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The purpose of this paper is to provide new insights on the connections that exist between the discon-
tinuous Galerkin method (DG), the flux reconstruction method (FR) and the recently identified energy
stable flux reconstruction method (ESFR) when solving time dependent conservation laws. All these
schemes appear to be quite similar and it is important to understand how they are related. In this paper,
we first review results on the stability of the discontinuous Galerkin method and extend it to the filtered
discontinuous Galerkin method. We then consider the flux reconstruction approach and show its connec-
tions with DG. In particular, we show how the Energy Stable Flux Reconstruction method introduced by
Vincent et al. is equivalent to a filtered DG method, hence giving a new proof of its stability. Also, it allows
the use of the method without having to know the special form of the flux correction polynomials. Finally,
we underline some fundamental differences that exist between FR and DG.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

High order numerical methods for unstructured grids have seen
a large number of developments over the last few decades. The pio-
neering work of Reed and Hill [1] in the 70’s led to the original dis-
continuous Galerkin method (DG) based on a variational form of
the equations. In a series of papers, Cockburn and Shu formulated
and developed the discontinuous Galerkin method for conserva-
tion laws [2–6]. They also provided extensive theoretical results.
However, the computational cost of the original discontinuous
Galerkin approach forced researchers to look at somewhat cheaper
or simpler alternatives. In their book [7], Hesthaven and Warbuton
give a thorough exposition of a nodal variant of the discontinuous
Galerkin method. Kopriva and Kolias [8] introduced the staggered
grid method, based on the differential form of the equation, later
renamed spectral difference (SD) and thoroughly studied by Liu
et al. [9] and Wang et al. [10]. Other methods include the popular
spectral volume method due to Wang [11].

Recently, Huynh introduced a flux reconstruction (FR) frame-
work [12,13] with which he was able both to recover some existing
schemes and to formulate some new variations. Jameson used this
framework to recast the Fourier stable spectral difference method
and to show its energy stability in a Sobolev type norm [14] for all
orders of accuracy. Vincent, Castonguay and Jameson later ex-
tended this work to identify a class of FR schemes [15] among
ll rights reserved.

u).
Huynh’s family of schemes, which are energy stable for all orders
of accuracy.

All these numerical methods may appear to be quite similar in
both their formulation and the results they provide. It therefore
seems legitimate to ask what are the connections that exist be-
tween all the various schemes. Huynh started to answer this ques-
tion by showing that the family of FR schemes contains both the
nodal DG and the SD methods. This paper goes further and shows
how the entire class of Energy Stable Flux Reconstruction schemes
identified by Vincent et al. can be recast as a discontinuous Galer-
kin method for which a linear filtering operator is applied on the
residual. However, this paper also shows that some differences ex-
ist between the schemes and that some flux reconstruction meth-
ods cannot be described as a filtered discontinuous Galerkin
method. Conversely, there exist linearly filtered discontinuous
Galerkin methods that cannot be expressed in the flux reconstruc-
tion framework.

In Section 2, we describe the classical discontinuous Galerkin
method for linear advection and give an energy based proof of sta-
bility. We also show how appropriate filters applied to the residual
preserve energy stability. In Section 3, we introduce a simple for-
mulation of the flux reconstruction method and show how one
can recover a DG scheme by using Radau polynomials for the flux
correction function. We then consider the special case of the En-
ergy Stable Flux Reconstruction and show how it can be formu-
lated in terms of a filtered discontinuous Galerkin method, hence
giving a new proof of it’s stability. Section 4 highlights some funda-
mental differences that exist between discontinuous Galerkin and
flux reconstruction approaches.

http://dx.doi.org/10.1016/j.cma.2011.08.019
mailto:allaneau@stanford.edu
http://dx.doi.org/10.1016/j.cma.2011.08.019
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma
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2. Filtered discontinuous Galerkin method for 1D linear
advection

In this part, we describe a discontinuous Galerkin (DG) method
to solve the following one dimensional linear advection equation
on the domain X = [L,R]. We then consider the effect of filtering
on the stability of the method.

@u
@t
þ a

@u
@x
¼ 0; a is a constant: ð1Þ
2.1. Discontinuous Galerkin method for linear advection

The DG method focuses on finding an approximate weak solu-
tion to Eq. (1). To do so, the domain is decomposed in N elements

X ¼
[N�1

k¼0

½xk; xkþ1�; L ¼ x0 < x1 < . . . < xN ¼ R

¼
[N�1

k¼0

Xk

on which the solution is approximated by polynomials of degree p:

uh
k ¼

Xpþ1

i¼1

ui
k/i;

where /i is a basis of Rp½X�, the space of degree p polynomials with

real coefficients. We define uk ¼ u1
k � � �u

pþ1
k

h iT
.

Now, we require the residual Rh ¼ @uh
@t þ a @uh

@x to be orthogonal to
a set of smooth test functions. In particular, any polynomial is in
this set, leading to the following equations:

8j;
Z

Xk

Rh � /jdx ¼ 0:

Integrating by parts, replacing the boundary terms by the numerical
flux and integrating by parts once more, one derives a discontinu-
ous Galerkin method in its strong form:

8j;
Z

Xk

/j �
@uh

k

@t
dxþ

Z
Xk

/j � a
@uh

k

@x
dx

¼ auh
k

� �
� ðauÞH

� �
� /j

h ixkþ1

xk

: ð2Þ

In this expression, (au)w is the numerical flux at cell interfaces.
More precisely, ðauÞHðxkþ1Þ ¼ ðauÞHk;kþ1 is the flux between cell k
and k + 1.

The set of p + 1 equations given by (2) can be recast as a matrix
system:

Mk d
dt

uk þ aSkuk ¼ auh
k

� �
� ðauÞH

� �
U

h ixkþ1

xk

; ð3Þ

where Mk and Sk are the local mass matrix and stiffness matrix

Mk
ij ¼

Z
Xk

/i/jdx;

Sk
ij ¼

Z
Xk

/i

d/j

dx
dx

and U 2 Rpþ1 is defined by U(x) = [/1(x) . . . , /p+1(x)]T. Using this
notation, uh

kðxÞ ¼ uT
kUðxÞ.

2.2. Stability of the method

Consider again the linear advection equation on the domain
[L,R]. Multiplying (1) by u and integrating over x gives
Z R

L
u
@u
@t

dx ¼ �a
Z R

L
u
@u
@x

dx

and therefore,

d
dt

Z R

L

u2

2
dx ¼ 1

2
a u2

L � u2
R

� �
; with uL ¼ uðLÞ and uR ¼ uðRÞ:

This energy estimate tells us that the L2 norm of the exact solution u
remains bounded for finite boundary values. If one assumes peri-
odic boundary conditions, uL = uR and d

dt

R R
L

u2

2 dx ¼ 0, the total en-
ergy remains constant in the domain.

We now focus on the stability of the DG method and show how
it satisfies a similar criterion. Multiplying (3) by uT

k , one obtains

uT
k Mk d

dt
uk þ a uT

k Skuk ¼ auh
k

� �
� ðauÞH

� �
uT

kU
h ixkþ1

xk

¼ auh
k

� �
� ðauÞH

� �
uh

k

h ixkþ1

xk

:

Now, using the fact that

uT Su ¼
Z xr

xl

uh @uh

@x
dx ¼ uh2

2

" #xr

xl

and that

uT M
d
dt

u ¼ 1
2

d
dt
ðuT MuÞ ¼ 1

2
d
dt
kuk2

M;

we obtain

1
2

d
dt
kukk2

M ¼
auh

k
2

2
� ðauÞHuh

k

 !" #xkþ1

xk

; ð4Þ

k � kM is the norm associated to the inner product defined by
u,v ´ uTMv. To make things clearer, we introduce the notation

u�k ¼ uh
k�1ðxkÞ;

uþk ¼ uh
kðxkÞ:

Eq. (4) becomes

1
2

d
dt
kukk2

M ¼
1
2

au�kþ1
2 � ðauÞHk;kþ1u�kþ1

� �
� 1

2
auþk

2 � ðauÞHk�1;kuþk

� �
:

ð5Þ

Now suppose the numerical flux is taken to be

ðauÞHk�1;k ¼
1
2

a uþk þ u�k
� �

� 1
2
ajaj uþk � u�k

� �
; a 2 ½0;1� ð6Þ

then for a = 0, we recover a central flux, for a = 1 we recover an up-
wind flux. Plugging this expression of the flux in (5) and summing
over all the elements, we get

XN�1

k¼0

1
2

d
dt
kukk2

M ¼ �
1
2
ajaj

XN�1

k¼1

uþk � u�k
� �2 � 1

2
ajaj uþ0 � u�N

� �2
:

For simplicity, we assumed periodic boundary condition. The terms
on the right hand side are negative for a P 0. Therefore

XN�1

k¼0

1
2

d
dt
kukk2

M 6 0: ð7Þ

Since
P
kukk2

M is a positive quantity decreasing in time, it re-
mains bounded. This concludes the stability proof of the method.
Here,

kukk2
M ¼

Z xkþ1

xk

uh
k

2
dx
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and therefore, the meaning of Eq. (7) is that the energy of the
numerical solution can only decrease in time. We can summarize
these results in a more concise manner. The DG method described
by Eq. (3) can be written

M
du
dt
þ aSu ¼ RHSDG; ð8Þ

where RHSDG depends only on the choice of the numerical flux. The
index k was dropped for convenience. We showed that the method
was stable if M was any symmetric positive definite matrix (hence
defining an inner product on Rn and a weighted norm associated to
it) and if the numerical fluxes where chosen according to Eq. (6). In
the rest of this document, we will always assume the latter to be
satisfied.

2.3. Stability of the filtered DG method

In an actual implementation of the method, the DG semi dis-
crete Eq. (8) are written

du
dt
¼M�1ð�aSuþ RHSDGÞ ¼ RDGðuÞ; the DG residual

and are then marched in time. Various explicit and implicit tech-
niques can then be used at this point. Often times, although the
method is shown to be stable for linear equations, wiggles tend to
appear when solving nonlinear systems of equations, such as the
Burgers equation or the Euler equations. In particular, when the
solution contains discontinuities, large spurious oscillations (Gibbs
phenomenon) can be observed. One classical method to remedy this
problem is to introduce filters applied to the residual. Their goal is
to damp the highest modes and limit Gibbs phenomenon (at this
time, the notion of modes remains undefined). From the previous
section, it is extremely easy to show how a large class of linear fil-
ters preserve stability (or enhance it in some sense) in the case of
linear equations. A linear filter F applied to the DG residual will lead
to the equation

du
dt
¼ F � RDGðuÞ ¼ F �M�1 �aSuþ RHSDGð Þ;

which is equivalent to solving

M � F�1 du
dt
þ aSu ¼ RHSDG ()fM du

dt
þ aSu ¼ RHSDG;

where fM ¼M � F�1 is a modified mass matrix. If fM is symmetric,
positive definite, then we showed in Section 2.2 that the resulting
scheme would be stable in the norm associated to fM for linear
advection (The proof is the same with M  eM).

Without any loss of generality, the element Xk = [xk,xk+1] can be
mapped to a reference element [�1,1]. In this reference element,
the mass matrix is a representation of the bilinear form
ðu;vÞ#

R 1
�1 uv dx on a basis of Rp½X� : B ¼ f/1;/2; . . . ;/pþ1g:

Mij ¼
Z 1

�1
/i/j dx:

In particular, M = I the identity matrix if B ¼ P ¼ fP1; P2; . . . ; Ppþ1g
the normalized Legendre polynomial basis. Denote VB;P ¼ V the
transformation matrix from general and unspecified basis B to basis
P. Evidently, MB ¼ VT � I � V ¼ VT V. Also, FB ¼ V�1 � FP � V, where FP
is the expression of the filter in the normalized modal basis P. It fol-
lows that the modified mass matrix MB takes the formfMB ¼ VT VV�1F�1

P V ¼ VT F�1
P V:fMB is symmetric, positive definite if and only if FP is symmetric, po-

sitive definite as well, leading to a scheme stable for linear
advection.

There are many filters satisfying this property. For example, one
classical choice is the exponential filter [7] defined by
FP ¼

r1

r2

. .
.

rpþ1

0BBBB@
1CCCCA; ri ¼ exp �a

i� 1
p

� 	s� 	
;

where a and s are free parameters. The idea is to force the residual
to have a decay in its coefficients that is similar to the one observed
for smooth functions decompositions (high modes have smaller
coefficients). Here, all the terms are smaller than 1 and the energy
proof of stability is intuitive. Things can be less intuitive when con-
sidering a general positive definite filter FP . Also, in that case, the
concept of filtering is not so clear, as various modes can be coupled.

3. Energy Stable Flux Reconstruction scheme as a filtered DG
method

3.1. The flux reconstruction method

The formulation given here of the flux reconstruction method
follows closely the one given by Huynh [12]. For the linear advec-
tion equation @u

@t þ a @u
@x ¼ 0, the FR method can be described as fol-

lows. We consider an element Xk mapped to [�1,1]. The solution
uh

k can once again be expanded in a polynomial basis. The flux is ta-
ken to be f h

k ¼ f D
k þ f C

k where

f D
k ðxÞ ¼ aukðxÞ;

f C
k ðxÞ ¼ f H

k�1;k � f D
k ð�1Þ

h i
gLðxÞ þ f H

k;kþ1 � f D
k ð1Þ

h i
gRðxÞ

¼ fCL � gLðxÞ þ fCR � gRðxÞ:

‘‘D’’ stands for discontinuous, ‘‘C’’ stands for correction. gL and gR are
flux correction functions. They are chosen to approximate zero in
some sense and satisfy

gLð�1Þ ¼ 1; gLð1Þ ¼ 0;
gRð�1Þ ¼ 0; gRð1Þ ¼ 1:

It follows that fk is continuous on X and for all k

fkðxkÞ ¼ fk�1ðxkÞ ¼ f H

k�1;k:

Its derivative with respect to x on Xk is

df h
k

dx
¼ a

duh
k

dx
þ fCL

dgL

dx
þ fCR

dgR

dx
:

We now specify gL and gR more precisely by assuming they are
in Rpþ1½X�, the space of real coefficients polynomials of degree at
most p + 1. As a consequence, dgL

dx is a polynomial of degree at most
p and it can be represented in the same basis as the solution uh by
the vector g0L. The same can be said about dgR

dx .
We are now in a position to give an explicit vectorial formula-

tion of the FR method

duk

dt
þ aDkuk þ fCL � g0L þ fCR � g0R ¼ 0; ð9Þ

where D is the differentiation matrix defined by du
dx ¼ Du (using very

informal notations). Now, multiplying by the mass matrix intro-
duced earlier one obtains

Mk duk

dt
þ aSkuk ¼ �fCL �Mkg0L � fCR �Mkg0R: ð10Þ

If g is a polynomial of degree at most p + 1 and g0 the vector repre-
sentation in the basis {/1,/2, . . . , ‘/p+1} of g0, its derivative with re-
spect to x then
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M � g0 ¼
Z 1

�1
g0Udx ¼ ½gU�1�1 �

Z 1

�1
gU0 dx:

Again U = [/1/2 . . . /p+1]T and U0 ¼ d/1
dx

d/2
dx � � �

d/pþ1
dx

h iT
. Eq. (10)

becomes

Mk duk

dt
þ a Skuk ¼ fCL �Uð�1Þ � fCR �Uð1Þ

þ
Z 1

�1
ðfCL � gL þ fCR � gRÞU0 dx

¼ auh
k � ðauÞH

� �
U

h i1

�1
þ
Z 1

�1
fCL � gL þ fCR � gRð ÞU0 dx

and therefore

M
du
dt
þ aSu ¼ RHSDG þ

Z 1

�1
ðfCL � gL þ fCR � gRÞU0 dx: ð11Þ

This equation is extremely interesting and should be put in relation
to Eq. (8). It tells us that when considering the flux reconstruction
method with polynomial correction functions of degree at most
p + 1, one recovers the DG method plus an extra term

R 1
�1ðfCL � gLþ

fCR � gRÞU0 dx. As pointed out by Huynh [12], we recover exactly
the DG method if we define gR and gL using Radau polynomials, so
that the extra term vanishes.

3.2. Energy Stable Flux Reconstruction as a filtered DG method

We now consider the Energy Stable Flux Reconstruction ap-
proach introduced by Vincent et al. [15]. In this section we derive
a new formulation of the method based on Jameson’s proof of
stability of the spectral difference method [14] and show how it
can be interpreted as a filtered DG scheme. Suppose there exist a
symmetric matrix K such that K � D = 0 (we will show later how
such a matrix can be easily found). By multiplying (9) by K one
obtains

K
du
dt
¼ �fCL � Kg0L � fCR � Kg0R: ð12Þ

Adding this new relation to Eq. (11) yields to

ðMþ KÞdu
dt
þ aSu ¼ RHSDG þ fCL �

Z 1

�1
gLU

0dx� Kg0L

� �
þ fCR �

Z 1

�1
gRU

0dx� Kg0R

� �
:

The FR method proposed by Vincent et al. aims to find gL and gR

such that the two last terms in square brackets in the above relation
vanish. For this particular choice of gL and gR, their flux reconstruc-
tion method is therefore completely equivalent to solving

Mþ Kð Þdu
dt
þ aSu ¼ RHSDG; ð13Þ

as long as (M + K) is invertible. The first observation here is that if
one chooses to solve (13) instead of (9), the explicit forms of gL

and gR need not being given. The second observation is that their
flux reconstruction scheme takes the exact form of a discontinuous
Galerkin method with modified mass matrix fM ¼Mþ K:

fM du
dt
þ aSu ¼ RHSDG ()M � ðIþM�1KÞdu

dt
þ aSu ¼ RHSDG

()M � F�1 du
dt
þ aSu ¼ RHSDG;

or equivalently

du
dt
¼ F � RDGðuÞ;
where F�1 = (I + M�1K). Once again, F can be interpreted as a linear
filtering operator applied on the DG residual, hence proving the sta-
bility of the method.

Let us now be more specific about the method introduced by
Vincent et al. It is evident that if D is the differentiation operator
for polynomials of degree at most p, then Dk is the kth derivative
operator for these polynomials. In particular, we know that D is
nilpotent and Dp+1 = 0. Since we want K to be symmetric and
such that KD = 0, the choice K � c(Dp)TDp appears immediately.
c is a real scaling coefficient. Their work was then to find gR such
thatZ 1

�1
gRU

0dx ¼ cðDpÞT Dpg0R

and to define gL by symmetry. Various choices of c lead to many
known schemes (DG, spectral differences, Huynh’s g2 flux recon-
struction. . .). As mentioned above, these schemes can be recast in
the DG framework as filtering operators applied to the residual
without obtaining an explicit expression for gL and gR. Here, the fil-
ter takes the form

F ¼ ðIþ cM�1ðDpÞT DpÞ�1
:

It is now possible to derive an explicit expression of F in the
classical Legendre polynomial basis P ¼ fP0; P1; � � � ; Ppg (actually
we could derive the expression of the filter in any basis, but the
values of c would then have to be rescaled to match the ones com-
puted by Vincent).

PpðxÞ ¼ cpxp þ cp�1xp�1 þ . . .þ c0 ¼
1
2p
ð2pÞ!
ðp!Þ2

xp þ . . .

Therefore,

Dp ¼

0 � � � p!cp

..

. ..
.

0 � � � 0

0BB@
1CCA and cðDpÞT � Dp ¼

0
. .

.

cðp!cpÞ2

0B@
1CA:

Also,

Z 1

�1
P2

i dx ¼ 2
2iþ 1

leading to M�1 ¼

1
2

3
2

. .
.

2pþ1
2

0BBBBB@

1CCCCCA:

Hence,

Iþ cM�1ðDpÞT Dp ¼

1
. .

.

1
1þ c 2pþ1

2 ðp!cpÞ2

0BBBB@
1CCCCA

and eventually

F ¼ Iþ cM�1ðDpÞT Dp
� ��1

¼

1
. .

.

1
1

1þc2pþ1
2 ðp!cpÞ2

0BBBBB@

1CCCCCA:

The filter can then be transformed to the computational basis
FB ¼ V�1

B;P � F � VB;P . As pointed out in Section 2.3, the resulting
scheme is stable provided that F is symmetric, positive definite. This
is the case if
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1þ c
2pþ 1

2
ðp!cpÞ2 > 0() c > c� ¼

�2

ð2pþ 1Þ � ðp!cpÞ2
:

If c� < c < 0 the effect of the filter is to amplify the highest mode of
the residual. If c = 0 the filter reduces to the identity matrix and we
recover the unfiltered DG method. Finally, if c > 0 the action of the
filter is to damp the highest mode of the residual. Vincent et al.
identified a few values of c that recover some interesting schemes.

� Discontinuous Galerkin – cDG = 0.
In this case, the filter reduces to the identity matrix and has no
action on the residual. Therefore, the DG method remains
unchanged.
� spectral difference – cSD ¼ 2p

ð2pþ1Þðpþ1Þðp!cpÞ2
.

Here we recover the stable SD scheme identified by Huynh [12].
In the non-normalized Legendre basis, and for this particular
value of c, the filter takes the form
−

u

F ¼

1
. .

.

1
pþ1

2pþ1

0BBBB@
1CCCCA
� Huynh’s g2 Scheme- cHU ¼ 2ðpþ1Þ
ð2pþ1Þpðp!cpÞ2

.

This time, we recover the g2 scheme introduced by Huynh in his
original paper on the flux reconstruction method and found to
be particularly stable [12]. Again we can give the explicit form
of the filter in the non-normalized Legendre basis
F ¼

1
. .

.

1
p

2pþ1

0BBBB@
1CCCCA:
� Special case – c1´1
This time, the largest mode of the residual is completely annihi-
lated by the filter. It takes the form
F ¼

1
. .

.

1
0

0BBBB@
1CCCCA:

Large losses in accuracy are expected for this particular scheme
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

Fig. 1. Reference solution – DG c = 0.
It shall be noted that the last term of the filter decreases as c in-
creases. Therefore, the larger c, the more dissipative is the scheme.

3.2.1. Numerical examples
We now consider the linear advection of a Gaussian bump and

verify we recover Vincent’s results. The domain of interest
X = [�1,1] is decomposed in 10 elements of equal length. The
advection speed is a = 1. The initial condition is given by

uðx;0Þ ¼ e�20x2
:

Periodic boundary conditions are applied at both ends of the do-
main. For the DG implementation, we consider the case p = 3 and
the collocation points are taken to be the Gauss–Lobatto points.
Time integration is done explicitly via a third order Runge Kutta
scheme [16]. Results are presented at t = 20.

3.2.2. Upwind flux
Here, the numerical flux defined in Eq. (6) is considered for

a = 1. We therefore recover a fully upwind flux

ðauÞHk�1;k ¼
1
2

a uþk þ u�k
� �

� 1
2
jaj uþk � u�k
� �

;

Fig. 1 is a plot of the solution at t = 20 for c = 0 (unfiltered dis-
continuous Galerkin). Fig. 2 shows the solution for 4 interesting
values of c. c = c�/2 is a value close to the stability limit found
above. c = cHU and c = cSD lead respectively to the recovery of
Huynh’s g2 flux reconstruction scheme and to the stable spectral
difference scheme. Eventually, c ´1 is a particular case where
the last mode of the residual is completely cancelled. All the results
obtained by filtering the DG residual match exactly the ones ob-
tained by Vincent using the flux reconstruction approach, hence
confirming the preceding theoretical results.
3.2.3. Central flux
Now, the flux defined in Eq. (6) is taken with a = 0, leading to a

central flux

ðauÞHk�1;k ¼
1
2

a uþk þ u�k
� �

:

Results are presented in Fig. 3. Once again, our plots match exactly
the ones obtained by Vincent.

4. Further analysis of the schemes

The stable method proposed by Vincent, Castonguay and Jame-
son recovers many of the flux reconstruction schemes introduced
by Huynh. We just showed how it is included in a larger class of
stable schemes: the filtered DG schemes. Thus, two questions arise
naturally:

� Can all the flux reconstruction schemes be expressed in the
form of a filtered DG?
� Can any linearly filtered DG scheme be transformed into flux

reconstruction form (i.e. for a given filter, can we always find
gL and gR such that the flux reconstruction method and the fil-
tered DG are equivalent)?

The goal of this section is to give a formal answer to these
questions.

Proposition 1. There exist FR schemes that cannot be expressed as
filtered DG schemes (linearly or nonlinearly)
Proof. The DG method can be expressed as



Fig. 2. Plot of the solution at t = 20 for various values of c for an upwind flux.
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du
dt
¼ RDGðuÞ; ð14Þ

while the FR method can be written in compact form

du
dt
¼ RFRðuÞ: ð15Þ

We say the FR method is a filtered DG method if there exist a linear
or nonlinear operator F (a filter) such that

(i) F(0) = 0.
(ii) F is independent of u.

(iii) For any u, RFR(u) = F(RDG(u)).

We show in the appendix at the end of this document that the
DG method admits spurious non constant steady solutions uh to
the linear advection equations such that fCR = (�1)pfCL – 0. For this
particular non constant solution, the DG residual is zero
(RDG(u) = 0) although this is a non physical result (resulting from
the odd/even decoupling phenomenon when using a central flux).
If a FR method is obtained by filtering the DG residual, then for this
particular solution, we should have RFR(u) = 0. We know that

RFRðuÞ ¼ RDGðuÞ þM�1
Z 1

�1
ðfCL � gL þ fCR � gRÞU0 dx

¼ 0þM�1
Z 1

�1
ðfCL � gL þ fCR � gRÞU0dx:
Therefore,
Consider the case p = 2 and {/i} = {Pi} is the Legendre polynomial
basis. Now suppose

gL ¼ 1
8 ð1� xÞ3;

gR ¼ 1
8 ð1þ xÞ3:

These correction functions would be the g3 functions for K = 3 in
Huynh’s paper [12]. They satisfy

gLð�1Þ ¼ 1; gLð1Þ ¼ 0;
gRð�1Þ ¼ 0; gRð1Þ ¼ 1;



Fig. 3. Plot of the solution at t = 20 for various values of c for an central flux.
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but for i ¼ 1; P01 ¼ 1 andZ 1

�1
ðgL þ gRÞdx ¼ 1 – 0 ) RFRðuÞ– 0:

We found a flux reconstruction method such that there exist a solu-
tion u for which RDG(u) = 0 but RFR(u) – 0. We exhibited a particular
FR method that cannot be expressed as a filtered DG method. h
Proposition 2. There exist filtered DG schemes that cannot be recov-
ered by a flux reconstruction approach. Also while all FR schemes are
conservative, some filtered DG are not.
Proof. The flux reconstruction and discontinuous Galerkin residu-
als are related by

RFRðuÞ ¼ RDGðuÞ þM�1
Z 1

�1
ðfCL � gL þ fCR � gRÞU0dx

Therefore, FR modifies the DG residual by the addition of an extra
term. However, this extra term cannot affect the lowest mode of
the residual. Indeed, consider again P ¼ fPig the Legendre polyno-
mial basis.
P0 ¼ 1; P00 ¼ 0

It immediately follows thatZ 1

�1
ðfCL � gL þ fCR � gRÞP00 dx ¼ 0

The conclusion of this proof is then straightforward. Let F be a linear
filter. F can be decomposed as F = I + G where I is the identity
matrix.

F � RDGðuÞ ¼ RFRðuÞ

() G � RDGðuÞ ¼M�1
Z 1

�1
ðfCL � gL þ fCR � gRÞU0 dx:

Take G diagonal with G11 – 0. Then

M � G � RDGðuÞ ¼

�
�
..
.

�

0BBBB@
1CCCCA; � can be a non zero entry

but
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Z 1

�1
ðfCL � gL þ fCR � gRÞU0dx ¼

0
�
..
.

�

0BBBB@
1CCCCA;

which shows that the above equality cannot be satisfied all the time
by any flux reconstruction method. We should mention that it is ex-
tremely easy to find u such that the �’s are strictly non zero. The
fact that FR cannot alter the lowest mode means that the average
value in a cell is always the one obtained by a regular DG scheme,
hence proving conservation. The above example would imply that
conservation is no more respected for that particular filtered DG.
Of course, choosing such a DG filter that modifies the lowest mode
would be a bad choice and it would not be done in practice. A more
fundamental question that has yet to be answered is ‘‘can any con-
servative linearly filtered DG scheme be transformed into flux
reconstruction form?’’ h

We therefore answered the two questions posed at the begin-
ning of this section. Not all filtered DG methods can be expressed
in a flux reconstruction framework, and reciprocally, not all flux
reconstruction schemes can be casted as a filtered DG method.

5. Conclusions

In this paper, connections between the filtered discontinuous
Galerkin method, the flux reconstruction and Energy Stable Flux
reconstructions methods have been established and help under-
stand the working mechanisms of the various methods. We
showed how a large class of filtered DG methods are energy stable.
We also gave a new derivation of ESFR that led to its formulation in
terms of a filtered DG method, giving a new and elegant proof of its
energy stability property. Finally, we highlighted differences be-
tween the flux reconstruction and the filtered DG methods. In par-
ticular, we have demonstrated that neither method is a subset of
the other. However, we showed that their intersection is not empty
since the ESFR scheme is both a filtered DG and a FR method. This
study can easily be extended to simplex elements and we refer the
reader to the work of Castonguay et al. for a detailed discussion on
the ESFR method on triangles [17]. Wang and Hyunh also gave
interesting extensions of the FR method to triangles [18,19].

ESFRLinearly filtered
DG FR
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Appendix A. Odd/even decoupling phenomenon in DG

The Odd/even decoupling is a well known phenomenon that ap-
pears in finite differences and finite volume methods when using
central schemes. In this section we focus on solving the linear
advection equation @u

@t þ a @u
@x ¼ 0. Theoretically, the only steady

solution should be obtained for @u
@x ¼ 0, i.e. u = const. However, if

one uses a central scheme, there exist a set of spurious non con-
stant solutions that yet lead to a zero residual.
A.1. Example – Central scheme, finite differences

Here, for all i, we have
We can show that this phenomenon still exists when consider-
ing a DG approach to solving the problem. From now on, we sup-
pose the polynomial basis to be the Legendre polynomials
P ¼ fP0; P1; . . . ; Ppg. These polynomials satisfy the following
properties

Pið�1Þ ¼ ð�1Þi;
Pið1Þ ¼ 1;R 1
�1 PiPj dx ¼ 2

2iþ1 dij:

:

For linear advection, the DG method is

du
dt ¼M�1ð�aSuþ fCL �Uð�1Þ � fCR �Uð1ÞÞ
¼ RDGðuÞ; the DG residual:

Therefore,

RDGðuÞ ¼ 0() aSu ¼ fCL �Uð�1Þ � fCR �Uð1Þ

() 8i;
Z 1

�1
au0hPidx ¼ fCL � Pið�1Þ � fCR � Pið1Þ:

In particular, u0h 2 Rp�1½X�, so for i = p

fCL � Ppð�1Þ � fCR � Ppð1Þ ¼ 0;

leading to

fCR ¼ ð�1ÞpfCL:

It follows for other i:R 1
�1 au0hPi dx ¼ fCL � Pið�1Þ � fCR � Pið1Þ

¼ fCLð�1Þi � fCR

¼ ½ð�1Þi � ð�1Þp�fCL:

Eventually, we have the condition

RDGðuÞ ¼ 0 () 8i;
R 1
�1 au0hPi dx ¼ ½ð�1Þi � ð�1Þp�fCL :

Note. If we use a fully upwind flux, then

a > 0) fCR ¼ 0;
a < 0) fCL ¼ 0:

In both case, since fCR = (�1)pfCL, we have fCR = fCL = 0. It follows that
for all i;

R 1
�1 au0hPi dx ¼ 0 implying that u is constant. As it does for

finite volume and finite differences, upwinding prevents the odd/
even phenomenon.

It is now possible to find an exact expression of the spurious
modes. Suppose fCL – 0 (No full upwinding, 0 6 a < 1 in Eq. (6))
and RDG(u) = 0. Suppose u0h takes the form

u0h ¼
Xp�1

i¼0

ciPi ðcp ¼ 0Þ

As a consequence,

8i 6 p; ci
2a

2iþ 1
¼ ½ð�1Þi � ð�1Þp�fCL
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If p is even, then

ci ¼
0; i is even
� 2iþ1

a fCL; i is odd

(
and if p is odd,

ci ¼
2iþ1

a fCL; i is even;
0; i is odd:

(
Recalling the following property of the Legendre polynomials

d
dx

Pnþ1 ¼ ð2nþ 1ÞPn þ ð2ðn� 2Þ þ 1ÞPn�2 þ ð2ðn� 4Þ þ 1ÞPn�4 þ � � �

we conclude

RDGðukÞ ¼ 0() uk
h ¼ ð�1Þpþ1 fCL

a
Pp þ k; k 2 R:
A.2. Example – Central scheme, p = 3

Consider the case

−1

0 

1 

−1  −0.5 0   0.5 1   

and the solution u = P3
A.3. Example – Central scheme, p = 4

Consider the case

−1

0 

1 

−1  −0.5 0   0.5 1   

and the solution u = � P4
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