In L. Adams and J. L. Nazareth (eds.), Linear and Nonlinear Conjugate Gradient-Related Methods,
STAM, Philadelphia, 92-100 (1996).

Chapter 8
Cholesky-based Methods

for Sparse Least Squares:
The Benefits of Regularization™

Michael A. Saunderst

Abstract

We study the use of black-box LDLT factorizations for solving the augmented
systems (KKT systems) associated with least-squares problems and barrier methods
for linear programming (LP). With judicious regularization parameters, stability can
be achieved for arbitrary data and arbitrary permutations of the KKT matrix.

This offers improved efficiency compared to implementations based on “pure normal
equations” or “pure KKT systems”. In particular, the LP matrix may be partitioned
arbitrarily as (A Ag). If A;AT is unusually sparse, the associated “reduced KKT
system” may have very sparse Cholesky factors. Similarly for least-squares problems if
a large number of rows of the observation matrix have special structure.

Numerical behavior is illustrated on the villainous Netlib models greenbea and pilots.

1 Background

The connection between this work and Conjugate-Gradient methods lies in some properties
of two CG algorithms, LSQR and CRAIG, for solving linear equations and least-squares
problems of various forms. We consider the following problems:

(1) Linear equations: Az =10

(2) Minimum length: min ||z|? subject to Az =b

(3) Least squares: min || Az — b||?

(4) Regularized least squares: min || Az — b + ||0z|?

(5) Regularized min length: min ||z|% + ||s||? subject to Az +ds =b

where A is a general matrix (square or rectangular) and ¢ is a scalar (§ > 0).

LSQR [17, 18] solves the first four problems, and incidentally the fifth, using essentially
the same work and storage per iteration in all cases. The iterates zj reduce ||b — Axy||
monotonically.

CRAIG [4, 17] solves only compatible systems (1)—(2), with ||z — zk|| decreasing
monotonically. Since CRAIG is slightly simpler and more economical than LSQR, it may
sometimes be preferred for those problems.
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To extend CRAIG to incompatible systems, we have studied problem (5): a compatible
system in the combined variables (z,s). If 6 > 0, it is readily confirmed that problems (4)
and (5) have the same solution x, and that both are solved by either the normal equations

(6) Nz = ATy, N = ATA4 61,

or the augmented system

" <)) =0 0)

The special form of CRAIG developed in [19] does not appear to have advantages over
LSQR. However, a side-effect of that research has been to focus attention on system (7).
Our aim in the remainder of the paper is to study direct methods for solving (6) and (7),
with an emphasis on both stability and efficiency.

Some recent references exploring stability matters are Forsgren [7], Gill et al. [12],
Vavasis [22] and Wright [23].

1.1 Notation
The following terms are used:

sqd Symmetric quasi-definite, as in (8)
Cholesky factors PKPT = LDLT P a permutation, L lower
triangular, D diagonal (possibly indefinite)
omax(A) = || 4] Largest singular value of general matrix A
Amax(K) = || K|| Largest eigenvalue of symmetric matrix K

Cond(A) = omax(A)/omin(4A)  Condition number of general matrix A
Cond(K) = Amax(K)/Amin(K) Condition number of symmetric matrix K

Econd(K) Effective condition number of K when solving
with unstable factors
€ Floating-point precision (typically ~ 10716)

2 The Condition of N and K

The normal equations (6) are effective when NN is sparse and reasonably conditioned. Since
N is positive definite, it is well known that Cholesky factors PNPT = LL" or LDL" can be
computed stably for all permutations P, and that P may therefore be chosen to preserve
sparsity in L.

If N or its factors are not sparse or well-conditioned, the augmented system (7) may
be of interest. In particular, it is better conditioned than the normal equations at times
of importance—when A is ill-conditioned. By examining the eigenvalues of N and K, we
obtain the following result for an arbitrary matrix A.

REsurLT 1 ([19, §2]). If 6 > omin(4), the condition numbers of N and K in (6)-(7)
are as follows: Cond(N) = (||A||/6)?, Cond(K) = ||A||/6.

If A comes from a sequence of increasingly ill-conditioned matrices, we see that regulariza-
tion gives essentially constant condition numbers, and that K is much better conditioned
than N. The implications for linear programming are pursued later.

A word of caution: If the degree of regularization is open to choice, § should not be
chosen “too small”, since it could mean that ||s|| > ||z|| in (7). Good accuracy in s may be
accompanied by poor accuracy in z. With 16-digit precision, we recommend & > 107°|| AJ|.
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3 Cholesky on Quasi-definite Systems
In [21], Vanderbei introduced symmetric quasi-definite (sqd) matrices of the form

H AT
(8) K = ( A o ), H and G symmetric positive definite.

and advocated use of sparse Cholesky-type factors, PKPT = LDL, for solving linear
systems Kz = d. (See also [20]. Note that A is now transposed for the remainder of the
paper.)

Since the Cholesky factors exist for all permutations, P may be chosen to maintain
sparsity, as in the positive definite case. However, the usual excellent stability properties
of Cholesky factors do not hold when K is indefinite. We must deal with this issue.

If a stable method were used to factorize K and solve Kz = d, the relative error in 2
(the computed z) would be bounded by an expression of the form

12 = z[l/]|2]| < ep Cond(K),

where p is a slowly-growing function of the dimension of K. If some other method is
used to solve Kz = d, and if the relative error can be bounded by a similar expression with
Cond(K) replaced by a quantity Econd(K), we define the latter to be an effective condition
number for K.

An initial stability analysis of sqd systems follows from some results of Golub and Van
Loan [13], as shown by Gill et al. [12].

REsULT 2 ([12, §4-5]). If Cholesky factors are used to solve Kz = d, where K is the
sqd matriz (8), an effective condition number is given by

max{||ATG~A||, [AH AT}

wiH) = K]

. Econd(K) = (1 + w(K)) Cond(K).

Typically, w(K) > 1 and we can omit the 1. For the regularized least-squares system (7),
this gives the following result.

REesuLt 3 ([19, §2.1]). If Cholesky factors are used to solve Kz = d, where K is the
matriz in (7), an effective condition number is Econd(K) =~ (|| A]|/5)2.

Comparing with Result 1, we see that the effective condition of the augmented system
K is the same as the true condition of the normal-equations matrix N (when N is ill-
conditioned). Hence, if the Cholesky factors of K are sufficiently sparse, they may be
preferable to those of V.

3.1 Iterative Refinement

Note that the right-hand side of Kz = d in Result 3 is a general vector d. If iterative
refinement is applied, errors in the computed corrections will again be governed by
Econd(K) (and the accuracy of the right-hand side). Refinement is not effective with
the associated normal equations unless the Cholesky factors are obtained from a QR
factorization of A [2], which would usually be less efficient.
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4 Regularized Linear Programs
Barrier methods for linear programming (e.g., [14]) give rise to sequences of increasingly

ill-conditioned least-squares or sqd systems. Here we focus on the regularized LP problem
discussed in [10, 11]:

© minimize Tz + 3vz|? + 3|2
subject to Az + op = b, [<x<u.
We assume that the problem has been scaled to satisfy ||A|| ~ 1. The scalars v and § are
typically “small” (=~ 107%). Like all good regularization parameters, they ensure that an
optimal primal and dual solution (x,7) exists and is bounded and unique for any values of
the data (assuming [ < u!).

Each iteration of an “infeasible primal-dual barrier method” requires the solution of
KKT systems of the form

Az w H AT
10 K = K = H=H 27
(10) (_M) (T), (A _521), )

where H,, is diagonal and positive semi-definite. (Its elements change every iteration.)
Zero diagonals of H,, arise when there are free variables (with infinite bounds in [ and u),
but setting v > 0 removes the common difficulty of forming the normal-equations matrix
N =AH'AT+ 61

4.1 Two Scalings of K

In the code PDQ1 [10, 11], we remove artificial ill-conditioning by scaling down the large
diagonals of H, using a diagonal matrix D; with (Dj);; = (max{H,;,1})"*/2. This gives
an equivalent system

T
(11) Kl y _ Dlw 7 Kl = H1 D12A ’
—Arm r ADy =671

where Az = Dyy, Hy = D1HDy, |Hy|| = 1, |H{ Y = 1/42, |D1]| = 1, |ADy|| =~ 1,
|IK1]| &~ 1. The accuracy of the solution (and the need for iterative refinement) is based on
the residuals for (11). Applying Result 2 to K gives the following effective condition, as
previously shown in [12].

REsuLT 4 ([12, RESULT 6.1]). If Cholesky factors are used to solve (11), the effective
condition number is Econd(K1) ~ max{1/42,1/6%} Cond(K1).

On a typical LP problem, the barrier method generates 20 to 50 systems with Cond(K7)
tending to increase as H changes. With v = § = 10~%, Result 4 seems to explain
the viability of PK1PT = LDLT factorizations within PDQI, at least until the solution
is approached (though it doesn’t explain the success of Cholesky factorization in LOQO
[20, 21], where P is chosen carefully without the help of regularization).

A difficulty with Result 4 is that Cond(K7) is not clearly bounded (though it may be
moderate initially). A contribution of this paper is to convert (10) to a regularized least-
squares system and obtain an effective condition number that is independent of H and
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therefore holds for all iterations of the barrier method. Scaling with Dy = H~/2 and 1/6
gives the equivalent system

D I DyAT
(12) K, K = > ) Ky = ’ 2 )
—Am (1/6)r ADy =461
where Az = §D3s, ||Do| =~

COIld(KQ) HDQATH/é
result.

1/, |AD2|| = 1/, ||K2|| = 1/7. Applying Result 1 gives
1/(v0). Combining with Result 2 gives the following main

Q

REsuLT 5. If Cholesky factors are used to solve (12), the effective condition number is
Econd(K3) =~ 1/(v%62).

We see again that the effective condition of the augmented system K5 is the same as the true
condition of the normal-equations matrix N = AD3A” + 621 (when N is ill-conditioned).
We may therefore favor Ky if its factors are more sparse than those of N.

4.2 Scale Invariance

In practice, the numerical solution of Kz = d using Cholesky factors with a given ordering
is the same for all symmetric scalings of K (assuming overflow and underflow do not occur).
Hence, Results 4 and 5 apply equally well to the original KKT system (10). The best of
those results serves as a stability indicator.

Thus, we are free to choose any ordering P for the Cholesky factors of K in (10), as
long as v and ¢ are sufficiently large.

5 LBLT Factorizations

Since the true condition of K3 in (12) is only 1/(7d) ~ 10%, implementations based on a
stable factorization of K9 should experience few numerical difficulties regardless of the data.

In PDQ1 we currently use the sparse indefinite solver MA47 [6], which performs
somewhat better than its predecessor MA27 [5] in this context. These packages can form
both LDL" and LBL" factorizations (with B block diagonal). The latter provide stability
in the conventional sense, but tend to be less sparse. In general we request LDL” as long
as possible, and fall back on LBLT factors with loose but increasingly strict tolerances if
the KKT systems are not solved with sufficient precision (e.g., if v and ¢ are too small).
An alternative would be to continue with Cholesky factors after increasing v and 4.

Fourer and Mehrotra [8] have implemented their own LBLT factorizer and applied it
to KKT systems closely related to Ks, using very loose stability tolerances. They would
probably achieve similar success on K itself, with LDL” factors resulting if v and & are
not too small.

6 Reduced KKT Systems

The KKT system (10) is often solved by forcing a block pivot on all of H and allowing
a black-box Cholesky package to choose an ordering for the resulting normal equations.
This is clearly stable if v and ¢ are sufficiently large. However, several real-world models
in [1, 15] illustrate the need for alternatives when AA” or L are excessively dense.

Reduced KKT systems are formed by pivoting on part of H (say Hg). In PDQ1, an
element of Hy is required to be “sufficiently large”, and the associated column of A must be
“sufficiently sparse”. When the regularization parameters are large enough, the partition
can be based solely on sparsity, as described next.
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6.1 Dense Columns or Dense Factors

Let A be partitioned as ( As Aq ), where the columns of A4 contain ndense or more nonzeros.
Pivoting on the first part of H gives a reduced KKT system of the form

—1 AT 2 T
(13) K}(M >:( r ) KTE<ASHS ATy 821 AL )

Axg —wy Ag —Hy

We then form a black-box factorization PK,PT = LDL". Acceptable values for ndense and
P can be determined symbolically prior to the barrier iterations. For example, ndense = 100
might be successful in many cases (treating most columns of A as sparse), but if K, or
L exceed available storage, values such as 50,20,15,10,5,1 could be tried in turn. An
intermediate value will probably be optimal.

6.2 Special Structures

In particular applications, As could be a large part of A with the property that A AT is
unusually sparse. A benefit of regularization is that we are free to choose any such partition
and then apply a black-box Cholesky package to the reduced matrix K,. (Similarly for
least-squares problems if many rows of the observation matrix have special structure.)

7 Numerical Results

To illustrate some effects, we report results from running the barrier code PDQ1 on two
“eminent” LP problems from the Netlib collection [9]. The problems were scaled and then
regularized (v, > 0). We requested 6 digits of accuracy in the regularized solution (x, 7).
(Iteration counts are about 10% greater when 8 digits are required.) Times are CPU
seconds on a DEC Alpha 3000/400 workstation with about 16 digits of precision. MA47
was instructed to compute indefinite Cholesky factors of reduced KKT systems (13).
Table 1 shows the effect of varying v and § on problem greenbea, which can cause
numerical difficulties in barrier methods without regularization (e.g., [21]).
1. With excessive regularization (y = § = 1073), the final objective value is rather
different from the optimum for the original problem. This is probably due to | ||
being unusually large.

2. With too little regularization (y = § = 1079), Cholesky factorization of K, becomes
unstable. The last two iterations proceeded satisfactorily after MA47 switched to
slightly more dense LBL” factors (with stability tolerance 1078).

3. Most problems in the Netlib set have ||z| =~ 1 after scaling, and give satisfactory
solutions with v = § = 10~*. Implementations with a crossover to the simplex
method should require relatively few simplex iterations to solve the original problem.

Table 2 shows the effect of varying the partition of A in forming reduced KKT systems

(13) and their Cholesky factors. The values v = § = 10~* gave reliable performance in
all cases. |K,| is the number of terms summed to form K, (x1000). |L| is the number of
nonzeros in L (x1000).

1. Problem greenbea is typical of “sparse” problems. Cholesky factors of N are
significantly more sparse than for the full KKT system K.

2. Problem pilots contains a large number of moderately dense columns. The normal
equations are reasonably efficient, but there is evidently scope for improvement with
reduced KKT systems of various size (notably, ndense= 5).
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TABLE 1
Barrier code PDQ1 on problem greenbea with various regularizations.

v, 6 | Itns  Final objective  |lz| |7
1073 | 43 —6.948877 x 107 2700 25
1074 | 43 —7.246302 x 107 2800 54
1075 | 42 —7.246243 x 107 2800 1300
1076 | 44  —7.246264 x 107 6200 1100

TABLE 2
PDQ1 using Cholesky factors of various reduced KKT systems (13), including normal equations
N and full system K. MA47 computes PK,.PT = LDLT. Normal equations are often efficient for
sparse problems like greenbea. One of the reduced KKT systems (ndense = 5) is noticeably better

for pilots.
ndense Colsin Ay | |K,| |L| time
greenbea 1000 0 102 113 54 N
50 2 101 113 53
20 2 101 113 53
15 204 81 122 56
10 465 66 173 93
5 3833 37 272 131
1 5495 39 295 140 K
pilots 1000 0 530 230 187 N
50 77 352 235 169
20 679 113 280 174
15 975 79 276 162
10 1432 53 290 160
5 2121 44 300 148
1 4657 48 371 170 K

8 Least Squares with Bounds
As an example of augmented systems that are regularized “naturally”, we consider least-
squares problems with bounded variables. Barrier methods generate systems that are
increasingly ill-conditioned (as in the LP case), but again the systems can be solved with
LDLT factors, as we now show.

For simplicity, let the problem be

(14) min || Az — b||> subject to x>0

and consider the function F'(z, u) = %HAx—b[P —p Y Inx;, where p is the barrier parameter
(w > 0). A primal barrier method applies Newton’s method to minimize F(x,u) as a
function of x. Each iteration requires the solution of

(15) (ATA+ uXHAz = Alr+puxle,

where x is the current estimate (z > 0), X = diag(x;), » = b — Az, and e is a vector of
1’s. In some applications, it may be best to treat this system directly. Otherwise, we may
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write it as the least-squares problem

(16)

2

min
t

)

(o) (o)

where 6 = \/u and Az = Xt. The solution is given by the augmented system

(17)

A r 7 K= Wy AX ,
t —de XAT 51

whose regularization parameter is prescribed in terms of the barrier parameter p. Although
@ tends to zero as the barrier method converges, it should comfortably satisfy p > ||b|?e.
From Result 3, we have

Eeond(K) ~ (|AX|/0)* ~ (|[Az||/8)* < [[bl]*/n < 1/e.

Hence, LDL" factors of K should be sufficiently stable throughout.

9 Conclusions

Although sparse LBLT packages are available for indefinite systems, they are inevitably
more complex than Cholesky codes. Regularization expands the latter’s applicability. Some
final comments follow:

1.

Sparse Cholesky codes are often implemented to compute LLT factors on the
assumption that they will be applied to positive definite systems. With little change
they could produce LDL” factors and allow D to have both positive and negative
elements. MA27 and MA47 already do so.

. We advocate the use of such black-box packages (and any new ones that come along)

for solving sparse least-squares problems with regularization. Barrier methods for
linear programming are a natural application. The parallelized Cholesky solver used
in [16] is a promising candidate for wider use.

The same LD LT packages may be applied to normal equations N, to full KKT systems
K (10), or to the spectrum of reduced KKT matrices K, (13). Regularization ensures
adequate stability in all cases, allowing the choice to be based solely on the sparsity
of K, and its factors.

Reduced KKT systems promise efficiency in special cases where A = (A5 Aq), if As
is a large part of A and A;AT is unusually sparse.

Similar techniques apply to bound-constrained least-squares problems. If a linear
program is suspected of being infeasible, the approach of Section 8 might provide a
useful “best” solution. (Alternatively, the primal-dual barrier method of Section 4
could be applied with § = 1. This has proved more effective in recent experiments on
large, dense, infeasible LP problems [3].)

With today’s 64-bit machines, the range of permissible regularization parameters is
somewhat narrow. If higher precision becomes commonplace, the solution of quasi-
definite systems (via Cholesky factorization) will be an important beneficiary.

So too will the solution of unsymmetric systems Az = b (via Cholesky factorization
of system (7), with iterative refinement to minimize the effect of 9).
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