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The Flux Reconstruction (FR) approach unifies several well-known high-order schemes for
unstructured grids, including a collocation-based nodal discontinuous Galerkin (DG)
method and all types of Spectral Difference (SD) methods, at least for linear problems.
The FR approach also allows for the formulation of new families of schemes. Of particular
interest are the energy stable FR schemes, also referred to as the Vincent–Castonguay–
Jameson–Huynh (VCJH) schemes, which are an infinite family of high-order schemes
parameterized by a single scalar. VCJH schemes are of practical importance because they
provide a stable formulation on triangular elements which are often required for numerical
simulations over complex geometries. In particular, VCJH schemes are provably stable for
linear advection problems on triangles, and include the collocation-based nodal DG scheme
on triangles as a special case. Furthermore, certain VCJH schemes have Courant–Friedrichs–
Lewy (CFL) limits which are approximately twice those of the collocation-based nodal DG
scheme. Thus far, these schemes have been analyzed primarily in the context of pure advec-
tion problems on triangles. For the first time, this paper constructs VCJH schemes for advec-
tion–diffusion problems on triangles, and proves the stability of these schemes for linear
advection–diffusion problems for all orders of accuracy. In addition, this paper uses numer-
ical experiments on triangular grids to verify the stability and accuracy of VCJH schemes for
linear advection–diffusion problems and the nonlinear Navier–Stokes equations.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

High-order methods for unstructured grids have the potential to solve notoriously challenging flow problems, in partic-
ular those which require high levels of accuracy in complex domains. However, despite several decades of development,
their use within both academia and industry remains limited. There are several reasons for this situation, including difficul-
ties generating high-order curved element meshes, difficulties resolving discontinuous solutions such as shock waves, and
the general complexity of such methods relative to more standard low-order schemes, which are currently used widely to
solve real-world problems of practical interest.

Traditional high-order methods for unstructured grids, such as the discontinuous Galerkin (DG) schemes proposed in [1–
3], are based on a ‘method of weighted residuals’ formulation. Hence their implementations usually require quadrature pro-
cedures to be implemented and employed. However, in recent years, various unstructured high-order schemes based di-
rectly on differential forms of the governing system have emerged, such as Spectral Difference (SD) methods [4,5] and,
Vincent),

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jcp.2013.05.007&domain=pdf
http://dx.doi.org/10.1016/j.jcp.2013.05.007
mailto:davidmw@stanford.edu
mailto:pcasto2@alumni.stanford.edu
mailto:p.vincent@imperial.ac.uk
mailto:jameson@baboon.stanford.edu
http://dx.doi.org/10.1016/j.jcp.2013.05.007
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


54 D.M. Williams et al. / Journal of Computational Physics 250 (2013) 53–76
more generally, Flux Reconstruction (FR) methods [6]. For convenience, such schemes will henceforth be referred to as ‘FR
type’ schemes. FR type schemes do not require integration to be performed, and hence their implementations can (explicitly
at least) omit quadratures. As such, efficient implementation of FR type schemes is straightforward relative to their more
traditional counterparts. Consequently, it is envisaged that such FR type methods will become popular amongst a wide com-
munity of fluid dynamicists within both academia and industry.

In what follows, a review of FR type methods is provided in order to establish the context and motivation for the current
work. First proposed by Huynh in 2007, FR is an approach which generates new high-order schemes and recovers well-
known schemes, including a variety of collocation-based nodal DG and SD schemes [6]. In the FR approach, the flux is subject
to a reconstruction procedure involving ‘correction functions’ which are required to be polynomials of one degree higher
than the solution (as well as satisfying symmetry, and boundary constraints). The FR approach was originally formulated
for advection problems in 1D and was extended (via tensor products) to quadrilateral elements in 2D [6]. In 2009, Huynh
formulated an extension of the FR approach to diffusion problems [7] in which both the solution and the flux are subject
to reconstruction procedures. In both [6] and [7], Fourier analysis was employed in an effort to evaluate the stability of var-
ious FR schemes for linear advection and diffusion problems. Thereafter, Huynh developed an extension of the FR approach
to advection–diffusion problems on triangles [8]. This approach makes use of scalar-valued, 2D correction functions, which
are required to satisfy symmetry conditions similar to those imposed on the 1D correction functions. To the authors’ knowl-
edge, Fourier analysis of these schemes has yet to be performed.

In 2009, Gao and Wang identified a closely related class of schemes for advection–diffusion problems, referred to as Lift-
ing Collocation Penalty (LCP) schemes [9,10]. These schemes make use of ‘weighting functions’ which are different from cor-
rection functions in that they are piecewise continuous polynomials that are of one degree lower than the correction
functions. The LCP approach involves multiplying the governing equations by the weighting functions and integrating the
result in order to obtain ‘corrections’. These corrections are similar in form to those that arise in Huynh’s FR approach
[6,7], and under certain circumstances in 1D, the two approaches can be shown to be identical [11]. As a result, Wang,
Gao, Haga, and Yu have referred to the class of all FR and LCP schemes as ‘Correction Procedure via Reconstruction’ (CPR)
schemes [11,12], although it is not yet clear whether all FR schemes are in fact LCP schemes or vice versa. Wang, Gao,
and Haga have provided evidence for the stability of the schemes, successfully applying the FR and LCP schemes to nonlinear
advection–diffusion problems on grids of quadrilaterals and triangles in 2D [9] and tetrahedra and prisms in 3D [12,13].

In addition to being related to the LCP schemes, the FR schemes are also related to the Summation By Parts Simultaneous
Approximation Term (SBP-SAT) finite difference schemes. The SBP-SAT and FR formulations are similar in that the SBP-SAT
formulation can recover the 2nd order Galerkin Finite Element scheme on triangles [14] which (for a linear solution basis) is
akin to the collocation-based nodal DG approach that the FR formulation recovers. However, SBP-SAT schemes of the form
given by [14] cannot recover Galerkin Finite Element methods for non-simplex elements [15], and (thus far) have not been
extended to yield compact high-order discretizations on triangles. For this reason, the SBP-SAT schemes will not be discussed
further, although the interested reader should consult [16–19] for details pertaining to these schemes. The remainder of this
discussion will instead focus on FR type schemes which are more closely related to the schemes of Huynh [6–8], and Gao and
Wang [9,10].

Recently, efforts have focused on rigorously proving the stability of FR type schemes using ‘energy methods’. Such meth-
ods offer advantages over von Neumann techniques (i.e., Fourier analysis) since they automatically extend to all orders of
accuracy, and are valid for unstructured grids. In 2010, Jameson [20] used an energy method to prove stability of a particular
SD method for linear advection problems. Subsequently, in 2011, Vincent, Castonguay, and Jameson [21] used a similar ap-
proach to derive an entire class of stable FR schemes for linear advection problems in 1D. These stable schemes, referred to as
Vincent–Castonguay–Jameson–Huynh (VCJH) schemes, are parameterized by a single scalar. The scalar influences the ana-
lytical form of the correction functions, and variations of the scalar lead to recovery of various known numerical methods,
including a collocation-based nodal DG method, the SD method that Jameson [20] proved to be stable for linear advection,
and Huynh’s so-called g2 method [6]. Recently, Castonguay and Williams et al. [22,23] extended the VCJH schemes, and
proved their stability for advection–diffusion problems in 1D [23,24].

In 2D, Castonguay, Vincent, and Jameson used an energy method to identify a class of VCJH schemes which they proved to
be stable for linear advection problems on triangles [25]. These schemes make use of vector-valued, 2D correction functions,
which are required to satisfy symmetry and orthogonality conditions. The VCJH schemes on triangles are parametrized by a
single scalar (as in the 1D case) which, if set to the correct value, allows for recovery of the collocation-based nodal DG
scheme [25].

Note that the symmetry conditions used to define the VCJH correction functions due to Castoguay et al. [25] are different
than those used to define the correction functions due to Huynh [8], and thus it does not appear that these two classes of
schemes are equivalent. In addition, because VCJH schemes due to Castonguay et al. [25] utilize correction functions and
LCP schemes due to Gao and Wang [10] utilize weighting functions, the equivalence of the VCJH and LCP classes of schemes
has yet to be demonstrated.

In summary, a number of authors have proposed FR type approaches for the treatment of advection and advection–dif-
fusion problems in 1D and on triangles. However, for linear advection problems, only the VCJH approaches of [21] in 1D and
[25] on triangles have been proven stable for all orders of accuracy. Furthermore, for linear advection–diffusion problems on
triangles, the approach of [25] has not yet been proven stable. This article will extend the approach of [25], to provide for the
first time on triangles, a provably stable family of FR schemes for linear advection–diffusion problems.
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The format of the paper is as follows. Section two presents a FR approach for solving advection–diffusion problems on
triangles. Section three introduces the VCJH correction fields on triangles. Section four develops a range of VCJH schemes
for linear advection–diffusion problems on triangles, and proves that these schemes are stable. Section five presents results
of linear numerical experiments for the newly proposed schemes. Finally, the sixth section presents numerical experiments
examining the stability of the VCJH schemes for nonlinear problems, with the aim of assessing how well the VCJH schemes
perform in a more practical setting.

2. Flux reconstruction approach for advection–diffusion problems on triangles

In what follows, the FR schemes for advection problems on triangles, developed by Castonguay et al. in [25], are extended
to advection–diffusion problems. For readers unfamiliar with the FR approach, the authors recommend a review of the 1D
descriptions of FR for advection in [6,21], or advection–diffusion in [23] before proceeding further.

2.1. Preliminaries

Consider the 2D conservation law
@u
@t
þr � fðu;ruÞ ¼ 0; ð1Þ
where u is a scalar variable and f is a vector-valued flux. Eq. (1) can be rewritten as a first-order system,

@u
@t
þr � fðu;qÞ ¼ 0; ð2Þ

q�ru ¼ 0: ð3Þ
The solution u ¼ uðx; y; tÞ to the system evolves inside the 2D domain X (with boundary C), where x and y are spatial coor-
dinates, q ¼ ðqx; qyÞ is the auxiliary variable with components qx ¼ qxðu;ruÞ and qy ¼ qyðu;ruÞ, and f ¼ ðf ; gÞ has compo-
nents f ¼ f ðu;qÞ and g ¼ gðu;qÞ. Assume that the domain X can be discretized into N non-overlapping, conforming,
straight-sided triangular elements Xn such that
X ¼
[N
n¼1

Xn: ð4Þ
Approximations to Eqs. (2) and (3) can be constructed within each element Xn. In Eq. (2), the exact solution u can be replaced
by an approximate solution uD

n ¼ uD
n ðx; y; tÞ, which is a two-dimensional polynomial of degree p within Xn and is identically

zero outside the element. In general, the sum of uD
n and uD

nþ1 is discontinuous at the interface between neighboring elements
Xn and Xnþ1, and as a result each quantity is designated with a superscript D.

The flux f in Eq. (2) can be approximated by a function fn ¼ ðfn; gnÞ ¼ fnðx; y; tÞ, which is a polynomial of degree pþ 1 with-
in Xn and is identically zero outside Xn. The normal components of fn and fnþ1 are required to be equivalent to one another
on the boundary between Xn and Xnþ1.

Analogous approximations can be introduced into Eq. (3). Here, the auxiliary variable q can be replaced by a function
qD

n ¼ ðqD
x ; q

D
y Þn ¼ qD

n ðx; y; tÞ which is a polynomial of degree p within Xn and is identically zero outside. In general, the sum

of qD
n and qD

nþ1 is discontinuous at the interface between Xn and Xnþ1. In addition, the exact solution u can be replaced by
an approximate solution un ¼ unðx; y; tÞ, which is a polynomial of degree pþ 1 within Xn and is identically zero outside
(and where it is important to note that un – uD

n ). The approximate solutions un and unþ1 are required to be equivalent to
one another on the boundary between Xn and Xnþ1.

Based on these definitions, the approximate first-order system within each element Xn becomes
@uD
n

@t
þr � fn ¼ 0; ð5Þ

qD
n �run ¼ 0: ð6Þ
Next, in order to facilitate implementation, each element Xn in physical space is mapped to a reference right triangle XS. The
mapping Hn for a linear triangular element is
x ¼ HnðrÞ ¼ �
r þ sð Þ

2
v1;n þ

r þ 1ð Þ
2

v2;n þ
sþ 1ð Þ

2
v3;n; ð7Þ
where x ¼ ðx; yÞ are the physical coordinates, r ¼ ðr; sÞ are the reference coordinates, v1;n;v2;n, and v3;n are the vertex coor-
dinates of the element Xn in physical space, and �1;�1ð Þ, 1;�1ð Þ, and �1;1ð Þ are the vertex coordinates of the element XS in
reference space. Once a mapping is established, the physical quantities un, uD

n , fn, and qD
n in the triangular element Xn can be

reformulated as transformed quantities û, ûD, f̂, and q̂D in the reference triangle XS using the following transformations due
to Viviand [26] and Vinokur [27]
û ¼ JnunðHnðrÞ; tÞ; ûD ¼ JnuD
n ðHnðrÞ; tÞ; ð8Þ



56 D.M. Williams et al. / Journal of Computational Physics 250 (2013) 53–76
f̂ ¼ f̂

ĝ

" #
¼ Jn J�1

n fn; q̂D ¼
q̂D

r

q̂D
s

" #
¼ r̂û ¼ Jn JT

n qD
n ; ð9Þ
where
fn ¼
fn

gn

� �
; qD

n ¼
qD

xn

qD
yn

" #
¼ run; ð10Þ
and
Jn ¼
@x
@r

@x
@s

@y
@r

@y
@s

" #
; Jn ¼ detðJnÞ: ð11Þ
In Eq. (9), the operator r̂ is defined as the gradient in the reference domain taken with respect to r and s (where thus far r
has been the gradient in the physical domain taken with respect to x and y).

The following identities arise from Eqs. (8)–(11)
r � fn ¼
1
Jn
r̂ � f̂
� �

; ð12Þ

run � fn ¼
1
J2

n

r̂û � f̂
� �

; ð13Þ

Z
Xn

Jnun r � fnð ÞdXn ¼
Z

XS

û r̂ � f̂
� �

dXS; ð14Þ

Z
Xn

Jn run � fnð ÞdXn ¼
Z

XS

r̂û � f̂dXS; ð15Þ

Z
Cn

Jnun fn � nð ÞdCn ¼
Z

CS

û f̂ � n̂
� �

dCS: ð16Þ
These identities will be used extensively in the subsequent proof of the stability of VCJH schemes for the linear advection–
diffusion problem on triangles (c.f. Section 4).

The governing equations (Eqs. (5) and (6)) in the physical domain can now be transformed to equivalent equations in the
reference domain, using Eqs. (8)–(11). The result is
@ûD

@t
þ r̂ � f̂ ¼ 0; ð17Þ

q̂D � r̂û ¼ 0: ð18Þ
The next section will discuss the FR procedure for solving Eqs. (17) and (18).

2.2. Procedure

The FR approach for advection–diffusion problems on triangles consists of seven stages. In practice, when implementing
the method, several of these stages can be combined, however, in what follows they will be presented as separate stages for
the sake of clarity.

In the first stage of the FR approach on triangles, the approximate transformed solution ûD within the reference element
XS is defined using a two-dimensional polynomial of degree p. The polynomial is constructed from values of the approximate
transformed solution at Np ¼ 1

2 ðpþ 1Þðpþ 2Þ solution points. (Fig. 1 shows an example of the locations of the solution points
for the case of p ¼ 2). The resulting approximate transformed solution takes the form
ûDðr; tÞ ¼
XNp

i¼1

ûD
i liðrÞ; ð19Þ
where ûD
i ¼ JnðriÞ � uD

n ðHnðriÞ; tÞ is the value of ûD at solution point i, ri is the location of solution point i, and liðrÞ is the nodal
basis function which takes on the value of 1 at solution point i and the value of 0 at all other solution points. The approximate
transformed solution ûD lies in the space PpðXSÞ, where PpðXSÞ defines the polynomial space of degree 6 p on XS. Conse-

quently, ûD also lies in the polynomial space RpðCSÞ ¼ /j/ 2 L2ðCSÞ;/jCf
2 PpðCf Þ;8Cf

n o
which contains polynomials of degree

6 p defined on each side Cf of XS.
The second stage involves calculating common values for the transformed solution ûI at a set of flux points along the

edges of XS. In what follows, a quantity labeled with the indices f, j corresponds to a quantity at the flux point j of face f,



Fig. 1. Example of solution point locations (denoted by circles) in the reference element for p ¼ 2.
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where 1 6 f 6 3 and 1 6 j 6 Nfp. Here, Nfp is the number of flux points on each face, and is equal to pþ 1. The location of flux
point j on face f is denoted rf ; j. The convention used to number faces and flux points is illustrated in Fig. 2.

Common values of the transformed solution at each flux point (ûI
f ; j) are computed by first evaluating the multiply defined

values of the physical solution uD
f ; j at each flux point. At each flux point, uD

ðf ; jÞ� is defined as the value of uD
f ; j computed using

the information local to the current element and uD
ðf ; jÞþ as the value of uD

f ; j computed using information from the adjoining
element. For a given element, the physical solution at each flux point is obtained by evaluating the transformed solution
(ûD in Eq. (19)) at each flux point, and converting the result to physical space using Eq. (8). Once both physical solution values
(uD
ðf ; jÞ� and uD

ðf ; jÞþ) are obtained, an approach such as the Central Flux (CF) [28], Local Discontinuous Galerkin (LDG) [29], Com-
pact Discontinuous Galerkin (CDG) [30], Internal Penalty (IP) [31], Bassi Rebay 1 (BR1) [3], or Bassi Rebay 2 (BR2) approach
[32] can be used to compute a common solution value uI

f ; j. The LDG approach is of particular interest because it is identical to
the CDG approach in 1D, and recovers the BR1 and CF approaches in 1D, 2D, and 3D. If one elects to employ the LDG ap-
proach, the common solution value uI

f ; j is computed as follows
Fig. 2.
the flux
uI
f ; j ¼ ffuD

f ; jgg � b � suD
f ; jt; b ¼ bx;by

� �
; ð20Þ
where b is a directional parameter which allows uI
f ; j to assume a value that is biased in either the upwind or downwind

direction, and ff�gg and s � t are ‘average’ and ‘jump’ operators, respectively which are defined such that
ffuD
f ; jgg ¼

uDðf ; jÞ� þ uD
ðf ; jÞþ

2
; suD

f ; jt ¼ uD
ðf ; jÞ�n� þ uD

ðf ; jÞþnþ; ð21Þ
where n� and nþ denote the outward and inward pointing unit normals, respectively.
Note that choosing b ¼ �0:5n� promotes compactness of the FR scheme in multiple dimensions, but does not ensure it for

certain cases on general grids [28,30]. Alternative approaches (such as CDG or BR2) can be employed to ensure compactness
in multiple dimensions. These compact approaches are essential for cases in which the full matrix is to be formed, i.e., when
j = 1 j = 2 j = N
fp

 = 3

f = 1

f = 2

f =
 3

Example of the numbering convention for the faces and flux points on the reference element for p ¼ 2. The flux points are denoted by squares and
point index increases counter clockwise along an edge.
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a spatial discretization is paired with an implicit time-stepping approach. However, this paper is concerned with demon-
strating favorable aspects of pairing FR discretizations with explicit time-stepping approaches. In this context, compactness
is less important, and the LDG approach is frequently sufficient.

After the common solution uI
f ; j is computed using the LDG approach or an alternative approach, the transformed common

solution denoted by ûI
f ; j can be obtained from Eq. (8).

Next, in preparation for the third stage, one may compute ûC
f ; j the transformed solution correction at each flux point as

follows
ûC
f ; j ¼ ûI

f ; j � ûD
f ; j: ð22Þ
Note that the superscript ‘C’ on ûC
f ; j stands for ‘correction.’

The third stage involves constructing the transformed auxiliary variable q̂D from the transformed solution correction ûC
f ; j

at each flux point. Towards this end, one may expand q̂D (in Eq. (18)) in order to obtain
q̂D ¼ r̂û ¼ r̂ûD þ r̂ûC ; ð23Þ
where r̂ûD is computed by applying the transformed gradient operator r̂ to ûD in Eq. (19), and r̂ûC is computed by ‘lifting’
values of ûC

f ; j from the element boundary as follows
r̂ûCðrÞ ¼
X3

f¼1

XNfp

j¼1

ûC
f ; j wf ; jðrÞ n̂f ; j: ð24Þ
The function wf ; j is a ‘correction field’ or ‘lifting operator’ which transforms ûC defined on CS into r̂ûC defined throughout XS.
Details regarding the construction of wf ; j are given in Appendix A.

On rewriting Eq. (23) in terms of ûD from Eq. (19) and r̂ûC from Eq. (24), one obtains the following expression for q̂D
q̂DðrÞ ¼ r̂ûDðrÞ þ r̂ûCðrÞ ¼
XNp

i¼1

ûD
i r̂liðrÞ þ

X3

f¼1

XNfp

j¼1

ûC
f ; j wf ; jðrÞ n̂f ; j: ð25Þ
In the fourth stage, the transformed discontinuous flux f̂D can be computed using ûD from Eq. (19) and q̂D from Eq. (25). Each
component of the flux f̂D ¼ ðf̂ D; ĝDÞ can be expressed using a degree p polynomial as follows
f̂ DðrÞ ¼
XNp

i¼1

f̂ D
i liðrÞ; ĝDðrÞ ¼

XNp

i¼1

ĝD
i liðrÞ; ð26Þ
where the quantities f̂ D
i and ĝD

i are the components of the transformed flux at solution point i, and are evaluated using ûD
i and

q̂D
i .

The fifth stage involves calculating transformed numerical interface fluxes f̂ I at flux points along the edges of XS. At each
flux point, the transformed flux f̂ I

f ; j is calculated based on the physical flux f I
f ; j which is composed from advective and dif-

fusive parts f I
f ; j ¼ f I

ðf ; jÞ adv þ f I
ðf ; jÞ dif . In turn, f I

ðf ; jÞ adv and f I
ðf ; jÞ dif are constructed from the multiply defined discontinuous fluxes

at each flux point denoted by
fD
ðf ; jÞ adv� ¼ f uD

ðf ; jÞ�

� �
; fD

ðf ; jÞ advþ ¼ f uD
ðf ; jÞþ

� �
; ð27Þ

fD
ðf ; jÞ dif� ¼ f uD

ðf ; jÞ�;q
D
ðf ; jÞ�

� �
; fD

ðf ; jÞ difþ ¼ f uD
ðf ; jÞþ;q

D
ðf ; jÞþ

� �
: ð28Þ
The solution values uD
ðf ; jÞ� and uD

ðf ; jÞþ were obtained in stage 2, and the auxiliary variable values qD
ðf ; jÞ� and qD

ðf ; jÞþ are obtained
by evaluating q̂D at each flux point using Eq. (25), and converting the result to physical space using Eq. (9).

Once fD
ðf ; jÞadv�, fD

ðf ; jÞadvþ, fD
ðf ; jÞdif�, and fD

ðf ; jÞdifþ are obtained, the numerical advective flux f I
ðf ; jÞadv and the numerical diffusive

flux f I
ðf ; jÞdif can be computed. For linear advection–diffusion equations, f I

ðf ; jÞadv can be computed using the Lax–Friedrichs ap-

proach (as defined in [28]), and for the nonlinear Navier–Stokes equations, f I
ðf ; jÞadv can be computed using a Roe [33] or Rusa-

nov [34] approach. For both linear and nonlinear equations, the numerical diffusive flux f I
ðf ; jÞdif can be computed using one of

the aforementioned CF, LDG, CDG, IP, BR1, or BR2 approaches. In particular, if one elects to employ the LDG approach, the
common numerical diffusive flux is computed as follows
f I
ðf ; jÞ dif ¼ fff

D
ðf ; jÞ dif gg þ ssuD

f ; jtþ bsfD
ðf ; jÞ dif t; ð29Þ
where s is a penalty parameter controlling the jump in the solution, b is the directional parameter (defined previously), and
ff�gg and s � t are the average and jump operators for the flux which are defined such that
fffD
ðf ; jÞ dif gg ¼

fD
ðf ; jÞ dif� þ fD

ðf ; jÞ difþ

2
; ð30Þ

sfD
ðf ; jÞ dif t ¼ fD

ðf ; jÞ dif� � n� þ fD
ðf ; jÞ difþ � nþ: ð31Þ
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Note that the parameter b in Eq. (29) is preceded by a ‘+’ sign and in Eq. (20) it is preceded by a ‘�’ sign. Opposite signs help
ensure symmetry of the diffusive process in the following sense: if the common solution uI

f ; j is upwind biased then the

numerical flux f I
ðf ; jÞ dif is downwind biased or vice versa.

Once the total numerical flux f I
f ; j ¼ f I

ðf ; jÞ adv þ f I
ðf ; jÞ dif is computed, the transformed numerical flux denoted by f̂ I

f ; j can be
obtained from Eq. (9).

The sixth stage involves forming the transformed flux correction f̂C which will be added to the transformed discontinuous

flux f̂D to form the transformed continuous flux f̂ (i.e., f̂ ¼ f̂D þ f̂C). f̂C is constructed using vector correction functions hf ; j rð Þ
which are restricted to lie in the Raviart–Thomas space [35] of order p, denoted by RTpðXSÞ. Note that

RTpðXSÞ ¼ Pp XSð Þ
� �2 þ rPp XSð Þ, where Pp XSð Þ

� �2 is the two-dimensional vector space with components with degree 6 p. As
a consequence, the vector correction functions possess the following attributes
/f ; jðrÞ 2 PpðXSÞ; hf ; jðrÞ � n̂jCS
2 RpðCSÞ; ð32Þ
where
/f ; jðrÞ � r̂ � hf ; jðrÞ ð33Þ
is referred to as the ‘correction field’, and hf ; jðrÞ � n̂jCS
is referred to as the ‘normal trace’.

Furthermore, if k represents a particular face 1 6 k 6 3ð Þ and l represents a particular flux point 1 6 l 6 Nfp

� �
, each of the

correction functions hf ; j is required to satisfy
hf ; jðrk;lÞ � n̂k;l ¼
1 if f ¼ k and j ¼ l

0 if f – k or j – l:

�
ð34Þ
Eqs. (32) and (34) ensure that the resulting FR schemes are conservative [25]. Fig. 3 shows an example of a vector correction
function hf ; j which satisfies Eqs. (32) and (34) for the case of p ¼ 2.

Now, having defined the vector correction functions hf ; j, one may define the transformed flux correction f̂C as follows
f̂CðrÞ ¼
X3

f¼1

XNfp

j¼1

f̂ I
f ; j � f̂D

f ; j

� �
� n̂f ; j

h i
hf ; jðrÞ ¼

X3

f¼1

XNfp

j¼1

Df ; jhf ; jðrÞ: ð35Þ
Here, Df ; j is defined as the difference between the normal transformed numerical interface flux and the normal trans-
formed discontinuous flux at the flux point f ; j.

The final stage involves calculating the divergence of the continuous transformed flux f̂. The result is used to update the
transformed solution at the solution point ri as follows
dûD
i

dt
¼ � r̂ � f̂

� �			
ri

¼ � r̂ � f̂D
� �			

ri

� r̂ � f̂C
� �			

ri

¼ �
XNp

k¼1

f̂ D
k

� �@lk
@r

				
ri

�
XNp

k¼1

ĝD
k

� �@lk
@s

				
ri

�
X3

f¼1

XNfp

j¼1

Df ; j/f ; jðriÞ: ð36Þ
For triangles, the overall behavior of the FR scheme depends on six factors, namely:

1. The location of the solution points ri.
2. The location of the flux points rf ; j.
3. The methodology for calculating the transformed common solution values ûI

f ; j.
4. The methodology for calculating the transformed numerical flux values f̂ I

f ; j.
5. The form of the solution correction field wf ; j.
6. The form of the flux correction field /f ; j.
Fig. 3. Example of a vector correction function hf ; j associated with flux point f ¼ 2, j ¼ 2 for p ¼ 2.
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The FR schemes can be simplified by choosing the same solution and flux correction fields (choosing wf ; j ¼ /f ; j). Never-
theless, in an effort to generalize the subsequent discussions, the solution and flux correction fields are assumed to be dis-
tinct unless otherwise indicated.

Finally, note that the computational effort associated with the FR approach is identical to that associated with a colloca-
tion-based nodal DG approach. When the corrections fields are chosen appropriately, the FR approach recovers a collocation-
based nodal DG scheme (as mentioned previously).

3. VCJH correction fields on triangles

For linear advection problems on triangles, Castonguay et al. [25] have identified a range of correction fields /f ; j for cor-
recting the flux, which lead to energy stable FR schemes. The correction fields /f ; j are polynomials of degree p, and can there-
fore be expressed in terms of an orthonormal basis Lk of degree p as follows
/f ; j ¼
XNp

k¼1

rkLkðrÞ; ð37Þ
where the coefficients rk are constants. Here each Lk is a member of the 2D Dubiner basis [36] defined on the reference right
triangle XS. This basis is given by
LkðrÞ ¼
ffiffiffi
2
p

QvðaÞQ ð2vþ1;0Þ
w ðbÞð1� bÞv ; ð38Þ

k ¼ wþ ðpþ 1Þv þ 1� v
2
ðv � 1Þ; ðv ;wÞP 0; v þw 6 p;
where
a ¼ 2
1þ rð Þ
1� sð Þ � 1; b ¼ s; ð39Þ
and Q ða;bÞn is the nth order Jacobi polynomial (normalized as described in [28]).
Castonguay et al. [25] showed that stability for linear advection problems can be achieved if the coefficients rk are com-

puted by solving the following system of equations
XNp

k¼1

rk

Xpþ1

m¼1

cm Dðm;pÞLi

� �
Dðm;pÞLk

� �
¼ �ri þ

Z
CS

hf ; j � n̂
� �

Li dCs for 1 6 i 6 Np; ð40Þ
where each dot product hf ; j � n̂
� �

is defined via Eq. (34), each derivative operator Dðm;pÞ is of the form
Dðm;pÞ ¼ @p

@rðp�mþ1Þ@sðm�1Þ ; 1 6 m 6 pþ 1; ð41Þ
and each constant cm is of the form
cm ¼ c
p

m� 1

� �
¼ c

p!

ðm� 1Þ!ðp�mþ 1Þ!

� �
: ð42Þ
In Eq. (42), c is a scalar, where 0 6 c 61. The correction fields /f ; j obtained from the solution of Eq. (40) lead to VCJH
schemes on triangles which are an infinite family of FR schemes parameterized by c. For linear advection problems on tri-
angles, if c ¼ cdg ¼ 0, a collocation-based nodal DG scheme is recovered [25].

The stability of VCJH schemes for linear advection problems on triangles (for which periodic boundary conditions can be
imposed) is ensured because it can be shown that a Sobolev-type norm of the solution is non-increasing, i.e.,
d
dt
kUDk2

p;c 6 0; ð43Þ
where the Sobolev-type norm is defined as
kUDkp;c ¼
XN

n¼1

Z
Xn

ðuD
n Þ

2 þ 1
AS

Xpþ1

m¼1

cm Dðm;pÞ uD
n

� �2
" #

dXn

( )1=2

; ð44Þ
UD is the total (domain-wide) solution defined as
UD ¼
XN

n¼1

uD
n ; ð45Þ
and AS denotes the area of the reference element XS. Note that, in Eq. (44), the derivative operator Dðm;pÞ in XS has been ap-
plied to uD

n in the physical domain Xn using the chain rule.
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4. Proof of stability of VCJH schemes for the linear advection–diffusion equation on triangles

In this section, it is shown that if the correction fields wf ; j and /f ; j are chosen to be VCJH correction fields, (i.e.,

wf ; j ¼ r̂ � gf ; j and /f ; j ¼ r̂ � hf ; j where hf ; j and gf ; j are VCJH vector correction functions), and the transformed common solu-

tion values ûI
f ; j and numerical flux values f̂ I

f ; j are obtained appropriately, the resulting FR schemes are stable for the linear
advection–diffusion equation on straight-sided triangles.

4.1. Preliminaries

The linear advection–diffusion equation in 2D can be expressed as the following first-order system
@u
@t
þr � au� bqð Þ ¼ 0; ð46Þ

q�ru ¼ 0; ð47Þ
where a ¼ ax; ay
� �

is a velocity vector (with constant components) and b is a diffusivity coefficient (with constant value
b P 0). Eqs. (46) and (47) can be rewritten in terms of physical coordinates in the nth element (Xn), yielding Eqs. (5) and
(6), where fn ¼ fadv ;n þ fdif ;n, and where fadv ;n ¼ auD

n and fdif ;n ¼ �bqD
n .

4.2. The stability of VCJH schemes

The stability of VCJH schemes for linear advection–diffusion problems on triangles can be established by examining the
evolution in time of the Sobolev-type norm of the solution given in Eq. (44). An expression for the time rate of change of this
norm will be constructed using contributions from the solution itself uD

n (Eq. (5)) and the auxiliary variable qD
n (Eq. (6)). The

following lemmas will manipulate and combine Eqs. (5) and (6) in order to establish an upper bound for the time rate of
change of the norm.

Lemma 4.1. For all FR schemes, Eq. (5) holds, and therefore the following results also hold
Jn

2
d
dt

Z
Xn

uD
n

� �2
dXn ¼ �

Z
XS

ûD r̂ � f̂D þ r̂ � f̂C
� �

dXS ð48Þ
and
Jn

2AS

d
dt

Z
Xn

Dðm;pÞ uD
n

� �2
dXn ¼ � Dðm;pÞ ûD

� �
Dðm;pÞ r̂ � f̂C

� �� �
: ð49Þ
Proof. The following relation holds for all FR schemes: r � fn ¼ r � fD
n þr � f

C
n . Upon combining this relation and Eq. (5) and

rearranging the result, one obtains
@uD
n

@t
¼ �r � fD

n �r � f
C
n : ð50Þ
Multiplying this equation by JnuD
n and integrating over the element domain Xn yields the following
Jn

2
d
dt

Z
Xn

uD
n

� �2
dXn ¼ �

Z
Xn

JnuD
n r � f

D
n

� �
dXn �

Z
Xn

JnuD
n r � f

C
n

� �
dXn: ð51Þ
Upon replacing the integrals over the physical domain Xn on the RHS of Eq. (51) with integrals over the reference domain XS

(using the identity from Eq. (14)), one obtains Eq. (48), the first result of Lemma 4.1.
The second result of Lemma 4.1 can be derived as follows. Consider applying the operator Dðm;pÞ to both sides of Eq. (50) in

order to obtain
@

@t
Dðm;pÞ uD

n

� �
¼ �Dðm;pÞ r � fD

n

� �
� Dðm;pÞ r � fC

n

� �
¼ �Dðm;pÞ r � fC

n

� �
: ð52Þ
Note that Dðm;pÞ r � fD
n

� �
¼ 0 because r � fD

n is at most degree ðp� 1Þ.

If both sides of Eq. (52) are multiplied by ðDðm;pÞ uD
n Þ and integrated over Xn, one obtains
1
2

d
dt

Z
Xn

Dðm;pÞ uD
n

� �2
dXn ¼ �

Z
Xn

Dðm;pÞ uD
n

� �
Dðm;pÞ r � fC

n

� �� �
dXn: ð53Þ
Substituting Eqs. (8) and (12) into Eq. (53) yields
1
2

d
dt

Z
Xn

Dðm;pÞ uD
n

� �2
dXn ¼ �

Z
XS

1
Jn

Dðm;pÞ ûD
� �

Dðm;pÞ r̂ � f̂C
� �� �

dXS ¼ �
AS

Jn
Dðm;pÞ ûD
� �

Dðm;pÞ r̂ � f̂C
� �� �

: ð54Þ
Upon rearranging Eq. (54) one obtains Eq. (49). This completes the proof of Lemma 4.1. h
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Lemma 4.2. For all FR schemes, Eq. (6) holds, and therefore the following results also hold
Jn

Z
Xn

fD
dif ;n � qD

n dXn ¼
Z

XS

f̂D
dif � r̂ûD þ r̂ûC

� �
dXS ð55Þ
and Z

Jn

AS Xn

Dðm;pÞ fD
dif ;n

� �
� Dðm;pÞ qD

n

� �
dXn ¼ Dðm;pÞ f̂D

dif

� �
� Dðm;pÞ r̂ûC

� �� �
: ð56Þ
Proof. The following relation holds for all FR schemes:run ¼ ruD
n þruC

n . Upon combining this relation and Eq. (6) and rear-
ranging the result, one obtains
qD
n ¼ ruD

n þruC
n : ð57Þ
Taking the dot product of Eq. (57) with Jn fD
dif ;n and integrating over the element domain Xn yields
Jn

Z
Xn

fD
dif ;n � qD

n dXn ¼ Jn

Z
Xn

fD
dif ;n � ruD

n

� �
dXn þ Jn

Z
Xn

fD
dif ;n � ruC

n

� �
dXn: ð58Þ
Upon transforming the RHS of Eq. (58) to the reference domain using Eq. (15) (with fD
dif ;n and f̂D

dif in place of fn and f̂, and uD
n

and ûD (or uC
n and ûC) in place of un and û), one obtains Eq. (55), the first result of Lemma 4.2.

The second result of Lemma 4.2 can be derived as follows. Consider applying the operator Dðm;pÞ to both sides of Eq. (57) in
order to obtain
Dðm;pÞqD
n ¼ Dðm;pÞ ruD

n

� �
þ Dðm;pÞ ruC

n

� �
¼ Dðm;pÞ ruC

n

� �
: ð59Þ
The term Dðm;pÞ ruD
n

� �
vanishes becauseruD

n is of degree ðp� 1Þ. Taking the dot product of Eq. (59) with Dðm;pÞ fD
dif ;n

� �
and inte-

grating over Xn yields
Z
Xn

Dðm;pÞ fD
dif ;n

� �
� Dðm;pÞqD

n

� �
dXn ¼

Z
Xn

Dðm;pÞ fD
dif ;n

� �
� Dðm;pÞ ruC

n

� �� �
dXn: ð60Þ
The RHS can be simplified using the following identity
Dðm;pÞ fD
dif ;n

� �
� Dðm;pÞ ruC

n

� �� �
¼ 1

J2
n

Dðm;pÞ f̂D
dif

� �
� Dðm;pÞ r̂ûC

� �� �
ð61Þ
which derives from the vector identities in Eqs. (9) and (10) (with fD
dif ;n; f̂

D
dif ;u

C
n , and ûC in place of fn; f̂;un, and û). Upon substi-

tuting Eq. (61) into the RHS of Eq. (60), one obtainsZ Z

Xn

Dðm;pÞ fD
dif ;n

� �
� Dðm;pÞqD

n

� �
dXn ¼

Xn

1
J2

n

Dðm;pÞ f̂D
dif

� �
� Dðm;pÞ r̂ûC

� �� �
dXn ¼

AS

Jn
Dðm;pÞ f̂D

dif

� �
� Dðm;pÞ r̂ûC

� �� �
: ð62Þ
Upon rearranging Eq. (62) one obtains Eq. (56). This completes the proof of Lemma 4.2. h
Lemma 4.3. If /f ; j and wf ; j are the VCJH correction fields, the following identity holds
Jn

2
d
dt

Z
Xn

uD
n

� �2
dXn þ

Jn

2AS

d
dt

Z
Xn

Xpþ1

m¼1

cm Dðm;pÞ uD
n

� �2
dXn � Jn

Z
Xn

fD
dif ;n � qD

n dXn �
Jn

AS

Z
Xn

Xpþ1

m¼1

jm Dðm;pÞ fD
dif ;n

� �
� Dðm;pÞqD

n

� �
dXn

¼ �
Z

XS

ûD r̂ � f̂D
� �

dXS �
Z

CS

ûD f̂C � n̂
� �

dCS �
Z

XS

f̂D
dif � r̂ûD

� �
dXS �

Z
CS

ûC f̂D
dif � n̂

� �
dCS; ð63Þ
where constants cm and jm are related via Eqs. (42) and (A.3) to constants c and j, respectively, which parameterize the VCJH
correction fields /f ; j and wf ; j, respectively.
Proof. Consider subtracting Eq. (55) from Eq. (48) in order to obtain
Jn

2
d
dt

Z
Xn

uD
n

� �2
dXn � Jn

Z
Xn

fD
dif ;n � qD

n dXn ¼ �
Z

XS

ûD r̂ � f̂D þ r̂ � f̂C
� �

dXS �
Z

XS

f̂D
dif � r̂ûD þ r̂ûC

� �
dXS: ð64Þ
Next, consider multiplying Eq. (49) by cm and Eq. (56) by �jm, summing each equation over m, and adding the results to Eq.
(64) in order to obtain
Jn

2
d
dt

Z
Xn

uD
n

� �2
dXnþ

Jn

2AS

d
dt

Z
Xn

Xpþ1

m¼1

cm Dðm;pÞuD
n

� �2
dXn� Jn

Z
Xn

fD
dif ;n �qD

n dXn�
Jn

AS

Z
Xn

Xpþ1

m¼1

jm Dðm;pÞ fD
dif ;n

� �
� Dðm;pÞqD

n

� �
dXn

¼�
Z

XS

ûD r̂ � f̂Dþr̂� f̂C
� �

dXS�
Xpþ1

m¼1

cm Dðm;pÞ ûD
� �

Dðm;pÞ r̂ � f̂C
� �� �

�
Z

XS

f̂D
dif � r̂ûDþr̂ûC
� �

dXS

�
Xpþ1

m¼1

jm Dðm;pÞ f̂D
dif

� �
� Dðm;pÞ r̂ûC

� �� �
: ð65Þ
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Suppose that r̂ � f̂C and r̂ûC are constructed based on correction fields /f ; j ¼ r̂ � hf ; j and wf ; j ¼ r̂ � gf ; j, respectively, which
satisfy the following identities (that are satisfied if hf ; j and gf ; j are the VCJH correction functions as shown in [25])
Z

XS

hf ; j � r̂Li dXS �
Xpþ1

m¼1

cm Dðm;pÞ Li

� �
Dðm;pÞ/f ; j

� �
¼ 0; ð66Þ

Z
XS

gf ; j � r̂Li dXS �
Xpþ1

m¼1

jm Dðm;pÞ Li

� �
Dðm;pÞwf ; j

� �
¼ 0: ð67Þ
Appendix B shows that if Eqs. (66) and (67) hold, then the following results also hold
Xpþ1

m¼1

cm Dðm;pÞ ûD
� �

Dðm;pÞ r̂ � f̂C
� �� �

¼
Z

CS

ûD f̂C � n̂
� �

dCS �
Z

XS

ûD r̂ � f̂C
� �

dXS; ð68Þ

Xpþ1

m¼1

jm Dðm;pÞ f̂D
dif

� �
� Dðm;pÞ r̂ûC

� �� �
¼
Z

CS

ûC f̂D
dif � n̂

� �
dCS �

Z
XS

f̂D
dif � r̂ûC

� �
dXS: ð69Þ
Upon substituting Eqs. (68) and (69) into the RHS of Eq. (65), one obtains Eq. (63). This completes the proof of Lemma 4.3. h
Theorem 4.1. If the VCJH schemes on triangles (for which Lemmas 4.1–4.3 hold) are employed in conjunction with the Lax–Fried-
richs formulation for the advective numerical flux f I

adv
f I
adv ¼ fff

D
advgg þ

k
2

max
u2 uD

� ;u
D
þ½ �
@fadv

@u
� n

				
				

 !
suDt; ð70Þ
with 0 6 k 6 1, and the LDG formulation for the common solution uI and diffusive numerical flux f I
dif ,
uI ¼ ffuDgg � b � suDt; ð71Þ

f I
dif ¼ fff

D
dif gg þ ssuDtþ bsfD

dif t; ð72Þ
with b ¼ ðbx; byÞ and s P 0, then it can be shown that the following result holds
d
dt
kUDk2

p;c 6 0: ð73Þ
Proof. The fluxes f̂C and f̂D in Eq. (63) (from Lemma 4.3) can be expressed in terms of advective and diffusive parts: in par-

ticular f̂C ¼ f̂C
adv þ f̂C

dif and f̂D ¼ f̂D
adv þ f̂D

dif . In addition, the diffusive flux fdif ;n on the LHS of Eq. (63) is defined such that

fdif ;n ¼ �bqD
n (as mentioned previously). As a result, Eq. (63) becomes
Jn

2
d
dt

Z
Xn

uD
n

� �2 þ 1
AS

Xpþ1

m¼1

cm Dðm;pÞ uD
n

� �2
" #

dXn þ bJn

Z
Xn

qD
n � qD

n þ
1
AS

Xpþ1

m¼1

jm Dðm;pÞqD
n

� �
� Dðm;pÞqD

n

� �" #
dXn

¼ �
Z

XS

ûD r̂ � f̂D
adv

� �
dXS �

Z
CS

ûD f̂C
adv � n̂

� �
dCS �

Z
XS

ûD r̂ � f̂D
dif

� �
dXS �

Z
XS

r̂ûD � f̂D
dif

� �
dXS

�
Z

CS

ûD f̂C
dif � n̂

� �
dCS �

Z
CS

ûC f̂D
dif � n̂

� �
dCS: ð74Þ
Setting Eq. (74) aside for the moment, one may consider the following identity
ûDðr̂ � f̂D
advÞ ¼

1
2
r̂ � ðûD f̂D

advÞ; ð75Þ
which holds because f̂D
adv ¼ J�1

n aûD; J�1
n is a constant matrix, and a is a constant vector. On substituting Eq. (75) into the RHS of

Eq. (74), and employing the divergence theorem and integration by parts, one obtains
Jn

2
d
dt

Z
Xn

uD
n

� �2 þ 1
AS

Xpþ1

m¼1

cm Dðm;pÞ uD
n

� �2
" #

dXn þ b
Z

Xn

qD
n � qD

n þ
1
AS

Xpþ1

m¼1

jm Dðm;pÞqD
n

� �
� Dðm;pÞqD

n

� �" #
dXn

¼ �1
2

Z
CS

ûD f̂D
adv � n̂

� �
dCS �

Z
CS

ûD f̂C
adv � n̂

� �
dCS �

Z
CS

ûD f̂D
dif � n̂

� �
dCS �

Z
CS

ûD f̂C
dif � n̂

� �
dCS �

Z
CS

ûC f̂D
dif � n̂

� �
dCS: ð76Þ
Consider the following identities
ûjCS
¼ ûD þ ûC

�� 		
CS
¼ ûI; f̂ � n̂jCS

¼ f̂D þ f̂C
� �

� n̂jCS
¼ f̂ I � n̂; ð77Þ
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where (on each face Cf )
ûI ¼
XNfp

j¼1

ûI
f ; j l̂1D

f ; j ; f̂ I ¼
XNfp

j¼1

f̂ I
f ; j l̂1D

f ; j ; ð78Þ
and where each l̂1D
f ; j is a 1D Lagrange polynomial on face f which assumes the value of 1 at flux point j and assumes the value

of 0 at all neighboring flux points. One may use Eq. (77) to eliminate f̂C and ûC from Eq. (76), and thereafter one may use Eq.
(16) to transform the integrals on the RHS in order to obtain the following expression
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where the quantities uI , f I
adv , and f I

dif are defined (on each face Cf ) as
uI ¼
XNfp

j¼1

uI
f ; j l1D

f ; j ; f I
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XNfp
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f I
ðf ; jÞ adv l1D
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f I
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f ; j : ð80Þ
To obtain a description of the solution behavior within the entire domain, one must sum over all the elements in the mesh
(summing over n on Eq. (79)) as follows
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For constants cm and jm that satisfy 0 6 cm <1 and 0 6 jm <1, the expressions
kUDkp;c ¼
XN

n¼1

Z
Xn

uD
n

� �2 þ 1
AS

Xpþ1

m¼1

cm Dðm;pÞ uD
n

� �2
" #

dXn

( )1=2

ð82Þ
and
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are broken Sobolev-type norms of the solution UD and the auxiliary variable Q D, respectively. The expressions
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and
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ð85Þ
represent contributions from the advective and diffusive fluxes at the element boundaries. Using Eqs. (82)–(85), Eq. (81) can
be rewritten as
1
2

d
dt
kUDk2

p;c ¼ �bkQ Dk2
p;j þHadv þHdif : ð86Þ
On the RHS of Eq. (86), the term �bkQ Dk2
p;j is guarenteed to be non-positive for b P 0, and the terms Hadv and Hdif are guar-

anteed to be non-positive for appropriate choices of the common solution uI , and the common numerical fluxes f I
adv and f I

dif .
The Lax–Friedrichs formulation provides a suitable expression for fI

adv (Eq. (70)). Upon substituting fadv ¼ au into Eq. (70)
and taking the dot product with n, one obtains
f I
adv � n ¼ ffauDgg þ k

2
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þ
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; ð87Þ
where (on each face Cf )
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uD
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XNfp
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XNfp
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uD
ðf ; jÞ� l1D

f ; j ; ð88Þ
and where k is an upwinding parameter in the sense that k > 0 results in an upwind biased flux and k ¼ 0 results in a central
flux. Castonguay et al. [25] demonstrated that this choice for f I

adv ensures Hadv 6 0.
The LDG formulation provides suitable expressions for uI and fI

dif (Eqs. (71) and (72)). Upon expanding Eq. (71), one
obtains
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2
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; ð89Þ
and upon substituting fdif ¼ �bq into Eq. (72) and taking the dot product with n, one obtains
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where (on each face Cf )
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In what follows, it will be shown that this choice for uI and f I
dif ensures Hdif 6 0.

On substituting Eqs. (89) and (90) into the combination of Eqs. (85) and (86), and replacing uD
n and qD

n with uD
� and

qD
� ¼ ðqD

x�; q
D
y�Þ, respectively, one obtains
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The last term on the RHS of Eq. (92) can be rewritten as a sum over edges instead of a sum over elements. Assuming the
domain is such that periodic boundary conditions can be imposed, each edge receives contributions from two adjacent ele-
ments. Using the notation uD

e;þ, qD
xe;þ

, qD
ye;þ

and uD
e;�, qD

xe;�
, qD

ye;�
to define the solution and auxiliary variable from the elements on

the right and left sides of an edge, respectively, Eq. (92) becomes
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In the equation above, Ce represents edge e. Eq. (73) follows immediately from Eq. (93) because b P 0; s P 0, and Hadv 6 0
from [25]. This completes the proof of Theorem 4.1. h
Remark. Theorem 4.1 guarantees the stability of VCJH schemes for linear advection–diffusion problems on triangles. In
summary, this theorem was obtained assuming that:

1. The approximate solution UD is computed on a domain of straight-sided triangles, each with a constant value of Jn.
2. The correction functions (gf ; j and hf ; j) and fields (wf ; j and /f ; j) are the VCJH correction functions and fields defined in Sec-

tion 3 and Appendix A. This ensures that Eqs. (68) and (69) are satisfied, constants c and j are non-negative, and thus
kUDkp;c and kQ Dkp;j are norms.

3. The advective numerical flux is computed using the Lax–Friedrichs approach (Eq. (87)).
4. The common solution and diffusive numerical flux are computed using the LDG approach (Eqs. (89) and (90)).
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Note that, the stability proof has been constructed for the specific case in which the Lax–Friedrichs approach is used for
the advective numerical flux and the LDG approach is used for the common solution and diffusive numerical flux. However,
the proof still has broad applicability because the Lax–Friedrichs approach recovers the central and upwind approaches, and
the LDG approach recovers the BR1 and CF approaches. Furthermore, it appears that the proof can be extended to alternative
flux formulations, in particular to compact approaches such as the CDG, BR2, or IP approaches. However, such extensions are
beyond the scope of this article because, as discussed previously, this article is concerned with demonstrating the favorable
performance of VCJH discretizations paired with explicit time-stepping approaches, for which compactness is not necessarily
essential.

5. Linear numerical experiments

This section will investigate the orders of accuracy and explicit time-step limits associated with the VCJH schemes on tri-
angles by performing numerical experiments to solve the linear advection–diffusion equation.

Consider the 2D, time-dependent, linear advection–diffusion of a scalar u ¼ uðx; tÞ governed by Eqs. (46) and (47) in the
square domain ½�1;1� � ½�1;1�, subject to a sinusoidal initial condition uðx;0Þ ¼ sinðpxÞ sinðpyÞ, and periodic boundary con-
ditions. The exact solution takes the form
ue ¼ exp �2bp2t
� �

sin p x� axtð Þð Þ sin p y� ayt
� �� �

; ð94Þ
where ax ¼ a cos h and ay ¼ a sin h are the wave speeds in the x and y directions, and b is the diffusivity coefficient. Numerical
experiments were performed on two variants of this problem: a diffusion problem with a ¼ 0 and b ¼ 0:1, and an advection–
diffusion problem with a ¼ 1, b ¼ 0:1, and h ¼ p=6. These problems were solved using the VCJH schemes in conjunction with
a Lax–Friedrichs formulation for the advective numerical flux and a LDG formulation for the common solution and diffusive
numerical flux. The schemes were marched forward in time from t ¼ 0 to t ¼ 1 using an explicit, low-storage, 5-stage, 4th
order Runge–Kutta scheme for time advancement (denoted RK54) [37]. For the order of accuracy analysis, the time-step was
chosen sufficiently small to ensure that temporal errors were negligible relative to spatial errors.

In the experiments, VCJH schemes parameterized by c and j were paired with Lax–Friedrichs fluxes parameterized by k
and LDG fluxes parameterized by b and s. Values of c, j, k, b, and s were selected as follows:

� Choosing c and j: Four values of c, (namely, cdg , csd, chu, and cþ), have been shown to produce favorable results for advec-
tion problems on triangles [38]. For advection problems on triangles, Castonguay et al. [38,25] demonstrated that cdg

recovers a collocation-based nodal DG scheme (as mentioned previously), csd and chu recover schemes with properties
similar to the one-dimensional SD scheme [20] and Huynh’s g2 scheme [6], and finally cþ recovers a scheme which yields
a maximum explicit time-step limit. In the experiments documented in this paper, these four values of c were paired with
four equivalent values of j, namely, j ¼ jdg ¼ cdg , j ¼ jsd ¼ csd, j ¼ jhu ¼ chu, and j ¼ jþ ¼ cþ. Table 1 shows the
numerical values of c and j for polynomial orders p ¼ 2 and p ¼ 3, for several different time-stepping schemes, including
the RK54 time-stepping scheme.
Note that the experiments did not utilize values of c and j that were larger than cþ and jþ, as it has been shown that
choosing c 	 cþ and j	 jþ results in a significant reduction in the order of accuracy of VCJH schemes for 1D advec-
tion–diffusion problems [23].
� Choosing k: All of the numerical experiments were performed with k ¼ 1. This value of k ensures that the advective

numerical flux is computed using information exclusively from the upwind direction.
� Choosing b: All of the numerical experiments were performed with b ¼ �0:5n�. This value of b promotes compactness of

the scheme (as mentioned previously) [29,30].
Table 1
Reference values of c and j for p ¼ 2 and p ¼ 3, for the 3-stage, 3rd order Runge–Kutta scheme (RK33), the 4-stage,
4th order, Runge–Kutta scheme (RK44), and a 5-stage, 4th order, Runge–Kutta scheme (RK54) [37]. These values
were computed using von Neumann analysis (similar to the analysis performed in [25]) of the VCJH schemes on
uniform grids of right triangular elements.

p = 2 p = 3

RK33 cdg ¼ jdg 0 0
csd ¼ jsd 3.75e�03 1.23e�04
chu ¼ jhu 8.45e�03 2.19e�04
cþ ¼ jþ 2.61e�02 4.92e�04

RK44 cdg ¼ jdg 0 0
csd ¼ jsd 3.51e�03 1.13e�04
chu ¼ jhu 7.90e�03 2.01e�04
cþ ¼ jþ 2.44e�02 4.50e�04

RK54 cdg ¼ jdg 0 0
csd ¼ jsd 4.50e�03 1.17e�04
chu ¼ jhu 1.01e�02 2.08e�04
cþ ¼ jþ 3.13e�02 4.67e�04
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� Choosing s: All numerical experiments were performed with s ¼ 0:1. This value of s has been shown to yield favorable
results for linear advection–diffusion problems in 1D [23].

5.1. Orders of accuracy and explicit time step limits

The orders of accuracy were evaluated on regular triangular meshes created by dividing cartesian ~N � ~N quadrilateral
meshes into meshes with N ¼ 2~N2 triangular elements. Triangular meshes with ~N ¼ 16, 24, 32, 48, 64, 96, 128, and 192 were
created. On each mesh, errors in the solution and the solution gradient were measured using the following L2 norm and
seminorm
Table 2
VCJH sc
Values o
with ~N

c
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csd

chu

cþ
EðL2Þ ¼
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In Eqs. (95) and (96), the integrals over each element domain Xn were computed using a quadrature rule of sufficient
strength. The expected order of accuracy for EðL2Þ was pþ 1, and the expected order for EðL2sÞ was p, where h was the mesh
spacing. A single, representative value for each order of accuracy was determined using a linear least-squares fit of the error
vs. the mesh spacing on a log scale. For each least-squares curve fit, the correlation coefficient was greater than 0.999.

In addition to orders of accuracy, explicit time-step limits were obtained for the VCJH schemes. The explicit time-step
limit for each scheme was determined by using an iterative method to find the largest time-step that allowed the solution
to remain bounded at t ¼ 1.

For each of the schemes, Tables 2–4 contain values of the time-step limit and the absolute error obtained on the grid with
~N ¼ 32, along with the order of accuracy obtained on the sequence of grids described above. In particular, Tables 2 and 3
show the results for the diffusion problem, where the order of accuracy was obtained on grids with ~N ¼ 24, 32, 48, 64,
96, 128, and 192 for p ¼ 2 and ~N ¼ 16, 24, 32, 48, 64, 96, and 128 for p ¼ 3. Table 4 shows the results for the advection–dif-
fusion problem, where the order of accuracy was obtained on grids with ~N ¼ 16, 24, 32, 48, 64, 96, and 128 for p ¼ 3. Note
that the results for the diffusion and the advection–diffusion problems were similar, and thus limited results (only the re-
sults for p ¼ 3) are shown for the advection–diffusion problem.

The data in Tables 2–4 demonstrates that each scheme obtains the expected order of accuracy. In addition, the data dem-
onstrates that schemes with larger values of c and j have larger maximum time-steps. The best time-step improvements are
shown in Table 2 for p ¼ 2, c ¼ cþ, and j ¼ jþ, where the maximum time-step is approximately 2.2 times larger than that of
the collocation-based nodal DG scheme.

5.2. Summary of linear numerical experiments

It has been shown that schemes with small or moderate values of c and j (c K cþ and jKjþ) obtain the expected order of
accuracy for linear advection–diffusion problems on triangles. In particular, Tables 2–4 show that the VCJH schemes with
c ¼ cdg ; csd; chu, or cþ and j ¼ jdg ;jsd;jhu, or jþ, paired with the Lax–Friedrichs flux (with k ¼ 1) and the LDG flux (with
heme accuracy properties and explicit time-step limits for the model linear advection–diffusion problem on triangles with a ¼ 0, b ¼ 0:1, and p ¼ 2.
f k ¼ 1, b ¼ �0:5n� , and s ¼ 0:1 were used in the experiments. The time-step limit (Dtmax) and absolute errors (L2 and L2s err.) were obtained on the grid
¼ 32.

j L2 err. OðL2Þ L2s err. OðL2sÞ Dtmax

jdg 1.26e�05 3.00 1.29e�03 2.00 3.18e�04
jsd 1.27e�05 3.00 1.22e�03 2.00 3.77e�04
jhu 1.33e�05 3.00 1.19e�03 2.00 4.05e�04
jþ 1.72e�05 2.99 1.17e�03 2.00 4.51e�04

jdg 1.25e�05 3.00 1.29e�03 2.00 3.75e�04
jsd 1.27e�05 3.00 1.22e�03 2.00 4.37e�04
jhu 1.33e�05 3.00 1.19e�03 2.00 4.76e�04
jþ 1.72e�05 2.99 1.17e�03 2.00 5.42e�04

jdg 1.25e�05 3.00 1.30e�03 2.00 4.02e�04
jsd 1.27e�05 3.00 1.22e�03 2.00 4.73e�04
jhu 1.33e�05 3.00 1.19e�03 2.00 5.22e�04
jþ 1.72e�05 2.99 1.17e�03 2.00 6.04e�04

jdg 1.25e�05 3.00 1.30e�03 2.00 4.42e�04
jsd 1.27e�05 3.00 1.22e�03 2.00 5.33e�04
jhu 1.34e�05 3.00 1.19e�03 2.00 5.97e�04
jþ 1.74e�05 3.00 1.18e�03 2.00 7.07e�04



Table 3
VCJH scheme accuracy properties and explicit time-step limits for the model linear advection–diffusion problem on triangles with a ¼ 0, b ¼ 0:1, and p ¼ 3.
Values of k ¼ 1, b ¼ �0:5n� , and s ¼ 0:1 were used in the experiments. The time-step limit (Dtmax) and absolute errors (L2 and L2s err.) were obtained on the grid
with ~N ¼ 32.

c j L2 err. OðL2Þ L2s err. OðL2sÞ Dtmax

cdg jdg 2.63e�07 4.00 3.54e�05 3.00 1.23e�04
jsd 2.68e�07 4.00 3.46e�05 3.00 1.44e�04
jhu 2.75e�07 4.00 3.42e�05 3.00 1.50e�04
jþ 3.04e�07 3.99 3.34e�05 3.00 1.58e�04

csd jdg 2.63e�07 4.00 3.54e�05 3.00 1.45e�04
jsd 2.68e�07 4.00 3.46e�05 3.00 1.64e�04
jhu 2.75e�07 4.00 3.42e�05 3.00 1.72e�04
jþ 3.04e�07 3.99 3.34e�05 3.00 1.84e�04

chu jdg 2.63e�07 4.00 3.54e�05 3.00 1.51e�04
jsd 2.68e�07 4.00 3.46e�05 3.00 1.71e�04
jhu 2.75e�07 4.00 3.42e�05 3.00 1.79e�04
jþ 3.04e�07 3.99 3.34e�05 3.00 1.93e�04

cþ jdg 2.63e�07 4.00 3.54e�05 3.00 1.58e�04
jsd 2.68e�07 4.00 3.46e�05 3.00 1.83e�04
jhu 2.75e�07 4.00 3.42e�05 3.00 1.92e�04
jþ 3.05e�07 4.00 3.34e�05 3.00 2.07e�04

Table 4
VCJH scheme accuracy properties and explicit time-step limits for the model linear advection–diffusion problem on triangles with a ¼ 1, b ¼ 0:1, and p ¼ 3.
Values of k ¼ 1, b ¼ �0:5n� , and s ¼ 0:1 were used in the experiments. The time-step limit (Dtmax) and absolute errors (L2 and L2s err.) were obtained on the grid
with ~N ¼ 32.

c j L2 err. OðL2Þ L2s err. OðL2sÞ Dtmax

cdg jdg 2.62e�07 4.00 3.55e�05 2.99 1.22e�04
jsd 2.66e�07 3.99 3.47e�05 2.99 1.43e�04
jhu 2.71e�07 3.99 3.43e�05 2.99 1.48e�04
jþ 2.92e�07 3.96 3.36e�05 2.99 1.57e�04

csd jdg 2.62e�07 4.00 3.55e�05 2.99 1.43e�04
jsd 2.65e�07 3.99 3.47e�05 2.99 1.62e�04
jhu 2.70e�07 3.99 3.43e�05 2.99 1.69e�04
jþ 2.89e�07 3.96 3.35e�05 2.99 1.82e�04

chu jdg 2.62e�07 4.00 3.55e�05 2.99 1.49e�04
jsd 2.65e�07 3.99 3.47e�05 2.99 1.69e�04
jhu 2.69e�07 3.98 3.43e�05 2.99 1.77e�04
jþ 2.87e�07 3.96 3.35e�05 2.99 1.90e�04

cþ jdg 2.62e�07 4.00 3.55e�05 2.99 1.57e�04
jsd 2.64e�07 3.99 3.47e�05 2.99 1.81e�04
jhu 2.68e�07 3.98 3.43e�05 2.99 1.89e�04
jþ 2.82e�07 3.95 3.36e�05 2.99 2.04e�04
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b ¼ �0:5n� and s ¼ 0:1), recover the expected order of accuracy. In addition, a number of these schemes possess time-step
limits which are more than 2 times larger than that of the collocation-based nodal DG scheme.

Finally, although the results of experiments on triangles indicate favorable performance for schemes in which both j ¼ c
and j – c, for simplicity, the authors recommend schemes on triangles for which j ¼ c, i.e., schemes which involve pairing
jdg with cdg ;jsd with csd;jhu with chu, or jþ with cþ.

6. Nonlinear numerical experiments

Numerical experiments were performed using the Navier–Stokes (NS) equations to determine if the findings of the pre-
vious section extended to nonlinear problems. The NS equations can be written as follows
@U
@t
þr � FðU;rUÞ ¼ 0; ð97Þ
where U represents the conserved variables and F is the flux vector. The conserved variables are defined as U ¼ q;qu;qv ; Ef g,
where q ¼ q x; y; tð Þ is the density, u ¼ u x; y; tð Þ and v ¼ v x; y; tð Þ are the velocity components,
E ¼ p= c� 1ð Þ þ ð1=2Þq u2 þ v2

� �
is the total energy, p ¼ p x; y; tð Þ is the pressure, and c is the ratio of specific heats. The flux

vector F is composed from inviscid and viscous parts: F ¼ Finv Uð Þ � Fvisc U;rUð Þwhere Finv ¼ finv ; ginvð Þ and Fvisc ¼ fvisc; gviscð Þ.
The inviscid flux components are defined such that
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finv ¼

qu

qu2 þ p

quv
uðEþ pÞ

8>>><
>>>:

9>>>=
>>>;
; ginv ¼

qv
quv

qv2 þ p

vðEþ pÞ

8>>><
>>>:

9>>>=
>>>;
; ð98Þ
and the viscous flux components are defined such that
fvisc ¼ l

0
2ux þ kðux þ vyÞ

vx þ uy

u½2ux þ kðux þ vyÞ� þ vðvx þ uyÞ þ Cp

Pr
Tx

8>>>><
>>>>:

9>>>>=
>>>>;
;

gv isc ¼ l

0
vx þ uy

2vy þ kðux þ vyÞ
v ½2vy þ kðux þ vyÞ� þ uðvx þ uyÞ þ Cp

Pr
Ty

8>>>><
>>>>:

9>>>>=
>>>>;
; ð99Þ
where l is the dynamic viscosity, k is the bulk viscosity coefficient, T ¼ p= qRð Þ is the temperature, R is the gas constant, Cp is
the specific heat capacity at constant pressure, and Pr is the Prandtl number. In the viscous flux components, the terms with
subscripts x and y signify first derivatives in x and y (for example Ty ¼ @T

@y). These terms arise from the dependence of Fvisc on

rU. Following the approach of Section 2, rU can be eliminated and replaced by the auxiliary vector denoted by Q,
@U
@t
þr � FðU;QÞ ¼ 0; ð100Þ

Q �rU ¼ 0: ð101Þ
This operation eliminates second derivatives from the NS equations, and reduces them to a first-order system.

6.1. Couette flow

In what follows, the VCJH schemes are used to solve the NS equations for the ‘Couette flow’ problem. Couette flow occurs
between two infinite walls which are unbounded in the x� z plane, and separated by a distance of H in the y direction. One
wall is stationary with a temperature of Tw, and the other wall moves in the x direction with a speed of Uw and (the same)
temperature of Tw. For l ¼ const, the flow has an analytical solution where p ¼ const and the total energy E takes the follow-
ing form
E ¼ p
1

c� 1
þ

U w2

2R
y
H

� �2

Tw þ Pr U2
w

2Cp

y
H

� �
1� y

H

� �� �
2
4

3
5: ð102Þ
It is common practice to generate approximate solutions for Couette flow on finite domains with periodic boundary condi-
tions imposed. In following this approach, experiments were performed on the rectangular domain ½�1;1� � ½0;1�, with peri-
odic conditions imposed on the left and right boundaries, and isothermal wall conditions imposed on the upper and lower
boundaries. For the upper and lower isothermal walls, the temperature was given the value of T ¼ Tw ¼ 300 K and the pres-
sure was held constant. In addition, no-slip conditions were imposed on the lower wall, i.e., the velocity components on the
lower wall were given the values u ¼ 0 and v ¼ 0. Similarly, no-slip conditions were imposed on the upper wall (which was
required to move at a speed of Uw in the x direction), i.e., the velocity components on the upper wall were given the values
u ¼ Uw and v ¼ 0.

The boundary conditions (described above) were enforced on discretizations of the rectangular domain. The rectangular
domain was discretized by forming 2~N � ~N regular quadrilateral meshes and then splitting these meshes into grids with
N ¼ 4~N2 triangle elements. In this manner, structured grids with ~N ¼ 2, 4, 8, and 16 were formed. In addition, a complemen-
tary set of unstructured triangular grids with N ¼ 16, 64, 256, and 1024 elements was formed. Fig. 4 shows examples of the
structured and unstructured triangular grids for the cases of ~N ¼ 4 and N ¼ 64, respectively.

At time t ¼ 0, the flow on each domain was initialized with parameters Pr ¼ 0:72 and c ¼ 1:4, and with velocity compo-
nents u ¼ Uw and v ¼ 0, where Uw was chosen such that the Mach number M ¼ 0:2, and the Reynolds number (based on H)
was 200. The solution was marched forward in time using the RK54 approach and, at each time-step, the inviscid and viscous
numerical fluxes were computed using the Rusanov approach (with k ¼ 1) and the LDG approach (with b ¼ �0:5n� and
s ¼ 0:1). Each simulation was terminated after the residual reached machine zero. Results were obtained on the aforemen-
tioned structured and unstructured grids for polynomial orders p ¼ 2 and 3, for four different VCJH schemes defined by the
following pairings of c and j: (c ¼ cdg ;j ¼ jdg), (c ¼ csd;j ¼ jsd), (c ¼ chu;j ¼ jhu), and (c ¼ cþ;j ¼ jþ). Tables 5–10 contain
the absolute errors, orders of accuracy, and maximum time-step limits for each of these schemes. Absolute errors (and by
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Fig. 4. Structured and unstructured triangular grids for the cases of ~N ¼ 4 and N ¼ 64.
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extension orders of accuracy) were determined using L2 norms and seminorms of the errors in the total energy E and its
gradient rE. The time-step limits (Dtmax) were determined using an iterative method on the structured grid with ~N ¼ 8
and on the unstructured grid with N ¼ 256.

Tables 5–8 demonstrate that the expected order of accuracy is obtained for all four schemes, for p ¼ 2 and 3, on structured
and unstructured grids. In addition, Tables 9 and 10 demonstrate that increasing c and j increases the maximum time-step
limit on structured and unstructured grids. In particular, for p ¼ 2 on the structured grid with ~N ¼ 8, the scheme with c ¼ cþ
and j ¼ jþ has Dtmax ¼ 5.56e-03, while the collocation-based nodal DG scheme (recovered with c ¼ 0 and j ¼ 0) has Dtmax ¼
3.19e-03. Similarly, for p ¼ 2 on the unstructured grid with N ¼ 256, the scheme with c ¼ cþ and j ¼ jþ has Dtmax ¼ 4.96e-
03, while the collocation-based nodal DG scheme has Dtmax ¼ 2.88e-03.

Overall, the time-step improvements originally observed for linear problems, for larger values of c and j, have been
shown to extend to nonlinear problems on structured and unstructured grids. Furthermore, these improvements appear
to preserve accuracy (for the most part), as the expected order of accuracy was obtained for the vast majority of numerical
experiments in this section.
6.2. Flow around SD7003 airfoil

In what follows, the VCJH schemes are employed to simulate the flow around an SD7003 airfoil. The SD7003 geometry is
that of a low Reynolds number Selig/Donovan (SD) airfoil that has a maximum thickness of 9.2 percent at 30.9 percent chord,
and a maximum camber of 1.2 percent at 38.3 percent chord [39]. Numerical experiments on the SD7003 geometry were
performed on a circular domain with a radius of 50 chord-lengths, centered at the leading edge of the airfoil. Characteristic
boundary conditions were prescribed on the outermost edge of the circular domain and adiabatic wall boundary conditions
were prescribed on the surface of the airfoil. The computational domain was discretized into an unstructured grid with
N ¼ 25;810 triangular elements, as shown in Fig. 5. It should be noted, that, in order to facilitate the accurate representation
of the SD7003 geometry, the edges of the triangular elements on the unstructured grid were defined in terms of 2nd order,
quadratic polynomials.

At time t ¼ 0, a uniform flow with the properties of air (Pr ¼ 0:72; c ¼ 1:4) was initialized on the unstructured triangular
grid. The incoming flow was given a Mach number of M ¼ 0:2, a Reynolds number of 10,000, and an angle of entry of 4
 (in
order to simulate an angle of attack of a ¼ 4
). The solution was marched forward in time using the RK54 approach and, at
each time-step, the inviscid and viscous numerical fluxes were computed using the Rusanov approach (with k ¼ 1) and the
LDG approach (with b ¼ �0:5n� and s ¼ 0:1). Results from each simulation were evaluated after the lift and drag reached a
pseudo-periodic state. Results were obtained on the unstructured grid with N = 25,810 for p ¼ 2, for VCJH schemes with
c ¼ cdg and j ¼ jdg , and c ¼ cþ and j ¼ jþ. Table 11 compares the time-averaged values of the lift and drag coefficients



Table 5
Accuracy of VCJH schemes for the Couette flow problem on structured triangular grids, for p ¼ 2. The inviscid and viscous numerical fluxes were computed
using a Rusanov flux with k ¼ 1 and a LDG flux with s ¼ 0:1 and b ¼ �0:5n� .

c;j Grid L2 err. OðL2Þ L2s err. OðL2sÞ

cdg ;jdg ~N ¼ 2 3.02e�05 5.58e�04
~N ¼ 4 3.19e�06 3.24 1.09e�04 2.36
~N ¼ 8 3.61e�07 3.14 2.37e�05 2.20
~N ¼ 16 4.37e�08 3.05 6.11e�06 1.95

csd;jsd ~N ¼ 2 3.02e�05 4.94e�04
~N ¼ 4 3.19e�06 3.24 9.93e�05 2.32
~N ¼ 8 3.61e�07 3.14 2.19e�05 2.18
~N ¼ 16 4.37e�08 3.05 5.61e�06 1.96

chu;jhu ~N ¼ 2 3.02e�05 4.61e�04
~N ¼ 4 3.19e�06 3.24 9.44e�05 2.29
~N ¼ 8 3.61e�07 3.14 2.10e�05 2.17
~N ¼ 16 4.37e�08 3.05 5.34e�06 1.98

cþ;jþ ~N ¼ 2 3.02e�05 4.20e�04
~N ¼ 4 3.19e�06 3.24 8.90e�05 2.24
~N ¼ 8 3.61e�07 3.14 2.01e�05 2.15
~N ¼ 16 4.39e�08 3.04 5.04e�06 1.99

Table 6
Accuracy of VCJH schemes for the Couette flow problem on structured triangular grids, for p ¼ 3. The inviscid and viscous numerical fluxes were computed
using a Rusanov flux with k ¼ 1 and a LDG flux with s ¼ 0:1 and b ¼ �0:5n� .

c;j Grid L2 err. OðL2Þ L2s err. OðL2sÞ

cdg ;jdg ~N ¼ 2 9.54e�07 2.80e�05
~N ¼ 4 5.99e�08 3.99 3.93e�06 2.83
~N ¼ 8 3.78e�09 3.99 5.01e�07 2.97
~N ¼ 16 2.40e�10 3.97 6.11e�08 3.04

csd;jsd ~N ¼ 2 9.53e�07 2.76e�05
~N ¼ 4 5.98e�08 3.99 3.88e�06 2.83
~N ¼ 8 3.77e�09 3.99 4.96e�07 2.97
~N ¼ 16 2.39e�10 3.98 6.05e�08 3.04

chu;jhu ~N ¼ 2 9.53e�07 2.77e�05
~N ¼ 4 5.97e�08 4.00 3.89e�06 2.83
~N ¼ 8 3.76e�09 3.99 4.96e�07 2.97
~N ¼ 16 2.39e�10 3.98 6.05e�08 3.04

cþ;jþ ~N ¼ 2 9.52e�07 2.81e�05
~N ¼ 4 5.97e�08 4.00 3.91e�06 2.84
~N ¼ 8 3.76e�09 3.99 4.99e�07 2.97
~N ¼ 16 2.38e�10 3.98 6.08e�08 3.04
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for each of the schemes with the values obtained from the numerical experiments in [40]. In addition, Fig. 6 shows the den-
sity and vorticity contours obtained via the scheme with c ¼ cþ and j ¼ jþ.

The data in Table 11 demonstrates that the results produced by the VCJH schemes are in close agreement with the results
independently obtained by [40]. Overall, based on the tabulated data and the results in Fig. 6, it appears that the VCJH
schemes are successful in simulating the temporal variation of lift and drag forces, and in accurately representing the rapidly
evolving vortex structures that are formed in the shear layer that emanates from the trailing edge of the airfoil.
7. Conclusions

A FR formulation for solving advection–diffusion problems on triangular meshes has been presented. It has been proven
that the formulation will be linearly stable for all orders of accuracy if the correction fields on triangles are chosen to be of
VCJH type. Linear numerical experiments have demonstrated that certain schemes possess increased explicit time-step lim-
its (compared with collocation-based nodal DG schemes of the same order), while maintaining the expected order of accu-



Table 7
Accuracy of VCJH schemes for the Couette flow problem on unstructured triangular grids, for p ¼ 2. The inviscid and viscous numerical fluxes were computed
using a Rusanov flux with k ¼ 1 and a LDG flux with s ¼ 0:1 and b ¼ �0:5n� .

c;j Grid L2 err. OðL2Þ L2s err. OðL2sÞ

cdg ;jdg N ¼ 16 6.32e�05 1.28e�03
N ¼ 64 3.88e�06 4.03 1.38e�04 3.22
N ¼ 256 3.87e�07 3.33 2.54e�05 2.44
N ¼ 1024 4.51e�08 3.10 6.27e�06 2.02

csd;jsd N ¼ 16 6.31e�05 1.15e�03
N ¼ 64 3.88e�06 4.03 1.27e�04 3.18
N ¼ 256 3.87e�07 3.33 2.36e�05 2.43
N ¼ 1024 4.50e�08 3.10 5.77e�06 2.03

chu;jhu N ¼ 16 6.31e�05 1.09e�03
N ¼ 64 3.87e�06 4.03 1.22e�04 3.15
N ¼ 256 3.86e�07 3.32 2.27e�05 2.43
N ¼ 1024 4.50e�08 3.10 5.49e�06 2.05

cþ;jþ N ¼ 16 6.30e�05 1.00e�03
N ¼ 64 3.86e�06 4.03 1.16e�04 3.11
N ¼ 256 3.86e�07 3.32 2.17e�05 2.41
N ¼ 1024 4.52e�08 3.09 5.19e�06 2.07

Table 8
Accuracy of VCJH schemes for the Couette flow problem on unstructured triangular grids, for p ¼ 3. The inviscid and viscous numerical fluxes were computed
using a Rusanov flux with k ¼ 1 and a LDG flux with s ¼ 0:1 and b ¼ �0:5n� .

c;j Grid L2 err. OðL2Þ L2s err. OðL2sÞ

cdg ;jdg N ¼ 16 1.75e�06 4.91e�05
N ¼ 64 7.77e�08 4.50 4.89e�06 3.33
N ¼ 256 4.22e�09 4.20 5.47e�07 3.16
N ¼ 1024 2.48e�10 4.09 6.27e�08 3.13

csd;jsd N ¼ 16 1.75e�06 4.69e�05
N ¼ 64 7.76e�08 4.50 4.79e�06 3.29
N ¼ 256 4.20e�09 4.21 5.40e�07 3.15
N ¼ 1024 2.47e�10 4.09 6.21e�08 3.12

chu;jhu N ¼ 16 1.75e�06 4.66e�05
N ¼ 64 7.75e�08 4.50 4.79e�06 3.28
N ¼ 256 4.20e�09 4.21 5.39e�07 3.15
N ¼ 1024 2.47e�10 4.09 6.21e�08 3.12

cþ;jþ N ¼ 16 1.75e�06 4.65e�05
N ¼ 64 7.74e�08 4.50 4.81e�06 3.27
N ¼ 256 4.19e�09 4.21 5.41e�07 3.15
N ¼ 1024 2.46e�10 4.09 6.24e�08 3.12

Table 9
Explicit time-step limits (Dtmax) of VCJH schemes on the structured triangular grid with ~N ¼ 8 for the Couette flow problem, for
p ¼ 2 and 3. The inviscid and viscous numerical fluxes were computed using a Rusanov flux with k ¼ 1 and a LDG flux with
s ¼ 0:1 and b ¼ �0:5n� .

p ¼ 2 p ¼ 3

cdg ;jdg 3.19e�03 1.84e�03
csd;jsd 4.03e�03 2.29e�03
chu;jhu 4.58e�03 2.44e�03
cþ;jþ 5.56e�03 2.67e�03

Table 10
Explicit time-step limits (Dtmax) of VCJH schemes on the unstructured triangular grid with N ¼ 256 for the Couette flow
problem, for p ¼ 2 and 3. The inviscid and viscous numerical fluxes were computed using a Rusanov flux with k ¼ 1 and a LDG
flux with s ¼ 0:1 and b ¼ �0:5n� .

p ¼ 2 p ¼ 3

cdg ;jdg 2.88e�03 1.57e�03
csd;jsd 3.62e�03 1.93e�03
chu;jhu 4.07e�03 2.06e�03
cþ;jþ 4.96e�03 2.27e�03
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Fig. 5. Views of the unstructured triangular grid with N ¼ 25;810 elements around the SD7003 airfoil geometry.

Table 11
Time-averaged values of the lift and drag coefficients for the SD7003 airfoil in air flow with Re ¼ 10; 000. The flow was
simulated using the VCJH schemes with p ¼ 2, c ¼ cdg , j ¼ jdg and c ¼ cþ , j ¼ jþ in conjunction with the Rusonav flux
with k ¼ 1 and the LDG flux with b ¼ �0:5n� and s ¼ 0:1 on the unstructured triangular grid with N ¼ 25;810
elements.

Source CL CD

Uranga et al. [40] 0.3755 0.04978
cdg ;jdg 0.3719 0.04940
cþ;jþ 0.3713 0.04935

Fig. 6. Density and vorticity contours for the flow with Re ¼ 10;000 around the SD7003 airfoil. The flow was simulated using the VCJH scheme with c ¼ cþ ,
j ¼ jþ , and p ¼ 2 in conjunction with the Rusonav flux with k ¼ 1 and the LDG flux with b ¼ �0:5n� and s ¼ 0:1 on the unstructured triangular grid with
N ¼ 25;810 elements.
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racy. Furthermore, nonlinear numerical experiments (involving the Navier–Stokes equations) have demonstrated that the
favorable performance of these schemes will likely extend to real-world problems.
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Appendix A. VCJH correction fields and their role as lifting operators

Consider the vector correction function gf ; j and scalar correction field (‘lifting operator’) wf ; j, where wf ; j ¼ r̂ � gf ; j. The cor-
rection field wf ; j can be classified as a ‘VCJH correction field’ if it takes the following form
wf ; j ¼
XNp

k¼1

mkLkðrÞ; ðA:1Þ
where each LkðrÞ is an orthonormal polynomial of degree 6 p (defined on XS), and each coefficient mk is obtained from the
following system of equations
XNp

k¼1

mk

Xpþ1

m¼1

jm Dðm;pÞLi

� �
Dðm;pÞLk

� �
¼ �mi þ

Z
CS

gf ; j � n̂
� �

LidCs for 1 6 i 6 Np; ðA:2Þ
where each Dðm;pÞ is a derivative operator of degree p (defined by Eq. (41) in Section 3).
In Eq. (A.2), each constant jm is defined as
jm ¼ j
p

m� 1

� �
¼ j

p!

ðm� 1Þ!ðp�mþ 1Þ!

� �
; 0 6 j 61; ðA:3Þ
and hence the correction fields wf ; j are parameterized by the scalar j.
As currently constructed, the correction fields wf ; j possess an important ability to act as ‘lifting operators’, which trans-

form ûC defined on the element boundary CS into r̂ûC defined within the element interior XS, according to the following
identity
Z

XS

r̂ûC dXS ¼
Z

CS

ûCn̂dCS: ðA:4Þ
In what follows, the derivation of this identity will be examined.
First, recall that wf ; j ¼ r̂ � gf ; j, and thus according to the divergence theorem, gf ; j and wf ; j are related as follows
Z

XS

wf ; j dXS ¼
Z

CS

gf ; j � n̂ dCS: ðA:5Þ
The quantity gf ; j � n̂ (which satisfies Eq. (34) with gf ; j in place of hf ; j) vanishes on all faces except for face f. As a result, Eq.
(A.5) becomes
Z

XS

wf ; j dXS ¼
Z

Cf

gf ; j � n̂f ; j dCf : ðA:6Þ
Multiplying Eq. (A.6) by ûC
f ; j and n̂f ; j, and summing over f and j yields
Z
XS

X3

f¼1

XNfp

j¼1

ûC
f ; jwf ; jn̂f ; j dXS ¼

X3

f¼1

Z
Cf

XNfp

j¼1

ûC
f ; j gf ; j � n̂f ; j

� �
n̂f ; j dCf

" #
: ðA:7Þ
Substituting Eq. (24) into this equation, and replacing the term gf ; j � n̂f ; j with the 1D Lagrange polynomial l̂1D
f ; j (because

gf ; j � n̂f ; j satisfies Eq. (34) and gf ; j 2 RTpðXSÞ), one obtains
Z
XS

r̂ûC dXS ¼
X3

f¼1

Z
Cf

XNfp

j¼1

ûC
f ; j l̂1D

f ; j n̂f ; j dCf

" #
: ðA:8Þ
Note that the 1D Lagrange polynomial l̂1D
f ; j is a degree p polynomial on face f, which takes on the value of 1 at flux point j, and

the value of 0 at all other flux points on the face.
A corollary to the divergence theorem requires that
Z

XS

r̂ûC dXS ¼
Z

CS

ûCn̂dCS ¼
X3

f¼1

Z
Cf

ûC jCf
n̂f dCf

" #
: ðA:9Þ
From Eqs. (A.8) and (A.9), one obtains
X3

f¼1

Z
Cf

ûC jCf
n̂f dCf

" #
¼
X3

f¼1

Z
Cf

XNfp

j¼1

ûC
f ; j l̂1D

f ; j n̂f ; j dCf

" #
: ðA:10Þ
Each domain Cf is arbitrary (as the standard element and its associated faces can be chosen arbitrarily) and thus the inte-
grands in Eq. (A.10) must be equal. Consequently, ûC on CS takes the form
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ûC jCf
¼
XNfp

j¼1

ûC
f ; j l̂1D

f ; j ûC jCS
¼

ûC jC1
on C1

ûC jC2
on C2

ûC jC3
on C3

:

8>><
>>: ðA:11Þ
In conclusion, the VCJH correction fields wf ; j serve as ‘lifting operators’, because they provide a relationship (given by Eq.
(A.9)) between ûC defined on CS (Eq. (A.11)) and r̂ûC defined within XS (Eq. (24)).

Appendix B. Supplemental derivations for the stability proof

In what follows, Eqs. (68) and (69) for Lemma 4.3 are derived.
Upon performing integration by parts on Eq. (66) and rearranging the result, one obtains
Z

CS

hf ; j � n̂
� �

Li dCS ¼
Z

XS

/f ; jLi dXS þ
Xpþ1

m¼1

cm Dðm;pÞLi

� �
Dðm;pÞ/f ; j

� �
: ðB:1Þ
Note that ûD 2 Pp XSð Þ can be written as a linear combination of the orthonormal polynomials Li. As a result, Eq. (B.1) can be
rewritten in terms of ûD as follows
Z

CS

hf ; j � n̂
� �

ûD dCS ¼
Z

XS

/f ; j ûD dXS þ
Xpþ1

m¼1

cm Dðm;pÞûD
� �

Dðm;pÞ/f ; j

� �
: ðB:2Þ
On multiplying Eq. (B.2) by Df ; j and summing over f and j, one obtains
Z
CS

X3

f¼1

XNfp

j¼1

Df ; j hf ; j � n̂
 !

ûD dCS ¼
Z

XS

X3

f¼1

XNfp

j¼1

Df ; j /f ; j

 !
ûD dXS þ

Xpþ1

m¼1

cm Dðm;pÞûD
� �

Dðm;pÞ
X3

f¼1

XNfp

j¼1

Df ; j /f ; j

 ! !
: ðB:3Þ
Upon substituting the definition of f̂C (Eq. (35)) into Eq. (B.3) and rearranging the result, one obtains Eq. (68).
Eq. (69) can be obtained as follows. Consider performing integration by parts on Eq. (67) and rearranging the result, in

order to obtain
Z
CS

gf ; j � n̂
� �

Li dCS ¼
Z

XS

wf ; jLi dXS þ
Xpþ1

m¼1

jm Dðm;pÞLi

� �
Dðm;pÞwf ; j

� �
: ðB:4Þ
On the LHS, gf ; j � n̂ vanishes on all faces except for face f (as required by Eq. (34)). As a result, Eq. (B.4) becomes
Z
Cf

gf ; j � n̂f ; j

� �
Li dCf ¼

Z
XS

wf ; jLi dXS þ
Xpþ1

m¼1

jm Dðm;pÞLi

� �
Dðm;pÞwf ; j

� �
: ðB:5Þ
Because ðf̂D
dif � n̂f ; jÞ 2 Pp XSð Þ, it can be expressed as a linear combination of the orthonormal polynomials Li and therefore, Eq.

(B.5) can be rewritten with ðf̂D
dif � n̂f ; jÞ in place of Li as follows
Z

Cf

gf ; j � n̂f ; j

� �
f̂D

dif � n̂f ; j

� �
dCf ¼

Z
XS

wf ; j f̂D
dif � n̂f ; j

� �
dXS þ

Xpþ1

m¼1

jm Dðm;pÞ f̂D
dif � n̂f ; j

� �� �
Dðm;pÞwf ; j

� �
: ðB:6Þ
On multiplying Eq. (B.6) by ûC
f ; j and summing over f and j, one obtains
X3

f¼1

Z
Cf

XNfp

j¼1

ûC
f ; j gf ; j � n̂f ; j

� �
f̂D

dif � n̂f ; j

� �
dCf

" #
¼
Z

XS

f̂D
dif �

X3

f¼1

XNfp

j¼1

ûC
f ; j wf ; jn̂f ; j

 !
dXS þ

Xpþ1

m¼1

jm Dðm;pÞðf̂D
dif Þ

� Dðm;pÞ
X3

f¼1

XNfp

j¼1

ûC
f ; j wf ; jn̂f ; j

 !
: ðB:7Þ
Upon combining Eqs. (24), (A.11), and (B.7) and rearranging the result, one obtains Eq. (69).
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