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SUMMARY

The combination of a high-order unstructured spectral difference (SD) spatial discretization scheme with
sub-grid scale (SGS) modeling for large-eddy simulation is investigated with particular focus on the
consistent implementation of a structural mixed model based on the scale similarity hypothesis. The difficult
task of deriving a consistent formulation for the discrete filter within the SD element of arbitrary order
led to the development of a new class of three-dimensional constrained discrete filters. The discrete filters
satisfy a set of selected criteria and are completely local within the SD element. Their weights can be auto-
matically computed at run time from the number of solution points within each element and the expected
filter cutoff length scale. The novel discrete filters can be applied to any SGS model involving explicit
filtering and to a broad class of high-order discontinuous finite element numerical schemes. The code is
applied to the computation of turbulent channel flows at three Reynolds numbers, namely Re; = 180, 395,
and 590 (based on the friction velocity u; and channel half-width §). Results from computations with
and without the SGS model are compared against results from direct numerical simulation. The numerical
experiments suggest that the results are sensitive to the use of the SGS model, even when a high-order
numerical scheme is used, especially when the grid resolution is kept relatively low and mostly in terms of
resolved Reynolds stresses. Results obtained using existing filters based on the projection of the solution
over lower-order polynomial bases are also shown and demonstrate that these filters are inadequate for SGS
modeling purposes, mostly because of their inability to enforce the selected cutoff length scale with sufficient
accuracy. The use of the similarity mixed formulation proved to be particularly accurate in reproducing SGS
interactions, confirming that its well-known potential can be realized in conjunction with state-of-the-art
high-order numerical schemes. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Because of the continuous and growing development of available computational resources during
the last decade, there has been an increased interest in the use of large-eddy simulation (LES) for
simulating engineering flows of practical interest. Many engineering applications—for example,
those involving vortex-dominated flow dynamics, transitional or massively detached flows, turbulent
mixing and combustion, or aerodynamic noise—require the numerical simulation of flows over
complex geometries with a level of detail that the most widely used Reynolds averaged Navier—
Stokes (RANS) simulations cannot fulfill. For such applications, LES represents the most efficient
approach.

Notwithstanding the considerable effort that has been devoted to the development of accurate
and relatively reliable sub-grid scale (SGS) models for LES, in most cases, the underlying
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numerical methods available within the framework of industrial CFD applications rely upon highly
dissipative schemes. The inherent numerical dissipation introduced by such numerical schemes
limits their ability to correctly represent the high frequency range of the spectrum of turbulence.

On the other hand, caution should be exercised when using less dissipative high-order numerical
methods to perform implicit LES without any SGS model, namely compute a truncated turbulent
spectrum designating whatever amount of numerical dissipation method brought by the numerical
scheme to set small-scale dissipation. Depending on the problem under study and the grid resolu-
tion used in the computation, it is uncertain whether such an approach would produce accurate and
useful results. In fact, numerical dissipation can supposedly handle dissipative processes, which are
confined to small scales, but can certainly not reproduce complex interactions between large and
small scales, which are often observed in LES.

Hence, it is necessary to combine high-order numerical schemes with advanced SGS modeling
techniques for LES to become a valuable and reliable tool for fundamental flow physics and indus-
trial applications. Unfortunately, most of the available high-order numerical schemes are designed
to be used on Cartesian or very smooth structured curvilinear meshes [1-5], and therefore, they are
inadequate to simulate turbulent flows over complex geometries. In the current work, a high-order
unstructured solver is combined with an explicit filtering LES method, thus allowing highly accurate
turbulent flow computations on realistic geometries that were previously possible with low-order
schemes only.

High-order numerical schemes for solving the compressible Navier—Stokes equations on unstruc-
tured grids have been widely studied during the last decade. By far, the most mature and widely
used of these schemes are based on the discontinuous Galerkin (DG) method [6,7]. However, several
alternative high-order methods have been recently proposed, including spectral difference (SD)-type
schemes [8—15], which potentially offer increased efficiency compared with DG methods (as well
as being simpler to implement). It has recently been demonstrated [16—18] that, for the case of one-
dimensional (1D) linear advection, both SD-type and nodal DG-type schemes can be formulated
within a unifying flux reconstruction (FR) framework [9]. Such a unifying framework is efficient, is
straightforward to implement, and allows direct comparisons to be made between various SD and
DG methods. The extension of the FR methodology to a variety of element shapes and the consistent
inclusion of viscous terms have also been recently addressed [19-21].

In the present work, a compressible solver for three-dimensional unstructured hexahedral grids
based on the SD scheme is adopted. The scheme from the energy-stable FR formalism by setting the
relevant stability constant accordingly (see Vincent et al. [17] and Section 3.5.2 therein for details).
In this respect, the SD scheme is taken as a representative of the broader class of FR and DG
methods. The SD method has been successfully applied to viscous compressible flows with shocks
[22], implicit LES of turbulent channel flow [23], and flow around circular cylinders [24-26], as
well as transitional flows over an SD7003 airfoil [27]. The combination of the SD method with
SGS modeling techniques for explicit LES, on the other hand, has not been widely studied. Parsani
et al. [28] obtained encouraging results using the wall-adapting local eddy viscosity (WALE) [29]
model, but their analysis was restricted to two-dimensional flows. A three-dimensional computa-
tion of turbulent flow in a muffler at Re = 46,650 was also reported [30]. In this study, focus is
given to the more challenging implementation of a structural SGS model based on the scale sim-
ilarity assumption [31, 32], namely the WALE Similarity Mixed model, hereafter indicated as the
WSM model, proposed by Lodato et al. [33]. Note that, compared with functional models such as
those based on the eddy viscosity assumption, which are designed to reproduce the effects of SGS
terms on the resolved flow field by means of the divergence of the SGS tensor, structural models
are designed to reproduce the structure of the SGS stress tensor itself and hence can generally attain
relatively high levels of correlation at tensor level [34,35].

The development of efficient approaches to filter the solution obtained from high-order finite
element numerical schemes, such as the SD method used here, is not straightforward. The pecu-
liar distribution of points within the element and the requirement of locality of the numerical filter
operator therein lead inevitably to asymmetric filtering operators acting on non-uniform points.
In this scenario, designing operators with sufficiently controlled properties turns out to be extremely
difficult, especially when the desired cutoff length scale is smaller than twice the element resolution
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(as would be the case for a dynamic modeling approach). Existing techniques that involve projection
on polynomial bases of lower order or sharp cutoff in modal space [22,36,37] do not allow any direct
control on the cutoff length scale which, as will be shown in Section 2.3, can result significantly
overestimated. Their applicability is hence limited to dynamic models, which adopt wider filters and
where the necessary averaging procedures can supposedly mitigate the numerical deficiencies of the
filtering operators. In cases where the cutoff length of the filter needs to be accurately prescribed,
more suitable filtering strategies has to be developed, as reported in this work.

To the authors’ knowledge, the present work represents the first implementation of a structural
SGS model in a three-dimensional solver that uses the SD method. Moreover, the proposed imple-
mentation of constrained discrete filters of arbitrary order is suitable for any kind of high-order
discontinuous finite element method that uses elements that allow tensor product (e.g., hexahedral
elements) including the FR and nodal DG methods.

2. MATHEMATICAL FORMULATION

2.1. The numerical scheme

In the present work, the Navier—Stokes equations are solved using the high-order unstructured SD
spatial discretization. The formulation of the equations on hexahedral grids is similar to the formu-
lation by Sun et al. [13], which is here summarized for completeness. The unsteady compressible
Navier—Stokes equations in conservative form are written as

o, L 0
ot Xy o
where U = (p pui pur pus pe )7 is the vector of conservative variables and F¥ =

F Ik — D accounts for the inviscid and viscous flux vectors, which are defined as

PUK 0
purtg + 81k p 2p Ak
Ff = | pugup + 8 p and D¥ = 2 Ask ) )
pusiy + 83 p 2 Ask
(pe + p)uk 2puj Agy + B Fe

In the preceding equations, p is the fluid’s density, uy is the velocity vector, e is the total energy
(internal + kinetic), u is the dynamic viscosity, A;; is the deviatoric part of the deformation tensor,
cp is the specific heat capacity at constant pressure, and Pr is the Prandtl number.

For an efficient implementation to be achieved, all elements in the physical domain are trans-
formed to a standard cubic element described by local coordinates & = (£, &, £3), with & € [0: 1]3.
The relevant transformation can be written as

Ny '
xi(€) =) M;jEx], (=123) 3)

Jj=1

where N, is the number of points used to define the physical elements, xij are the Cartesian coor-
dinates at those points, and M ; (&) are the shape functions. The governing equations in the physical
domain are then transferred into the computational domain, where they take the form

u  dF*
— 4+ — =0, 4
T Ak @)
in which
b .
U=|det(J)|U and F*= |det(J)|aiFf 5)
Xj

and det(J') represents the determinant of the Jacobian matrix J;; = dx; /0§;.
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Within each standard element, two sets of points are defined, namely the solution points and
the flux points, as schematically illustrated in Figure 1 for a two-dimensional element. For a degree
(N —1) polynomial to be constructed in each coordinate direction, solutions at N points are required.
Note that, in a recent work, Jameson [16] utilized an FR formulation [9] to prove that the SD method
is linearly stable for all orders of accuracy, provided that the interior flux points are placed at the
Gauss-Legendre quadrature points. Moreover, for the non-linear case, the choice of locating the
solution points at the Gauss—Legendre quadrature points is optimal in reducing aliasing errors and
providing good conditioning [38]. Accordingly, the N solution points in 1D are chosen to be the
Gauss—Legendre quadrature points, which are obtained as the roots of the equation

Py ) =2 Lepy ) - Y Py @) =0 ©)
where Py () is the Legendre polynomial of order N, Py(¢) =1, P1({) = ¢, and ¢ = 2& — 1.

The flux points are selected to be the Gauss—Legendre quadrature points of order N — 1 plus the
two end points 0 and 1. The fluxes at the interior points are calculated from the interpolated states
defined by the solution polynomial, whereas the flux at each endpoint is calculated as a common
interface flux depending on the left and right values at the interface. Using the solutions at N solu-
tion points, a degree (N — 1) polynomial can be built is obtained using the following Lagrange basis

defined as

N

hi@E = ]] (g__i) (7)

s=1,s#i

Similarly, using the fluxes at (N + 1) flux points, a degree N polynomial is obtained for the flux
using the Lagrange basis

N
liv1726) = l_[ (m) (8)

0ok Eiv12—&sv1)2

The reconstructed solution for the conserved variables in the standard element is then obtained as
the tensor product of the three 1D polynomials,

N N N
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Figure 1. Position of solution (circles) and flux (squares) points on the standard third-order two-dimensional
spectral difference element.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fid



DISCRETE FILTERS FOR LES WITH SPECTRAL DIFFERENCE METHODS

where i, j, and k are the indices of the solution points within each standard element. Similarly, the
reconstructed flux polynomials take the following form:

M=
M=
M=

Fl&) = Fiirjagxlitr2) hj(E) hi(63), (10)
k=1j=1i=0
N N N
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A Riemann solver is employed to compute the common inviscid flux at each cell interface to
ensure both conservation and stability. In the current implementation, the Roe solver [39] with
entropy fix [40] was used. The left and right states represent here the solution on both sides of
the shared edge flux point. The viscous flux is a function of both the conserved variables and their
gradients; therefore, the solution gradients have to be calculated at the flux points. The average
approach described by Sun et al. [13] is used to compute the viscous fluxes at the cell interfaces.
Time integration is performed using a third-order total variation diminishing Runge—Kutta scheme
[41,42].

2.2. LES modeling approach

Within the framework of LES, large scales are directly resolved, whereas small scales (of the order
of a cutoff length A, or less) are not. Such a length scale separation is achieved in physical space
by means of the low-pass filter operation at A,. The filtering operation can be explicitly performed
on the numerical solution obtained on a relatively fine mesh, or as is common practice, the compu-
tational grid is supposed to inherently perform the filtering operation, such that the results obtained
from the computation may be regarded as being representative of filtered quantities, the cutoff length
scale being related to the local grid resolution.

The latter approach is adopted in the present study. Therefore, what is solved for are the filtered
Navier—Stokes equations, which are formally obtained from Equation (1) after applying the bar fil-
ter operator and the density-weighted Favre filter operator tilde, such that the identity pgp = p@
holds true:

0U  9F; D"

= — ) 13
at Xy X (13)
withU = (5 pur puz pus pe)’,
Uy L 0 ;
Uyt + S @ Z/M{Ik + Tk
Fi' = | puyiix + 5y |, D = 20 Ak + 13 : (14)
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where the superscript ‘d’ refers to the deviatoric part of the relevant tensor, namely rl.dj = T —
(1/3)8;j tkk- The tensor 7;; and the vector gi represent the usual unclosed SGS terms,

Tij = pU;Uj — pUiU,

qr = (pe + @)iix — (pe + pui = yey (o9 iy — pTuy).
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In particular, o and ¥ are the filtered macro-pressure and macro-temperature, respectively, which
may include all [43,44] or just a part [33] of the trace of the SGS stress tensor, these quantities
being related by the usual equation of state, namely, @ = pR¥ (cf. [33,43,44] for details about the
underlying hypotheses).

In general, the SGS model has to be designed such that: (i) it is active only where the solution
is under resolved by the grid, and in particular, it vanishes with the correct asymptotical behavior
close to solid boundaries [45,46]; (ii) it accurately represents the peculiar SGS interactions resulting
from the use of non-Reynolds filtering operators, that is, operators that, as opposed to the ensemble
or time averaging adopted in RANS, are not idempotent in spectral space [47]; and (iii) it is not
too dissipative, hence leading to undesired relaminarization phenomena, and at the same time, it
does not destabilize the flow field because of insufficient dissipation or incorrect representation of
turbulent energy backscatter events.

In order for the three aforementioned requirements to be met, the present study focuses on a
structural model based on the scale similarity assumption [31,32,34,48]. Hence, the fundamental
assumption is made that the statistical features of tensors constructed on the sub-grid scales are
similar to those of analogous tensors computed on the basis of the smallest resolved scales.
Similarity models, in particular, remove the hypothesis of alignment between the proper axes of
the SGS stress tensor and those of the resolved shear stress tensor, which is inherent in the eddy
viscosity assumption. In simulations that use similarity models, good correlation has been observed
between the real and modeled SGS stresses. Good correlation was also observed between real and
modeled local SGS energy flux, even in regions characterized by energy backscatter, thus suggesting
that the Leonard tensor introduced by the scale similarity assumption can be used to predict complex
SGS interactions such as those leading to energy backscatter [34,49].

In the perspective of developing a similarity mixed formulation [48—55] with correct near-wall
scaling without relying on dynamic procedures, a WALE formulation [29] for the eddy viscosity
term was recently proposed by Lodato et al. [33]. The resulting WSM model limits the use of the
explicit filtering operator to the computation of the modified Leonard tensor only. The relevant
closures are computed as

~ — ~ ~ \d
wd = 2pvg Ay — (u,-u_, - uiu_,-) , (17)
Gk =V PKsgs 5 — VP (eluk - eluk) ; (18)
Xk

where ey is the resolved internal energy and the hat operator represents filtering at cutoff length ¢ A,
with @ > 1 and sufficient localization in physical space [34].

With regard to the eddy viscosity terms, the SGS kinematic viscosity, vy, and thermal diffusivity,
Ksgs» are computed as [29]

3/2
(5555) y
Sgs
Vggs = Cf,Ag 574 and  Kgs = & (19)
-~ - \5/2 ~d ~d Prg
(Aij i)™~ + (Sijsij)

where C,, is the model constant, §fj is the traceless symmetric part of the square of the resolved
velocity gradient tensor g;; = 0u;/0dx;, namely Efj = (1/2) (gfj +§?i) — (1/3)8ij g, with

g,?j = gik8kj» and A, is a measure of the grid cutoff length scale. In particular, assuming that
the actual resolution of the SD element in computational space is equal to A = 1/N, the cutoff
length A, can be evaluated following the same procedure suggested by Parsani et al. [28], namely

| det(J'(§))|

1/3
E } = Al det(J ()" (20)

Ag(E) ~ [
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In line with what had been pointed out by Nicoud and Ducros [29], the model constant Cy, was
found to show some grid dependency. In the present study, Cy, was set to 0.3, a value that was also
used by Temmerman et al. [56] and that was found to be optimal, whereas the SGS Prandtl number,
Pryo, was assumed constant and equal to 0.5 [53, 55]. With regard to wall scaling, it is readily
verified [57] that the asymptotic behavior of the SGS stress computed from Equation (17) is
correctly predicted as

(O™ ~ x5, (5™ ~ x5, (™) ~x3, Q1)
(M5™) ~x3, (15" ~ x5, (DH™) ~x3, (22)

where the preceding relations refer to the deviator of the modeled sub-grid stress when the wall is
orthogonal to x5. As a final remark, it is worth noting that the WSM model can be easily reduced to
the standard WALE formulation by simply switching off the computation of the modified Leonard
terms in Equations (17) and (18).

2.3. Constrained discrete filters for the spectral difference method

When similarity mixed SGS models are used, such as the WSM model used in this study, explicit
filtering represents a key ingredient to approximate SGS interactions. This is carried out by assuming
similarity within a narrow band of frequencies in the vicinity of the cutoff frequency characteristic
of the mesh. As mentioned in Section 2.2, similarity is assumed between the sub-grid scales and
the smallest resolved scales, whose contribution is evaluated as the difference between the filtered
and twice-filtered fields. Hence, the explicit filter should be designed to have sufficient localiza-
tion in physical space and to ensure a certain selected cutoff length scale. For instance, the box
filter in physical space is generally used because of its locality and ease of implementation [33,52].
Lodato et al. [33], in particular, used a discrete approximation with cutoff length scale A, = 4/3A,
according to what was proposed by Akhavan et al. [48], this filter width being an optimal size to
sufficiently isolate the smallest resolved scales. In the present study, A. is fixed at 1.5A,, a value
that is still small enough to achieve the desired small-scale selection.

To develop a mixed similarity formulation to be applied with the SD method, the above ideas
have to be generalized in a way that is numerically consistent with the use of SD elements. In
particular, because the SGS model terms are evaluated at the flux points, the filtered field needs to
be evaluated at the same flux points starting from the discrete solution at the solution points. This
can be achieved by filtering the solution at the solution points first and then interpolating the filtered
quantities at the flux points using the same Lagrange polynomials used to reconstruct the fluxes
(cf. Equations (10)—(12)).

Considering for simplicity the 1D SD element depicted schematically in Figure 2, a particularly
desirable feature in building discrete filters is that the filter stencil does not lie across elements.
Moreover, the non-uniform spacing of the solution points should be taken into account. The preced-
ing considerations lead to the particularly challenging task of designing asymmetric non-uniform
discrete filters with a fixed cutoff length scale. For instance, for N = 4 (cf. Figure 2), four dis-
crete filters G1, G,, G3, and G4 need to be built—acting on the four non-uniformly spaced solution
points—none of them being symmetric. These four filters should, in principle, have sufficiently
similar kernels.

1 2 3 4 5
e il @ il @ il L o |
1 2 3 4

@ Solution Points B Flux Points

Figure 2. Schematic representation of the one-dimensional distribution of solution and flux points within
the spectral difference element for N = 4.
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In the most general non-symmetric case, a discrete filter can be defined as [58]

L

¢, = Z W) i 41, (23)

l=—K,'

where the filtered quantity ¢, is obtained as a weighted sum, with weights wf of the discrete values
of ¢ over the non-symmetric stencil defined by the parameters K; and L;. For the SD element
depicted in Figure 2, the aforementioned discrete filtering operator is readily applicable. For the
case of hexahedral elements as in the present study, the generalization to three dimensions follows
immediately by tensor product of 1D filtering operators.

Therefore, starting from Equation (23), the filtering operator acting on the sth solution point is
defined as

N
$s=Zw;‘¢,~, (s=1....,N). (24)

i=1

The relevant spectral signature is characterized by its associated transfer function, or kernel, in
Fourier space [59, 60], which is readily obtained as

Ei_‘i:s
A

N
Gs(k) =) wiexp(—jpika). with g5 = (25)

i=1

where k is the wavenumber, j = V-1, is the imaginary constant, & represents the location of the
solution points, whereas A = 1/N is the actual resolution in computational space within the SD
element (cf. Equation (20)).

A possible strategy to build discrete filters can be devised by exploiting the resolution properties
of polynomials of different orders, thus performing the explicit filtering operation by applying the
restriction—prolongation (RP) technique in each computational cell or similar techniques involving
projection of the solution onto lower-order basis functions [22,36,37]. Unfortunately, these proce-
dures are not optimal for two main reasons: (i) the filter cutoff length scale cannot be determined
a priori, and hence, a certain level of uncertainty is introduced regarding the model behavior; and
(i1) depending on the order N selected for the computation, the real part of the kernels of the filter
may show undesirable over-shoots.

By using Equation (25), for instance, the real part of the Fourier transform of the discrete filters
constructed using the RP technique [22] for N ranging from 3 to 6 is plotted in Figure 3 as a
function of the scaled wavenumber kA /7 € [0 : 1]. The box filters in physical space with cutoff
length equal to 2A and 3A are also represented for reference. As can be seen from the figure, the
cutoff frequency (namely, the frequency at which G s(k) >~ 0.5) of the filtering operator, which is
applied to each solution point, is different, and therefore, the overall effective cutoff frequency is
unpredictable. Furthermore, for N > 4, the most asymmetric filters, i.e. those represented with solid
lines, have a relatively pronounced over-shoot in the low frequency range, a feature that may lead
to non-physical growth of energy [58]. In particular, for N = 3 (cf. Figure 3(a)), the RP discrete
filters, although free from over-shoots, are not characterized by a suitable cutoff length scale for a
mixed similarity SGS model, which is typically in the range A-2A [35], and the effective cutoff
length scale is ~2.2A at the central solution point and increases up to about 3.3A at the outermost
solution points, as can be appreciated by comparison with the reference box filters.

For these problems to be overcome, two classes of discrete filters satisfying a selected set of
conditions have been developed for the SD method. The first type of constrained discrete filter
(hereafter indicated as CD1) takes advantage of the fact that the solution points are Gauss—Legendre
quadrature points and features strictly positive weighting coefficients, whereas the second type of
filter (CD2) offers the flexibility of being applicable to arbitrary distributions of points and is based
on the work of Vasilyev et al. [58].
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Figure 3. Real part Re[@(kA/ )] of the Fourier transform of the restriction—prolongation (RP) discrete
filters [22] for different spectral difference discretization orders N (—-— , box filter in physical space with
cutoff length scale of 2A; —--— , box filter in physical space with cutoff length scale of 3A).

The real parts of the kernels of CD1 and CD?2 filters for SD elements of order 3 to 6 are plotted in
Figures 4 and 5, respectively. The mathematical details of their implementation are discussed in the
two following sections. It is worth anticipating that, in the low frequency range, both CD1 and CD2
filters approximate the reference filter much more accurately than the RP filters (cf. Figure 3). More
pronounced deviations are only observed at length scales close to A (i.e., kA /x > 1). However,
recalling that A ~ O(1/N), we do not expect these small scales to play a significant role as they
are not supported by the actual resolution of the SD element (see [18] for details about dispersion
and dissipation characteristics of the SD scheme). The actual cutoff frequency is also more pre-
dictable throughout the SD element. Moreover, the over-shoots observed in the asymmetric filters
constructed by the RP method are now completely suppressed; hence, a better numerical behavior
in terms of stability is expected. Indeed, numerical tests up to N = 7 did not exhibit any numerical
instability because of the filtering procedure (cf. Section 3).

2.3.1. Constrained discrete filters by Gauss quadrature integration (CD1). By exploiting the prop-
erties of the Gauss—Legendre quadrature points, a discrete filter is obtained by analytical integration
of a selected filter kernel. In particular, the 1D discrete filter is obtained under the assumption that
the convolution integral can be approximately restricted within the SD element,

N

+o00
Fon= [ #©GCs0- 61 = 3 ulsGat—6). 26)

i=1
where G 5 is the convolution kernel associated with the filter operation at cutoff length A and wiG is
the Gaussian quadrature weights associated with the N solution points &;. When the Gaussian filter
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Figure 4. Real part Re[a (kA /)] of the Fourier transform of the first type of constrained discrete filters
(CD1) for different spectral difference discretization orders N (—-— , Gaussian filter). The vertical line
indicates the cutoff length scale at 1.5A.

[47] is chosen, the preceding integral is evaluated at each solution point as

N E_E 2
$S=K2w?¢iexp|:—r(s ’)} (s=1,....N), (27)

oA
i=1 s

where I' is generally taken to be equal to 6, K is a normalization coefficient, and oz A is the
desired cutoff length scale. By comparing Equations (24) and (27), the discrete filter weights are
immediately obtained as

wi = Kw exp [T (8] /as)*] (28)

with B¢ given from Equation (25). Because the Gauss quadrature weights are strictly positive, the
resulting filter weights are all positive as well, thus making this filter particularly well behaved for
numerical simulations.

The parameter o, in particular, is iteratively determined beforehand for each of the N solution
points, such that the estimate of the actual cutoff length of the filter, estimated from the second-order
moment of the filter kernel [61,62], is as close as possible to the selected value of ag = 1.5,

2 N
‘i‘_gzzw;(as)(ﬂ;_gm){ (s=1,....N), (29)

i=1

with &, = Zf\;l wi (ag)B; (the dependance of the filter weights to the parameter oz has been
explicitly indicated for clarity). Finally, the normalization coefficient is computed such that the
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Figure 5. Real part Re[@ (kA /)] of the Fourier transform of the second type of constrained discrete filters
(CD2) for different spectral difference discretization orders N (—-— , Gaussian filter). The vertical line
indicates the cutoff length scale at 1.5A.

preservation of a constant property is satisfied:

N N
Y owi=KY wiexp[-T (B /as)?] = 1. (30)

i=1 i=1

The real part of the kernels of CD1 filters for SD elements of order 3 to 6 is plotted in Figure 4.

2.3.2. Constrained discrete filters for arbitrarily distributed points (CD2). The method used to
derive these filters is based on the work of Vasilyev er al. [58]. In particular, starting from
Equation (25), the N filter weights w; for the sth solution point can be determined by providing
N constraints. More precisely, a first obvious condition is related to the preservation of a constant
quantity, namely,

> owi=1. (31)

Then, starting from the idea of building filters whose kernels are as close as possible to that char-
acterizing a selected analytical filter G A, (k) with cutoff A, = aA (e.g., the box filter in physical
space or the Gaussian filter), the following condition is enforced
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N
Re[G(ko)] = Y w? cos (BfkeA) = Re[Ga, (ko). (32)
i=1
with
w = 3 for the box filter,
~ kA2 g=p, 7
Re[G A, (k)] = ) (33)

A2
P\ Tar

where k. = 71/ A, and the typical value I" = 6 is selected for the Gaussian filter [47]. Equations (32)
and (33) provide an explicit condition on the cutoff length scale of the resulting discrete filter opera-
tor. The remaining conditions are obtained by constraining the discrete filter to have N —2 vanishing
moments, thus achieving formal commutation with difference operators [58].

The real part of the kernels of CD2 filters for SD elements of order 3 to 6 is plotted in Figure 5.

= exp (i) , for the Gaussian filter,
k=K, 24

3. RESULTS AND DISCUSSION

In this section, the results obtained with the actual implementation of the WSM model are presented.
Channel flow computations were performed at different orders (N = 4, 5, and 6) at three different
Reynolds numbers, namely, Re; = 180, 395, and 590 (based on the friction velocity ©; and channel
half-width §), and Mach number 0.3. Although the present method has been developed for com-
pressible flow simulations, validation has been performed using the classical incompressible direct
numerical simulation (DNS) dataset of Moser et al. [63]. Tests with lower Mach numbers were
also performed. These were computationally expensive because of the severe time-step restriction
on the explicit time integration scheme used but confirmed the absence of significant compress-
ibility effects at Mach 0.3. Indeed, the variation in density at this Mach number is so small
(about 1.4% change from the wall to the center of the channel) that the relevant impact is negligible.
Notwithstanding the hardly noticeable effect, for consistency with the compressible nature of the
computations, average profiles of velocity are Van Driest corrected, and Reynolds stresses are rep-
resented in semi-local coordinates (cf. [64—66] for details). It is worth recalling that, according to
Foysi et al. [67], differences in profiles between compressible and incompressible computations are
principally due to the decrease of the mean density and increase of the mean viscosity from wall
values. Here, the viscosity is a prescribed constant. Also note that, in the paper by Foysi et al. [67],
the results at Mach 0.3 were indistinguishable from the incompressible counterpart [63].

For comparison, the results of implicit LES computations (i.e., with no SGS model) are also
presented. In all the computations presented in the following, the three coordinate axes xp, X2,
and x3 are oriented in the streamwise, wall-normal, and spanwise directions, respectively. Standard
wall-normalized variables are indicated with the + superscript as customary done, whereas the
superscript is used to indicate semi-local normalized quantities.

3.1. Computations on structured Cartesian grids

Grid dimensions, resolution in wall units (which are obtained after normalizing with the viscous
length £, = v/u.), and total number of degrees of freedom (DOF) for the three Reynolds numbers
are summarized in Table I. The resolution of the grids, in particular, was estimated as the actual
element size divided by the number of solution points used within the element; in a finite volume
context, this would be equivalent to assuming that each element is filled with N3 control volumes.
It should be noted that, because of the clustering of solution points close to the element interfaces
for the actual Gauss—Legendre quadrature points, the location of the first solution point in the wall-
normal direction can be estimated by multiplying the minimum A from Table I by 0.28, 0.23,
and 0.20 for N = 4, 5, and 6, respectively (the actual location of the first solution point can also be
checked on the plots when wall units are used on the abscissa).
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Table I. Grid size and resolution for channel flow computations (resolution is estimated as the element size
divided by the number of solution points).

Re; Re;, LixLs n1 Xny xXns N DOF A]" A; A;
CHNI 180 530 Améx2ms  15x15x15 4 22x10° 38 2.0-10 19
CHN2 ’ 48 x 278 12x12x12 5 22x10° 38 2.0-10 19
CHN3 2n8x 1n8  16x12x 12 4 1.5x% 10° 39 1.2-43 26
CHN4 395 14,130 278 x1w8  13x9x9 5 1.3x10° 38 2.1-33 28
CHN4* 2n8 x 1n8  39x27x27 5 3.6 x 106 12 1.7-10 9
CHN5 s00 20060 AmEx 1w 24x15x15 5 68x10° 62 2.3-32 25
CHN6 ’ 4r8x 1n8  20x12x 12 6  62x10° 62 3.4-33 26

DOF = (ny X ny x n3) x N3.

All the computations were performed with periodic boundary conditions in the streamwise and
spanwise directions, and no-slip isothermal walls were used on the top and bottom planes. To drive
the flow, a source term S = |det(J)|S, with § = (0 s2 0 0 s5)7, was added to the right-
hand side of Equation (4). In particular, given the compressible nature of the solver, the source term
5o was determined at each time step to equilibrate the instantaneous resultant shear at the wall Fy; a
relaxation term toward the expected mass flow rate 729 was also included to accelerate convergence,

F o .
2= AZ(m 1o), (34)
where V' = LjL,L3 is the volume of the computational domain and the relaxation coefficient «
was tentatively set to 0.3, a value that produced a relatively fast convergence without compromising
stability. The mass flow rate was computed as

1 §
= /_ {pun)dss, (35)

where (-) represents averaging in the streamwise and spanwise directions. In order to account for
the work done by the uniform driving body force s, the source term for the energy equation was
computed as the product of s, and the bulk velocity [68], that is,

-1
1 8
S5 = UpSy, with u, =m |:—/ (p)dxz:| . (36)
26 J_s
The computations were initialized with a uniform streamwise fourth-order velocity profile,
15 2\ 2]
ui(x) = o [1 - (7) ] : (37)

and a perturbed vertical velocity component computed as

2
uz(x) = 0.1ugexp |:— ()CI_L—LI/Z) i| exp [— ()26_2)2} cos (4n?) , (38)
1 3

where u is the reference velocity and L and L3 are the dimensions of the computational domain
in the streamwise and spanwise directions, respectively [69, 70]. The flow was then left to evolve,
undergo transition to turbulence, and reach the statistical steady state. The time history of the friction
coefficient ¢¢(t) = 27y(1)/ (pug), normalized by the exact expected mean value (7.38 x 1073,
6.25 x 1073, and 5.62 x 1073 for Re, = 180, 395, and 590, respectively), is plotted in Figure 6

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fid



G. LODATO, P. CASTONGUAY AND A. JAMESON

. : : : ]
"
1
l.l“- //\
L5 }!J\}.r \ i
s
iRV
\
Al Ry et SN
L RTINS -
il
05t i) |
L
11
7/
0 - 1 1 1
0 20 40 60 80
t
Figure 6. Time history of the normalized friction coefficient: , test CHN1; —— , test CHN2;
————— , test CHN3; ————-, test CHN4; —-— |, test CHNS; —-— , test CHNG.
Table II. Statistical samples and convergence.
Samples Length (u1) 12 (u2) 1.2 (u%)Lz (”%)Lz (u1uz) 12
CHNI 9x 10 179Tp 20x1072  63x1073 33x1073 38x107*% 67x107%
CHN2 9x 106 134Ty  22x1072  68x1073  37x1073 42x107* 7.8x1074
CHN3 15 x 106 2067y 79x1073  26x1073  13x1073 1.6x107*% 27x1074
CHN4 14 x 106 271Tp  74x1073  26x1073 12x1073 17x107% 28x1074
CHN4* 6x 107 90Ty 74x1072 36x1072 1.I1x107%2 27x1073 3.6x1073
CHN5 22 x 108 49Ty 32x1072 13x1072 49x1073 79x107* 12x1073
CHNG6 21 % 106 56T 29x1072  12x1072 46x1073 74x107% 1.1x1073

To represents the flow-through time, L1 /up; the L2-norms are obtained from Equation (39).

for the six test cases. As can be observed, all the computations reached the statistical steady state.
Note that the sudden change in c¢ for test CHNG at t ~ 30 was due to the scheme being switched
from order 4 to the final value of 6 to accelerate convergence.

After the flow field was fully developed and established, a number N; of statistical samples were
collected in time; further, ensemble averaging in the streamwise and spanwise directions was also
performed. Global statistical convergence was checked continuously by calculating the L2-norm
of the change in the statistical quantity (¢) of interest between two successive samplings n and
n—1as

1/2

2
~@N0) | (39)

@)= > (@),

i,j.k

where the summation is extended to the whole computational domain. The total number of samples,
computed as Ny x N x (n; X n3), the length of the time-averaging procedure, and the L2-
norms relevant to first-order and second-order statistical moments of velocity are summarized
in Table II.

A first check regarding the behavior of the proposed discrete filters is reported by comparing the
results obtained with the WSM model in conjunction with different discrete filtering approaches,
that is, using the CD1, CD2, and RP filters (cf. Section 2.3). The relevant results are shown in
Figure 7 for the test case Re; = 395, N = 4 (CHN3). The proposed CDI—for this filter, the
relevant results correspond to those shown in Figures 8-9(c)—and CD?2 filters give almost identical
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Figure 7. Resolved mean velocity profile (a), root mean square of velocity fluctuations (b, ¢), and Reynolds

shear stresses (d) for the case Re; = 395, N = 4 (CHN3): open symbols, LES with WSM model and the

first type of discrete filter (CD1); x, LES with WSM model and second type of discrete filter (CD2); o, LES

with WSM model and restriction—prolongation (RP) filter; solid lines, DNS data [63]. The actual location of
element interfaces is indicated by vertical lines.

results and in very good agreement with DNS data. As mentioned in the previous section, CD1 fil-
ters have the advantage of being strictly positive but require a specific distribution of solution points
in the element (i.e., Gauss—Legendre quadrature points), whereas the CD2 filters offer the additional
flexibility of being applicable to arbitrary distributions of solution points, hence enabling accurate
explicit filtering in a broad range of similar high-order schemes.

The RP filter of order 4, which corresponds to a sharp cutoff in modal space, produces results
that are much less satisfactory, especially in terms of second-order statistical moments, where a
very marked and unphysical oscillatory behavior of the solution is observed across the interfaces of
the elements (indicated in the plots by vertical dotted lines). This behavior is most probably to be
ascribed to the quite different cutoff frequencies characterizing these filters within the element and
to the low-frequency over-shoots observed in the kernels connected with the first and last solution
points of each element (cf. Figure 3(b)). The situation is expected to become worse when the poly-
nomial order is increased because over-shoots in the kernels become stronger and start to appear for
interior solution points as well.

First-order and second-order statistical moments from explicit LES with the WSM model (using
CDl1 filter) and implicit LES for the three Reynolds numbers are shown in Figures 8—10. The
behavior of the WSM model in reproducing the statistical features of the flow is quite satisfactory
for each test case. With regard to the mean velocity profiles (Figure 8), the log law intercept is
slightly overestimated with respect to the DNS value (about 5.5 for Re; = 180 and 5.0 for the
other Reynolds numbers). In general, even if the DOF and spatial resolution are kept almost the
same (cf. tests CHN1 and CHN2 or CHNS5 and CHNG6 in Table I), higher-order computations give
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Figure 8. Resolved Van-Driest-corrected mean streamwise velocity profile U\;E: o, LES with WSM model;
%, implicit LES; lines, DNS data [63].

better results than the lower-order counterparts. Overall, the use of the SGS model produces an
improvement in the results obtained by implicit LES, which is mostly evident for the computations
with four solution points per element. Reynolds stresses (cf. Figure 9) are most sensitive to the use of
the SGS model, and implicit LES shows a marked tendency to overestimate root mean square veloc-
ity fluctuations within the buffer layer (i.e., 5 < x5 < 70), especially in the streamwise direction.
The profiles obtained with the WSM model are in good agreement with the DNS data, regardless
of the spatial discretization order. The location and intensity of the peak of streamwise velocity
fluctuation are correctly captured at the three Reynolds numbers. Spanwise and vertical resolved
fluctuations tend to be underestimated at Re; = 395 and 590, which is consistent with the fact
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Figure 9. Resolved root mean square of velocity fluctuations in semi-local coordinates: open symbols, LES
with WSM model; x, implicit LES; lines, DNS data [63]. o, uT 0, u5 A, uj .

that, for these Reynolds numbers, grid resolution is much lower. The vertical fluctuations are gen-
erally the most underpredicted. Also, at higher Reynolds numbers, no computation seems to be
capable of predicting the correct root mean square velocities for x3 > 100 (cf. Figure 9). In this
regard, it is worth recalling that the plotted results do not account for the contribution from the SGS
tensor, whose action is supposedly significant in the center of the channel where, because of the
grid stretching, the lowest resolution is attained (refer to discussion about sub-grid activity later in
the text).

The resolved turbulent shear stresses from the LES are always below the DNS curves, whereas
the results from implicit LES are much closer (cf. Figure 10). Given the close connection between
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Figure 10. Reynolds shear stresses: o, LES with WSM model (resolved + sub-grid scale); x, implicit LES;
solid lines, DNS data [63]; —-— , (t12) from LES; e, resolved shear stress from LES.

the mean streamwise velocity profile and the turbulent shear stress across the channel—the two
quantities are strictly related through the steady Reynolds averaged x; momentum equation—and
given the good agreement observed for the former quantity, it is here argued that the actual global
turbulent shear from LES, namely resolved 4+ SGS modeled contribution, must be in good agree-
ment with its DNS counterpart. In the case of explicit LES, in fact, it is the combined effect of the
resolved turbulent shear and the SGS stress tensor that is actually experienced by the flow, whereas
in the implicit LES, the only contribution to the turbulent shear comes from the deviator of the
Reynolds stress tensor constructed on the resolved velocity field. Therefore, plotting the resolved
contribution only can be misleading, especially when the grid is relatively coarse and the SGS
contribution is significant. In implicit LES computations, the insufficient skin friction arising from

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fid



DISCRETE FILTERS FOR LES WITH SPECTRAL DIFFERENCE METHODS

075

1]
(f) CHN6: Re, =590, N =6

Figure 11. Contours of the instantaneous sub-grid activity parameter [71] over vertical planes.

the deficiency in fine-scale strain close to the wall must be compensated by higher levels of velocity
fluctuations, whose cross-correlations happen to be very close to the DNS results. On the other
hand, when the SGS model is used, the compensation mechanism comes from the SGS model itself,
and the resolved velocity fluctuations are better predicted overall, such that: (i) close to the wall,
where SGS model action is low, resolved fluctuations closely match DNS data; and (ii) away from
wall, where SGS model contribution is significant, resolved fluctuations are underestimated, but the
inclusion of the SGS term allows for the proper turbulent shear stress to be recovered. This is readily
confirmed by collecting the mean SGS shear stress (t1,) during the computation and by comparing
the exact turbulent shear from DNS with the approximate global (resolved + SGS) turbulent shear
from LES, namely (ﬁ’lﬁlz) + (t12) [47]. As can be observed in Figure 10, the approximate global
turbulent shear matches almost perfectly the DNS data, thus confirming that the model is correctly
compensating for the insufficient shear from the resolved flow field.

Note that, for the case at Re; = 180, in particular, the results obtained from implicit LES com-
putations on CHN1 and CHN2 grids (fourth and fifth orders, respectively) with 60> DOF are in
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similar agreement with the DNS data as those obtained by Visbal and Rizzetta [4] with a sixth-
order compact scheme combined with a tenth-order filter and implicit second-order time integration
(therein referred to as C6F10-BW2) over 612 points (the same geometrical dimensions for the com-
putational grid). When the WSM model on the CHN2 grid is used, the results obtained with 603
DOF are essentially identical to those obtained with the C6F10-BW2 scheme on their F' mesh with
913 points.

To better quantify the amount of modeling in the LES computations, a sub-grid activity parameter
can be defined as

Fraio = 7 ) (40)

8sgs> + (8M)

where g4, = rfj A;j measures the dissipation from the SGS stress tensor and &, = 2 A;; A;; mea-
sures the molecular dissipation. By definition, 4, € [0 : 1), with &40 = O corresponding to DNS
and €50 — 1 for an LES at infinite Reynolds number [71]. An instantaneous sub-grid activity
parameter is also defined as

Esgs Vratio

8ral10(x’ t) 8SgS + gl,b 1 + Vratio ’ (41)
where Viaio = &sgs/ €, 1s the normalized SGS energy transfer coefficient [33]. Note that vy, reduces
to the ratio vy /v for an eddy viscosity model and becomes negative in regions characterized by
backward SGS energy transfer. Regions of negative SGS energy transfer shall not be accounted for
when computing &, With Equation (41), which is strictly valid for purely dissipative models only.
Instantaneous contours of the sub-grid activity parameter are presented in Figure 11, where blank
regions indicate locations where the SGS model is either inactive or backscattering. In all the six
computations, the SGS model appears to be relatively active, with values of instantaneous sub-grid
activity as high as 0.5-0.75. The average sub-grid activity, on the other hand, was generally lower
(cf. Figure 12). Values of €., in the outer layer were in the range 0.18-0.26 for CHN1 and CHN2,
0.25-0.4 for CHN3 and CHN4, and 0.3-0.43 for CHN5 and CHNG6. As expected, (&) Was always
strictly positive, thus confirming that, despite the presence of local events of reverse energy transfer,
the SGS model shows a dissipative behavior (in average). A similar sub-grid activity was observed
for the two computations of each Reynolds number, which is consistent with the fact that the same
overall resolution was maintained when changing the order of the solution (cf. Table I).

0.001 0.01 0.1 1
Xo/0

Figure 12. Average sub-grid activity parameter [71]: o, CHN1 (open), CHN2 (solid); » , CHN3 (open),
CHN4 (solid); o , CHN4*; o, CHNS (open), CHNG6 (solid).
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To check the numerical convergence when the grid is refined, the Re; = 395 at N = 5 test case
was repeated on a relatively fine mesh. The relevant details about grid spacing and DOF are reported
in Table I and labeled as CHN4*. The equivalent maximum grid spacing for this mesh, which has
about 4 x 10° DOF, is about 10 wall units in the three directions, with the first solution point at about
A; = 0.4 from the wall (i.e., 1.7 times the correction coefficient 0.23 for the fifth-order case). The
comparison with the coarse-mesh computation, namely CHN4, is shown in Figure 13. Not surpris-
ingly, the agreement of the fine-mesh computation with the DNS data is excellent, thus confirming
very good convergence of the numerical scheme and the implemented model when grid resolution
is increased. Note that the DNS computation by Moser et al. [63] was performed with a mesh of
identical geometrical dimensions, but with about 9.5 x 10® DOF. In this respect, the present com-
putation can be considered as a relatively fine LES. The relevant sub-grid activity was in the range
0.04-0.08 (cf. Figure 12), and the mean SGS shear stress (t12) is almost 0 throughout the channel,
with a very low peak of about 0.03. The corresponding maximum value measured on the coarse
mesh was about five times higher (Figure 14). For the fine-mesh computation, the SGS shear stress
is also much more localized around the buffer layer and goes rapidly to (almost) O above it, whereas
in the coarse-mesh computation, significant SGS shear is observed even in the logarithmic region.
As can be observed in Figure 14, above x5 = 100, the SGS shear on the coarse grid is everywhere
more than 10 times higher than the fine-grid counterpart.

25

(©) U g (@) U5 @) g, () (d) —(uju3), (ri2)

Figure 13. Resolved mean velocity profile (a), root mean square of velocity fluctuations (b, ¢), and Reynolds

shear stresses (d) for cases CHN4 and CHN4*: open symbols, LES with WSM model and the first type of

discrete filter (CD1) on fine mesh (CHN4*); solid symbols, LES with WSM model and the first type of dis-

crete filter (CD1) on coarse mesh (CHN4); solid lines, DNS data [63]; —-— , (t12) on fine mesh (CHN4™*);
-------- , (t12) on coarse mesh (CHN4).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fid



G. LODATO, P. CASTONGUAY AND A. JAMESON

0.2
0.15 o |

O Oo

O
© O
0.1 |
0.05
0 Ol . o4

Figure 14. Mean sub-grid scale shear stress (t12): o, test case CHN4 (coarse mesh); O, test case CHN4™
(fine mesh).

Beow

Figure 15. Randomly perturbed mesh for the test case at Re; = 180: a portion corresponding to
approximately a quarter of the whole grid is represented.

3.2. Computations on unstructured grids

The long-term goal of this research is to develop LES methods for industrial applications, which
typically involve very complex geometries, requiring the use of unstructured meshes. In this con-
text, it may be noted that a tetrahedral element can be subdivided into four hexahedra, so the use of
hexahedral elements is not a severe restriction.

Accordingly, to gauge the behavior of the discrete filters when the computational grid is unstruc-
tured, the test cases CHN2, CHN4, and CHN6 were repeated using randomly perturbed meshes,
which were obtained from the Cartesian counterparts by displacing each interior node within a
sphere of radius equal to 30% of the shortest concurrent edge. Figure 15 shows a portion of the per-
turbed mesh used for the Re; = 180 test case. The resolved statistical moments obtained with the
WSM model and CD1 filter on the Cartesian grids—which correspond to the previous results—and
on the randomly perturbed meshes are compared in Figure 16. As can be seen, the results are almost
indistinguishable, thus verifying the extremely good performances of the discrete operators (and the
adopted SGS model) in the case of unstructured grids. Note that, for completeness, results from
implicit LES obtained on randomly perturbed meshes are also plotted. There are almost identical to
previous implicit LES results computed on regular Cartesian meshes, thus giving further evidence
of the extremely good capability of the numerical scheme itself in handling unstructured grids.
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Figure 16. Resolved mean velocity profile (a, c, €) and root mean square of velocity fluctuations (b, d, f) for

the cases CHN2, CHN4, and CHNG6, with WSM model and the first type of discrete filter (CD1): open sym-

bols, LES on randomly perturbed grid; x, LES on Cartesian grid; solid circles, implicit LES on randomly
perturbed grid; solid lines, DNS data [63].

4. SUMMARY AND CONCLUSIONS

A structural LES model based on the scale similarity hypothesis and the relevant numerical infras-
tructure has been developed within the high-order unstructured FR framework and, more specif-
ically, for the SD subset. The implementation of such an SGS model, in particular, involved the
development of discrete filter operators that are suitable for the standard elements used in these kind
of numerical schemes.
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Given the key role played by the discrete filter operators when using similarity mixed models
for LES, two sets of constrained filters have been developed to ensure an almost uniform cutoff
frequency within the element and a good numerical behavior. One of these sets of filters features
strict positivity but is only applicable to standard elements with a specific distribution of solution
points, whereas the other set can be applied to arbitrarily distributed points; hence, together, the
two sets of discrete filters represent a complete set of discrete operators to be used with discontin-
uous finite-element-type discretizations. Both sets of discrete filters are completely local inside the
standard element; therefore, they are relatively easy to implement and do not involve any additional
complication for the parallelism of the numerical solver.

The proposed implementation has been validated on the turbulent channel flow at three differ-
ent Reynolds numbers, for different orders of accuracy and with both structured and unstructured
computational grids. All the results are in very good agreement with available DNS data. Com-
pared with implicit LES computations of the same configurations, the adopted scale similarity WSM
model leads to a slight improvement in the first-order statistical moments of the resolved velocity
field, while enabling a more accurate reproduction of the Reynolds stresses. Therefore, the use of
an SGS model, such as the WSM used in this work, is necessary in applications where an accu-
rate representation of turbulence intensities is crucial, such as for instance those involving turbulent
mixing.

The constrained discrete filters of arbitrary order proved to be numerically stable at any order (up
to N = 7 in other tests not included here) and allow a relatively straightforward implementation
into a broad range of high-order discontinuous finite element methods, such as the FR schemes or
the SD scheme used in the present work, of any SGS model relying upon the use of explicit filtering
or dynamic procedures [72,73]. Work is currently under way to test the method for a variety of
more complex configurations, such as the flow behind square or circular cylinders, or an impinging
jet on a wall. Moreover, it is anticipated that further development of wall modeling procedures in
conjunction with the unstructured nature of the high-order FR scheme will allow relatively afford-
able high-fidelity LES computations in a wide range of applications, including hitherto intractable
problems of fundamental flow physics and complex geometries of practical engineering interest.
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NOMENCLATURE

>4

normalized position of the i th solution point with respect to the sth solution points

At computational time step

A grid cutoff length scale in computational space

) channel half-width

AZ equivalent grid spacing (in wall units) in the kth direction
A cutoff length scale of the explicit filter

A grid cutoff length scale in physical space

dij Kronecker’s delta

y specific heat ratio (y = cp/cy)

K thermal diffusivity

7! dynamic viscosity

v kinematic viscosity

w macro-pressure [33,43,44]

p density

Ty mean shear stress at the wall

Tij SGS tensor
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macro-temperature [33,43,44]

kth component of the position vector in computational space
deviatoric part of the deformation tensor
friction coefficient

specific heat capacity at constant pressure
specific heat capacity at constant volume
WALE model constant

kth component of the viscous flux vector
internal energy

transformed kth component of the flux vector
kth component of the inviscid flux vector

kth component of the flux vector

instantaneous resultant shear at the wall

velocity gradient tensor

Lagrange basis for the ith solution point

Jacobian of the transformation between physical and computational spaces
imaginary constant

wavenumber

viscous length ({; = v/uy)

Lagrange basis for the 7th flux point

mass flow rate

kth shape function

number of solution points in the element

number of points used to define the physical element

Prandtl number

pressure

Legendre polynomial of order n

SGS heat flux

Reynolds number

Reynolds number based on the friction velocity and channel half-width
Reynolds number based on the bulk velocity and channel width
gas constant

transformed source term vector

source term vector

traceless symmetric part of the square of the velocity gradient tensor
kth component of the source term vector

temperature

time

transformed vector of conservative variables

vector of conservative variables

Van-Driest-corrected mean streamwise velocity

bulk velocity

friction velocity (1% = ty/p)

kth component of the velocity vector

ith weight coefficient for the sth filter operator

kth component of the position vector
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