based Eq. (4) we combine Np and Nq to one term

Ni,(j−1)m̂+k = Np
i,jN

q
i,k, ∀i, j ∈ {1, . . . , n̂}, k ∈ {1, . . . , m̂}. (14)

Furthermore, let

u = (u1, . . . , un), where ui ∈ [0, 1], i ∈ {1, . . . , n} and (15)
v = (v1, . . . , vn), where vi ∈ [0, 1], i ∈ {1, . . . , n} (16)

be a suitable parameterization and let ξ = (ξ1, . . . , ξn̂+p), ν = (ν1, . . . , νm̂+q) be the knot vectors in both
directions. This allows the computation of the basis functions Np and Nq according to equation (2). Applying
the above yields to the following equation

Xi =

∑k̂
j=1 PjwjNi,j∑k̂

j=1 wjNi,j

, i ∈ {1, . . . , n}. (17)

IV. Parameterization of given grid points

This section presents parameterization approaches based on the grid type. The basis function computa-
tion using the Cox-deBoor12 recurrence relies on a good parameterization technique as these parameters are
the mapping to the real coordinates.

A. 2-d case

The 2-d case is very straight forward, thus we propose the following parameterization procedure based on
Ref. 2, 4, 5. Let X0 = (X0

1 , . . . , X0
n), X0

i ∈ R
3, i ∈ {1, . . . , n} be a set of given grid points, we compute

parameter

u1 = 0, ui =

i−1∑
j=1

(‖X0
j+1 − X0

j ‖
)e

n−1∑
j=1

(‖X0
j+1 − X0

j ‖
)e

, i = 2, . . . , n (18)

where e ∈ [0, 1] introduced by Ref. 5 denotes the parameterization type. e = 0 leads to an uniform
distribution of u, whereas e = 1 leads to a chord length distribution of the parameterized curve points X0.
Furthermore, e = 0.5 leads to a centripetal distribution. We suggest the chord length distribution e = 1 as
it serves best our needs to map the real curve coordinates from R

2 to [0, 1] (see also Fig. 2).
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Figure 2. NACA 4415 wing in 2-d and its parameterization with different parameterization types
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B. 3-d case with structured grids

For parameterizing structured quadrilateral surface meshes we propose an extended method based on Eq.
(18) and the work of Ma and Kruth in Ref. 4. Let X0 = (X0

1 , . . . , X0
n), X0

i ∈ R
3, i ∈ {1, . . . , n} be again a

set of given grid points and let ñ, m̃ be the number of grid points in the first and second surface direction,
where n = ñm̃. Thus we compute parameters

u(i−1)ñ+1 = 0, u(i−1)ñ+j =

j−1∑
k=1

(
‖X0

(i−1)ñ+k+1 − X0
(i−1)ñ+k‖

)e

ñ−1∑
k=1

(
‖X0

(i−1)ñ+k+1 − X0
(i−1)ñ+k‖

)e
, i ∈ {1, . . . , m̃}, j ∈ {2, . . . , ñ} (19)

and

vj = 0, viñ+j =

i∑
k=1

(
‖X0

kñ+j − X0
(k−1)ñ+j‖

)e

m̃−1∑
k=1

(
‖X0

kñ+j − X0
(k−1)ñ+j‖

)e
, i ∈ {1, . . . , m̃ − 1}, j ∈ {1, . . . , ñ}. (20)

The parameter e ∈ [0, 1] was introduced in the previous section.

Figure 3. NACA 4415 wing represented via a 3-d structured quadrilateral surface mesh (left) and its param-
eterization (right)

C. 3-d case with unstructured grids

The parameterization of an unstructured grid which can also be seen as an arbitrary point cloud with
four known corner points is very challenging. We like to propose a new and advanced parameterization
technique for 3-d wing structures represented with a triangular surface mesh. However, this algorithm is
easily adaptable to surface meshes with any kinds of elements.

1. Definitions

The following data about the grid must be available; the four corner points

C = (C1, . . . , C4), Ci ∈ R
3, i ∈ {1, . . . , 4}, (21)

the coordinates of each grid node

X = (X1, . . . , Xn), Xi ∈ R
3, i ∈ {1, . . . , n}, (22)
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Figure 4. NACA 4415 wing represented via a 3-d unstructured triangular surface mesh

and a list of elements
E = (E1, . . . , Em), Ei = (ni

1, n
i
2, n

i
3), i ∈ {1, . . . , m}, (23)

where ni
j , j ∈ {1, . . . , 3} denotes the three node numbers which define the i-th element Ei. Please note

that j = 3 due to our triangular example, however this whole algorithm is adaptable to any element. The
proposed parameterization is possible with just these few information about the grid. Thus, there are no
restrictions towards the spatial position, wing shape, angle of attack, sweep angle or twist angle.

2. Derivation of a mean plane

Due to arbitrary twist angles the four corner points are not necessarily onto one plane. Hence, we need to
define a mean plane to be able to project all grid point onto a single plane. Thus, we define this plane with
two vectors D1, D2 spanned by the diagonal corner points and model point S�, which is defined to be the
center of gravity (Eq. (31)) of the rectangle spanned by corner points C. Hence,

D =

⎛
⎜⎝D1

D2

D3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

C3 − C1

‖C3 − C1‖
C3 − C1

‖C4 − C2‖
D2 × D1

⎞
⎟⎟⎟⎟⎠ , (24)

where D3 is the normal vector of the mean plane. We chose this definition for the mean plane, as it averages
the projection error of each point best.

In order to derive S� we divide the rectangle into two triangles and compute their areas A�1 , A�2 by
applying the Heron’s formula15 and their respective center of gravities S�1 , S�2 . Let

h1 =
1
2

(‖C3 − C1‖ + ‖C2 − C1‖ + ‖C4 − C1‖) , (25)

A�1 =
√

h1(h1 − ‖C3 − C1‖)(h1 − ‖C2 − C1‖)(h1 − ‖C4 − C1‖) (26)

and

h2 =
1
2

(‖C3 − C1‖ + ‖C4 − C1‖ + ‖C4 − C3‖) , (27)

A�2 =
√

h2(h2 − ‖C3 − C1‖)(h2 − ‖C4 − C1‖)(h2 − ‖C4 − C3‖) (28)

and

S�1 =
1
3

(C1 + C2 + C3) , (29)

S�2 =
1
3

(C1 + C3 + C4) . (30)
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This leads to the center of gravity of the rectangle

S� =
S�1 A�1 + S�2 A�2

A�1 A�2
(31)

which completes the definition of the mean plane (see also Fig. 6).

3. Split wing in lower and upper shell

Figure 5. Upper and lower shell of the NACA 4415 wing, its normal vectors E⊥ and corner points C

Next we split the wing into an upper and lower shell to make computations easier by treating them
separately and patch them together again at the end of the parameterization algorithm. In order to find out
which element is part of the upper or lower shell we compute the normal vector

E⊥i = (X0
ni

2
− X0

ni
1
) × (X0

ni
3
− X0

ni
1
), i ∈ {1, . . . , m} (32)

of each element as well as its angle towards the normal vector D3 of the mean plane with

αi = arccos
(

E⊥i DT
3

‖E⊥i ‖‖D3‖
)

, i ∈ {1, . . . , m}. (33)

Now lets define α ≥ π/2 as upper half and α < π/2 as lower half. (see Fig. 5)

4. Projection onto mean plane

After defining the mean plane and splitting the wing structure in an upper and lower shell, we project the
grid points and corner points onto the mean plane. This is the first step of a series of transformations to
map the grid of the wing structure into a [0, 1] × [0, 1] space. Therefore, the projected corner points are
computed by

C̄i = Ci − D3(AiD
T
3 − SDT

3 ), i ∈ {1, . . . , 4}. (34)

The projected grid points are derived via

X̄0
i = X0

i − D3(XiD
T
3 − SDT

3 ), i ∈ {1, . . . , n}. (35)

Figure 6 illustrates C and C̄, as well as D.
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Figure 6. Mean plane of the 3-d NACA 4415 wing, the original corner points, the mean plane vectors and the
projected corner points

5. Rotate and translate projection to the origin and the x-z-plane

After projecting all grid points onto the mean plane we need to eliminate one spatial direction of the plane.
Thus, we use simple geometric translation and rotation matrices to move all grid points and corner points
of the mean plane to the origin and into the x-z-plane. This process is illustrated in Fig. 7. Please note,
to simplify matters and to keep illustrations clear, we just show the grid of the upper shell throughout the
next sections. Let

X̂0 = (X̂0
1 , . . . , X̂0

n), X̂0
i =

⎛
⎜⎝ x̂0

i

ŷ0
i = 0
ẑ0

i

⎞
⎟⎠ , i ∈ {1, . . . , n} (36)

and

Ĉ = (Ĉ1, . . . , Ĉ4), Ĉi =

⎛
⎜⎝ x̂c

i

ŷc
i = 0
ẑc

i

⎞
⎟⎠ , i ∈ {1, . . . , 4}, where Ĉ1 =

⎛
⎜⎝0

0
0

⎞
⎟⎠ (37)

be the rotated and translated grid and corner points.

Figure 7. Corner points of the mean plane (left, circles), translation of point C̄1 to origin (middle, squares),
rotation into the x-z-plane (right,triangles)

6. Mapping into u-v-space

The translated and rotated corner points Ĉ are used as boundary conditions for a linear mapping from the
x-z-plane into the u-v-space. This is done by solving

M

(
ûi

v̂i

)
=

(
x̂0

i

ẑ0
i

)
, i ∈ {1, . . . , n}, (38)

8 of 19

American Institute of Aeronautics and Astronautics



where

M =

(
x̂c

2 x̂c
4

ẑc
2 ẑc

4

)
. (39)

This will map corner point Ĉ2 → [1, 0] and Ĉ4 → [0, 1] into the u-v-space. Hence,(
ûi

v̂i

)
= M−1

(
x̂0

i

ẑ0
i

)
, i ∈ {1, . . . , n}, (40)

which can be seen in Fig. 8. Furthermore, we need to map the position of corner point Ĉ3 into the u-v-space
with (

Cu
3

Cv
3

)
= M−1

(
x̂c

3

ẑc
3

)
. (41)

Figure 8. Map from the x-z-space to the u-v-space

7. Modification of Batina’s spring analogy

Up to this point we achieved that three out of four corner points are at their correct position in the u-v-
space, but our final goal is to fit the boundaries of each wing shell exactly into a [0, 1] × [0, 1] space. Thus,
we propose a two-step procedure based on a modified spring analogy algorithm which was first developed
by Batina,16.17 The first step is the movement of corner point (Cu

3 , Cv
3 ) → [1, 1] using the spring analogy.

The second step is the movement of all boundary nodes to their respective boundaries of [0, 1] × [0, 1]. The
following spring analogy algorithm can only be applied to one shell at a time. Therefore, to keep things
simple, we define û∗, v̂∗ to be the parameters û, v̂ of one shell and n∗ the number of nodes on one shell.

Before we present those two steps, we like to introduce our modified spring analogy in general. Let

Ñall = (Ñ1, . . . , Ñn∗), where Ñi ∈ N, i ∈ {1, . . . , n∗} (42)

be a set of all global node numbers corresponding to the coordinates in X. In addition we define

Ñ in = (Ñ in
1 , . . . , Ñ in

f ), Ñ in
i ∈ {Ñall}, i ∈ {1, . . . , f} (43)

to be a set of f interior node numbers, whit {Ñ in} ⊆ {Nall} and

Ñex = (Ñex
1 , . . . , Ñex

n∗−f ), Ñex
i ∈ {Ñall}, i ∈ {1, . . . , n∗ − f} (44)

to be set of n∗ − f exterior node numbers, with ({Ñex} ⊆ {Nall}) ∧ ({Ñex} ∩ {Ñ in} = {∅}).
We distinguish between interior and exterior nodes, as we propose to know the displacement of exterior

nodes and we compute, using the spring analogy, the displacements of the interior nodes.
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By using the information of our element matrix E as well as Ñall, Ñ in, Ñex we create the following
matrices

Lin
i = (Lin

i,1, . . . , L
in
i,gi

), Lin
i,j ∈ {Ñ in}, j ∈ {1, . . . , gi}, i ∈ {1, . . . , f}, (45)

which denote a list of gi neighboring (connected via an edge) interior node numbers of the respective i-th
interior node. Furthermore we define

Lex
i = (Lex

i,1, . . . , L
ex
i,hi

), Lex
i,j ∈ {Ñex}, j ∈ {1, . . . , hi}, i ∈ {1, . . . , f}, (46)

to be a list of hi neighboring (connected via an edge) exterior node numbers of the respective i-th interior
node.

Now we compute the spring stiffness of all edges which have at least one interior node by assuming that
the stiffness is inversely proportional to the edge length. Note that it is very important to initialize the edge
stiffness matrix with zeros by applying

ki,j = 0, i, j ∈ {1, . . . , n∗}. (47)

This is physically correct as we assume that the stiffness of any node pair which is not connected via an edge
is zero. However, the edge stiffness of existing edges is computed via

kÑin
i ,Lin

i,j
=

1√(
û∗

Lin
i,j

− u∗
Nin

i

)2

+
(
v̂∗

Lin
i,j

− v̂∗
Nin

i

)2
, i ∈ {1, . . . , f}, j ∈ {1, . . . , gi} (48)

kÑin
i ,Lex

i,j
=

1√(
û∗Lex

i,j
− u∗

Nin
i

)2

+
(
v̂∗Lex

i,j
− v̂∗

Nin
i

)2
, i ∈ {1, . . . , f}, j ∈ {1, . . . , hi}. (49)

Furthermore we define a global displacement vector δ = (δi)i=1,...,n∗ , δi ∈ R
2 and store the displacements

of the exterior nodes with
δÑex

i
= δex

i , i ∈ {1, . . . , n∗ − f}. (50)

Finally we can compute the interior node displacements with

Kδin = F, (51)

where K = (Ki,j)i,j , i, j ∈ {1, . . . , f} denotes the stiffness matrix and F = (Fi)i=1,...,f the force vector. The
stiffness matrix is defined as

Ki,j|i=j
=

f∑
l=1

kÑin
i ,l and (52)

Ki,j|i�=j
= −kÑin

i ,Ñin
j

. (53)

The force vector is computed with

Fi =
hi∑

j=1

kÑin
i ,Lex

i,j
δLex

i,j
. (54)

To compute the interior displacements we solve Eq. (51) for δin and apply

δÑin
i

= δin
i , i ∈ {1, . . . , f}, (55)

which yields to a complete displacement vector δ. Hence, we compute our new grid point locations in the
u-v-space by (

u∗i
v∗i

)
= δi +

(
û∗i
v̂∗i

)
, i ∈ {1, . . . , n∗}. (56)

After explaining the general procedure we will now present the actual displacement of corner point
(Cu

3 , Cv
3 ) → [1, 1] as well as the movement of the wing’s surface boundaries onto [0, 1] × [0, 1].
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8. Move corner point (Cu
3 , Cv

3 ) → [1, 1]

To move the third corner point we apply the algorithm of the previous section and define that the corner
points are exterior nodes and all other nodes are interior ones:

Ñex = (Ñex
C1

, Ñex
C2

, Ñex
C3

, Ñex
C4

), (57)

where Ñex
Ci

denotes the node number of the i-th corner point. Furthermore we define

⎛
⎜⎜⎜⎜⎜⎝

δÑex
C1

δÑex
C2

δÑex
C3

δÑex
C4

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0

(1 − Cu
3 , 1 − Cv

3 )
0

⎞
⎟⎟⎟⎠ (58)

to be the external nodes displacements. Applying Eq. (45)-(56) to the upper and lower shell yield to correct
positions of all four corner points (see Fig. 9).

Figure 9. Applying the spring analogy with corner points as exterior nodes (left: squares are exterior points,
circles are interior points; right: after application of the algorithm)

9. Fit boundaries to [0, 1] × [0, 1] space

After all corner points reached their final positions only the fitting of the grid’s boundaries to [0, 1]× [0, 1] is
left. Therefore, we need to find all exterior nodes. This can be done, e.g. by creating an edge list with every
edge of every element by using E. Interior edges will appear twice, whereas exterior edges only once. This
gives us the information whether a node is exterior or interior. However, we also need to know the node’s
boundary number as there are four boundaries and it is essential to know on which boundary we like to
displace our exterior node. There are a couple of ways to find out on which boundary the node is. One way
can be, e.g. to compute the normal vector of each exterior edge and the angles towards the u- and v-axis.
With certain ranges and combinations of angles we find the corresponding boundary. Thus, we can compute
all δex (see left Fig. 10).

Finally we can apply Eq. (45)-(56) to the upper and lower shell and compute the interior displacements
(see right Fig. 10).

10. Combine lower and upper shell

The last step is the combination of the upper and lower shell. Therefore, let (ûup
i , v̂up

i )i∈{1,...,nup} correspond
the upper shell and let (ûlow

i , v̂low
i )i∈{1,...,nlow} correspond to the lower shell. Hence, to combine those into a
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Figure 10. Applying the spring analogy with boundary nodes as exterior nodes (left: squares are exterior
points, circles are interior points as well as the vectors pointing towards the corresponding boundary; right:
after application of the algorithm)

[0, 1] × [0, 1] space we apply

ui =
1
2
(1 − ûlow

i ), i ∈ {1, . . . , nlow}, (59)

vi =
1
2
(1 − v̂low

i ), i ∈ {1, . . . , nlow} (60)

and

ui+nlow =
1
2
ûup

i + 0.5, i ∈ {1, . . . , nup}, (61)

vi+nlow =
1
2
v̂up

i + 0.5, i ∈ {1, . . . , nup}. (62)

Hence, (u, v) are our final parameterization, illustrated in Fig. 11.

Figure 11. Left: NACA 4415 wing represented via a 3-d unstructured triangular grid, right: final parameter-
ization
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V. Knot vector computation

In this section we present an automatic knot vector computation based on the parameterization of the
given grid points. We distinguish between 2-d and 3-d grids in this section. In general a knot vector defines
the relative positions along the parameterization at which the representations of each curve segment are
patched together. Furthermore, the knot vector allows, by repeating entries, a local reduction of the basis
function’s order. Thus, we are able to coincide the start and end control point onto the start and end curve
point by repeating the first and last entry of the knot vector p or q times respectively.

A. 2-d case

We use parameters u to compute our knot vector ξ = (ξj)j=1,...,n̂+p, as we assume that the given curve
point distribution represents also the complexity of the curve, ergo where we need a higher density of control
points. Hence, the knot vector is defined as

ξ = (0, . . . , 0︸ ︷︷ ︸
p

, ξp+1, . . . , ξn̂, 1, . . . , 1︸ ︷︷ ︸
p

) (63)

where the remaining entries are computed using following algorithm which is based on Ref. 6

I =
n − 1

n̂ − p + 1
j = �Ii + 1
R = Ii + 1 − j

ξp+i = (1 − R)uj + Ruj+1 (64)

with i = 1, . . . , n̂ − p. Figure 12 illustrates the parameterization of a 2-d NACA 4415 wing (see Fig. 2)
with e = 1 and its corresponding knot vector ξ = (0, 0, 0, 0, 0.25, 0.39, 0.47, 0.52, 0.6, 0.74, 1, 1, 1, 1) for basis
functions of order p = 4 and n̂ = 10 control points.

Figure 12. Parameterization of the 2-d NACA 4415 wing (see Fig. 2) and the corresponding knot vector ξ

B. 3-d case

In the 3-d case we do not distinguish between the grid types and propose one simple scheme for all. We
use our parameterization u, v again as basis to compute our knot vector ξ = (ξj)j , j = 1, . . . , n̂ + p in the
u-direction and ν = (νj)j , j = 1, . . . , m̂ + q in the v-direction. We propose an extension of the algorithm of
Eq. (64), but at first we sort u and v ascending into ũ, ṽ and define

ξ = (0, . . . , 0︸ ︷︷ ︸
p

, ξp+1, . . . , ξn̂, 1, . . . , 1︸ ︷︷ ︸
p

) (65)

ν = (0, . . . , 0︸ ︷︷ ︸
q

, νq+1, . . . , νm̂, 1, . . . , 1︸ ︷︷ ︸
q

) (66)

Now by applying Eq. (64)

I =
n − 1

n̂ − p + 1
j = �Ii + 1
R = Ii + 1 − j

ξp+i = (1 − R)ũj + Rũj+1 (67)
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with i = 1, . . . , n̂ − p as well as

I =
n − 1

m̂ − q + 1
j = �Ii + 1
R = Ii + 1 − j

νq+i = (1 − R)ṽj + Rṽj+1 (68)

with i = 1, . . . , m̂ − q. Figure 13 illustrates on the left side the parameterization of the structured, quadri-
lateral grid of the 3-d NACA 4415 wing (see Fig. 3) with e = 1 and its corresponding knot vectors
ξ = (0, 0, 0, 0, 0.22, 0.37, 0.46, 0.53, 0.62, 0.77, 1, 1, 1, 1) for basis functions of order p = 4 and n̂ = 10 con-
trol points in the u-direction as well as knot vector ν = (0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1) for basis functions of
order q = 3 and m̂ = 7 control points in the v-direction. On the right side the parameterization of the same
wing based on an unstructured, triangular grid (see Fig. 11) is shown with the corresponding knot vectors
ξ = (0, 0, 0, 0, 0.39, 0.47, 0.5, 0.51, 0.53, 0.61, 1, 1, 1, 1) for basis functions of order p = 4 and n̂ = 10 control
points in the u-direction and knot vector ν = (0, 0, 0, 0.14, 0.33, 0.52, 0.75, 1, 1, 1) for basis functions of order
q = 3 and m̂ = 7 control points in the v-direction.

Figure 13. Left: Parameterization of the 3-d NACA 4415 wing (see Fig. 3) and its corresponding knot vectors
ξ, ν; right: Parameterization of the 3-d NACA 4415 wing (see Fig. 11) and its corresponding knot vectors ξ, ν

VI. Reduction to a linear regression problem and its solution

After parameterizing the given grid points and computing the corresponding knot vectors, this section
presents the reduction to a linear regression problem and its solution towards the unknown control point
positions. The weights and the exact location of the control points can be solved later in a second step as
an optimization problem. This will be presented in the next section.

A. Reduction to a linear problem

The first step towards the solution of our linear regression problem is the application of the Cox-deBoor
recurrence12 (see Eq. (2)) to compute all necessary basis functions.

Lets rewrite Eq. (9) and Eq. (17) with wi = 1, ∀i as

X0
i =

n̂∑
j=1

P 0
j Np

i,j , i ∈ {1, . . . , n}, (69)
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for the 2-d case and

X0
i =

k̂∑
j=1

P 0
j Ni,j , i ∈ {1, . . . , n}. (70)

for the 3-d case, where k̂ = n̂m̂.
To simplify matters we rewrite these two equations into the matrix form

X0 = NpP 0 (71)

for the 2-d case, where X0 denotes the n×2 matrix of the given set of points, Np denotes the basis functions
(n × n̂ matrix) and P 0 the control points (n̂ × 2 matrix). The 3-d case is rewritten as

X0 = NP 0, (72)

where X0 denotes the n × 3 matrix of the given set of points, N denotes the basis functions (n × k̂ matrix)
and P 0 the control points (k̂ × 3 matrix).

B. Solving the overdetermined system

We need to solve those systems for the unknown P 0. There are many ways to solve linear regression
problems, we have chosen a Single Value Decomposition (SVD). We present the SVD only for the 2-d
case. It is straightforwardly adaptable to 3-d. However, we need to solve this overdetermined system by
computing the inverse of the non-quadratic matrix Np by decomposing it into the following matrices by
using its eigenvalues and -vectors:

U = eig(Np(Np)T ), n × n

D =
√

diag(eig(Np(Np)T )) n × n̂

V T = eig((Np)T Np), n̂ × n̂

such that

Np = UDV T . (73)

In order to compute (Np)−1 we apply

(Np)−1 = V T D−1UT (74)

where

(D−1)T =
1

Di,i
, i = 1, . . . , n̂.

Finally this leads to the inital control point positions

P 0
j = (Np)−1

j,i X0
i , ∀i, j = 1, . . . , n̂. (75)

The same applies for the 3-d case by replacing n̂ with k̂ and Np with N .

C. Examples

Finally we like to present some examples in 2-d and 3-d, with structured and unstructured grids. Figure 14
shows the approximated NACA 4415 wing in 2-d, where the control points are computed with the proposed
algorithm, using the given grid points and parameterization shown in Fig. 2 and the subsequent knot vector
ξ. We used an order of p = 3 and set the number of control points to n̂ = 9. Compared to the given grid
the average deviation of the approximation is 4.6e − 3 per node.

Figure 15 illustrates the approximated 3-d NACA 4415 wing based on the quadrilateral, structured grid
(on the left) and its parameterization shown in Fig. 3. We set the number of control points to n̂ = 11×m̂ = 5
and applied the proposed algorithm with orders p = 4, q = 3 as well as the computed knot vectors ξ, ν. The

15 of 19

American Institute of Aeronautics and Astronautics



Figure 14. NACA 4415 wing in 2-d, approximated with the proposed algorithm.

Figure 15. NACA 4415 wing in 3-d (left), approximated as NURBS surface based on the structured quadri-
lateral parameterization with the computed control points (right)

resulting control point positions are shown on left. The average deviation of the approximation towards the
given grid is 5.1e − 04 per node.

Figure 16 presents the NURBS surface approximation of the NACA 4415 wing based on the unstruc-
tured, triangular grid and its parameterization as shown in Fig. 11 (left). The average deviation of this
approximation to the given grid is 6.1e−04 per node. We set the number of control points to n̂ = 11×m̂ = 5
and computed the control points with orders p = 4, q = 3 and the subsequent knot vectors ξ, ν. The re-
sulting control point positions of the linear regression problem are shown in the middle. In the right part a
uniformly spaced parameterization with 100× 50 points and its resulting knot vectors is applied. Note that
we used the same control point positions as well as orders of the B-Spline functions. This would be the used
representation in a CAD software.

Figure 16. NACA 4415 wing in 3-d, approximated as NURBS surface based on the unstructured triangular
parameterization (left) with the computed control points (middle) and an approximated NURBS surface based
on an uniform parameterization.

16 of 19

American Institute of Aeronautics and Astronautics



VII. Optimizing weights and location of control points

To be able to approximate, e.g., circular shapes we need to improve the weight as well as to optimize
the position of the initial control points P 0 gained by the algorithm already presented within this paper.
However, the optimization is optional as the results of the linear regression problem are usually satisfying.
Nevertheless, for the sake of completeness we propose the following simple optimization algorithm. We define
a matrix of design parameters for the 3-d case as follows

a = (ak,Θ)k,Θ, k = N̂ l
Θ, . . . , N̂u

Θ Θ = 1, . . . , 4 (76)

Please note that the 2-d case needs just a simple modification of the presented 3-d algorithm by neglecting
the third dimension. Θ = 1 denotes the design parameters altering the weights and Θ = 2, Θ = 3 and Θ = 4
denotes the relation to either the x, y or z-component of the control points.

A. Objective function

We choose to minimize the sum of the quadratic distances between the given set of points X0
i = (x0, y0, z0)i, i ∈

{1, . . . , n} and the NURBS surface approximation Xi = (x, y, z)i, i ∈ {1, . . . , n}. This leads to the following
objective function

min
a

J = γ

n∑
i=1

([
xi(a) − x0

i

]2
+

[
yi(a) − y0

i

]2
+

[
zi(a) − z0

i

]2)
(77)

s.t. lbk,Θ ≤ ak,Θ ≤ ubk,Θ,∀k Θ = 1, . . . , 4

with scaling factor γ.

B. Gradient of the objective function

If we want to be able to use a gradient-based optimization approach we need to compute the derivatives of
(77):

∂J

∂ak,Θ
= α

n∑
i=1

(
2

[
xi − x0

i

] ∂xi

∂ak,Θ
+ 2

[
yi − y0

i

] ∂yi

∂ak,Θ
+ 2

[
zi − z0

i

] ∂zi

∂ak,Θ

)
(78)

where k = N̂ l
Θ, . . . , N̂u

Θ, Θ = 1, . . . , 4 and

∂xi

∂ak,Θ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P x
k Ni,k

∑n̂
g=1 wgNi,g −

(∑n̂
g=1 P x

g wgNi,g

)
Ni,k(∑n̂

g=1 wgNi,g

)2 , if Θ = 1

wkNi,k∑n̂
g=1 wgNi,g

, if Θ = 2

0 , if Θ = 3

0 , if Θ = 4

, (79)

∂yi

∂ak,Θ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P y
k Ni,k

∑n̂
g=1 wgNi,g −

(∑n̂
g=1 P y

g wgNi,g

)
Ni,k(∑n̂

g=1 wgNi,g

)2 , if Θ = 1

0 , if Θ = 2
wkNi,k∑n̂

g=1 wgNi,g

, if Θ = 3

0 , if Θ = 4

, (80)
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∂zi

∂ak,Θ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P z
k Ni,k

∑n̂
g=1 wgNi,g −

(∑n̂
g=1 P z

g wgNi,g

)
Ni,k(∑n̂

g=1 wgNi,g

)2 , if Θ = 1

0 , if Θ = 2

0 , if Θ = 3
wkNi,k∑n̂

g=1 wgNi,g

, if Θ = 4

. (81)

The objective function and the gradient can be applied to any suitable optimization procedure to optimize
the control point positions as well as the weights towards the best possible fit.

C. Example

Fig. 17 shows a 2-d example of an gradient-based optimization, where an improvement of 62% was reached
due to 66 optimization loops applying a Trust-Region derivative-based optimizer. The initial set of control
points of the NACA 4415 wing 2-d grid is computed with the proposed linear regression algorithm and
the parameterization shown in Fig. 2 with its resulting knot vector ξ. For the optimization procedure all
control points and all weights are chosen to be optimized. The average deviation of the initial approximation
towards the given grid is 4.6e−3 per node, after the optimization the average deviation decreased to 1.7e−3.
Furthermore the new weights are shown in the figure. It easy to see that the improvement of the weights
are important for representing circular shapes with NURBS.

Figure 17. Approximated and optimized NACA 4415 wing in 2-d with the proposed procedure.

VIII. Conclusion

We proposed a new and advanced tool for fitting NURBS curves and surfaces to sets of given grid
points throughout this paper. The computation of the control point coordinates for surface grids in 2-
d as well as structured and unstructured grids in 3-d is presented via a two-step algorithm. The first step
includes the parameterization of the given grid points as well as the automatic knot vector and basis function
computations. Then the NURBS curve or surface definition is reduced to a linear regression problem, which
can be solved for the unknown control point positions. A good parameterization and suitable knot vectors
are crucial for a successful completion of the first step. In a second step an optimization problem was defined
including the gradient computation of the objective function to optimize the control point positions and to
set up the optimal weights. This allows us to even represent circular shapes, which can not be represented
exactly by the reduced NURBS formulation. Furthermore, the functionality of the presented algorithms is
shown by using the example of a twisted NACA 4415 wing with different grid representations in 2-d and 3-d.
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