STABLE REDUCTION TO KKT SYSTEMS IN BARRIER METHODS
FOR LINEAR AND QUADRATIC PROGRAMMING*

MICHAEL A. SAUNDERST AND JOHN A. TOMLIN?

Abstract. We discuss methods for solving the key linear equations within primal-dual barrier
methods for linear and quadratic programming. Following Freund and Jarre, we explore methods
for reducing the Newton equations to 2 x 2 block systems (KKT systems) in a stable manner. Some
methods require partitioning the variables into two or more parts, but a simpler approach is derived
and recommended.

To justify symmetrizing the KKT systems, we assume the use of a sparse solver whose numerical
properties are independent of row and column scaling. In particular, we regularize the problem and
use indefinite Cholesky-type factorizations. An implementation within OSL is tested on the larger
NETLIB examples.
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1. Introduction. We consider primal-dual interior methods (barrier methods)
for solving sparse linear programs and convex quadratic programs of the form

minimize ¢’z + %xTQx subject to Az =0, [<z<u.
T

Most of the computational work lies in solving large systems of linear equations in-
volving six sets of primal and dual variables (the full Newton system). We focus on
techniques for making these solves both stable and efficient.

For problems involving lower bounds > 0 and no upper bounds, the Newton
system involves only three sets of variables Az, Ay, Az. Most authors eliminate
Az and/or Az without further ado. Freund and Jarre [FJ95] first showed how the
3 x 3-block Newton system can be reduced to a 2 x 2 system in a numerically stable
way. The reduction is viewed as Gaussian elimination with column interchanges, and
involves partitioning Az and Az into two parts. The resulting system involves an
unsymmetric matrix J, but it may be transformed by column scaling into a KKT
system involving a symmetric matrix K.

We generalize Freund and Jarre’s approach to handle upper and lower bounds,
and derive several other stable ways of obtaining J and K. Ultimately, we find a
method that does not require partitioning. To a large extent it justifies the naive
elimination that has been in common use.

In order to make use of sparse Cholesky packages, we regularize the problem via
moderate perturbations, as in Gill et al. [GMPS94, GSS96] and Saunders [Sau96].
This leads to KKT matrices of the form

—-H AT

K= ,
A 821
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where H is positive definite, and it allows Cholesky-type LDLT factorizations of K
(where D is diagonal but indefinite), as first advocated by Vanderbei [Van95]. Reg-
ularization provides a theoretical and practical guarantee of stability, and helps give
sensible solutions in degenerate cases.

The present work complements that of Wright, who gives error analyses for solving
the sequence of KKT systems [Wri96] or normal equations [Wri95] generated by a
typical primal-dual method. By assuming that the iterates remain sufficiently interior
and sufficiently close to the central path, Wright provides a global view of the accuracy
attainable in each search direction and the final estimate of (z,y), even without the
help of regularization.

Our aim here is more simple. As in [FJ95], we wish to take the full Newton system
at any iteration and reduce it to a KKT system without introducing unnecessary error,
independent of assumptions about the central path. (Regularization helps ensure that
the Newton systems are not excessively ill-conditioned, but of course the total number
of iterations depends on other things.)

2. Regularized QP. We consider regularized linear and quadratic programs of
the form
minimize Tz + 227Qz + Lp|?

W
subject to Az + dp = b, | <z <u,

where Q = Q¢ + 72I and Qg is positive semi-definite. The scalars v and J§ are
typically “small”, in the range 1072 to 1076. In our numerical experiments, Qo = 0
and Q = 72I. As usual, A and x contain entries associated with slack variables on
inequality constraints. Slacks on equality rows are excluded. (The perturbation effect
of regularization is studied more closely in [ST96].)

ASSUMPTION 1. The problem is scaled so that ||A|| ~ 1 and ||c|| = 1. (This gives
meaning to specific values of 7y and § such as 10~%. Ideally the optimal solution and
dual vector should also satisfy ||z|| = 1 and ||y|| =~ 1.)

ASSUMPTION 2. The upper and lower bounds u and [ contain +00 or —oo entries
where necessary, but finite bounds are within a few orders of magnitude of the optimum
components of x. (Ideally there are no “ambiguous” entries like +10'°. Hence the
diagonal matrices S and T below have no excessively large entries.)

AssuMPTION 3. The KKT systems are solved by a method whose numerical errors
are independent of the row or column scaling of K. (This allows us to symmetrize
K.)

In Assumption 3 we have in mind that when triangular factorization (and forward
and backward substitution) are applied to a square system Kz = b with a specified
pivot order, the relative errors in the computed solution components x; are the same
for any scaling by powers of 2 (for most machines), and essentially the same for
arbitrary scaling as long as overflow or underflow do not occur.

Assumption 3 would be satisfied if K were reduced to AH'AT + 621 as usual
and a sparse Cholesky package were applied. More generally, by setting v and ¢
sufficiently large, we can use a black-box Cholesky package to form PKPT = LDL™
for any ordering P, as follows from [GV79, GSS96, Sau96].

2.1. The Newton equations. Following Megiddo [Meg89], Mehrotra [Meh90],
Lustig et al. [LMS92], Forrest and Tomlin [FT92], Kojima et al. [ KMM93] and others,
we apply an infeasible primal-dual predictor-corrector algorithm to problem (1). The
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nonlinear equations defining the central trajectory are p = dy and

r—s = |,
r+t = wu,
) SZe = e, w>0,
TWe = pe, Syt z,w > 0,
ATy+2—w = c+Qx,
Az + 6%y = b,

where e is a vector of ones, S = diag(s;), and similarly for 7', Z, W. (If [ and u
contain infinite entries, the corresponding equations are omitted.)

The primal-dual algorithm uses Newton’s method to generate search directions
from equations of the form

Az —As = a4 = (I+s)—ux,
Ax+At = 0 = (u—t)—x
(3) SAz+ZAs = g = pe— Sz,
TAw+ WAL h = pe—Tw,
—QAz+ATAy+Az—Aw = d = c+Qr— ATy— 2+ w,
AAx +8%2Ay = r = b— Ax—6%y.

From the viewpoint of “Gaussian elimination with column interchanges”, it is safe to
eliminate As and At using the first two equations (pivoting on —I and I). This gives

S Z Az g
T -W Aw h
4 JIAL = = = ,
) 184=r I -1 —Q AT || Az d
A 6% Ay r
where
(5) g = g+ Zu, As = Ax—1a,
h = h—Wo, At = ©— Az

We must solve (4) as stably and efficiently as possible.

3. Simple bounds. When there are no upper bounds, (4) becomes

S 7 Az g
(6) JeA3=r3 = I —Q AT Ar | =1 d
A 8T Ay r

We examine various ways to eliminate variables.

3.1. Conventional reduction to KKT systems. Pivoting on S gives a sym-

metric KKT system directly:
—-H AT Az
A 62T Ay |

(7) KA2=12

d
,
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— -1
= oxd 2 sa -

— d-S1 g— ZAx.
As noted by Vanderbei [Van94] and Freund and Jarre [FJ95], such a reduction is
apparently unstable (as the LP solution is approached) because many components of
s become very small. Eventually, H has many large diagonals and d’s components
vary greatly in magnitude. Growth of this kind in LU factorization usually leads to
significant numerical error.

3.2. Partitions. Here we explore Freund and Jarre’s approach of pivoting on
just part of S (and part of Z). Following [FJ95], we partition s and z into two parts
such that s; > z; and sy < z2. Other quantities are partitioned to match. From the
viewpoint of “LU with column interchanges”, we may pivot on S; and Z; in (6) to
obtain the systems

—Q11 — Dy Q12D- A? Axy
(9)| JI2A12=112 = —Qan I+ QaDy AT Azy | =r12
Al _A2D2 521 Ay
and
(10) S18z1 = g1 — Z1Azy,
ZaAxy = o — S2Az,
where
dy — g1+ g
Dy = 877, = Sl gt Qug
(11) D2 = 25152 92 = Z51g2 12 = d2 + Q2292
r— AzG2

The matrix J12 contains no large numbers. A stable (but unsymmetric) solver on
(9), along with (10), would provide a reliable solution to (6). However, we can apply
column scaling to obtain the symmetric system

Aml A.l?l
(12) KA12= 7’12, A12= U2 = —DQAZQ 5
Ay Ay

which should be more efficient to solve. (The matrix K is the same as in the conven-
tional reduction (7).) If Assumption 3 holds, we can say that (12) is equivalent to (9)
both analytically and numerically. It is then acceptable to recover Azs by unscaling
the KKT solution: Azy = 7D2_17.L2.

The analogue of (12) is derived in [FJ95] (with @ = 0), in the context of solving
the system approximately by an iterative method. It is noted that the right-hand
side r12 should involve less cancellation error than d in the conventional reduction.
Symmetrizing K is partially justified (on the grounds that a sensible preconditioner
will undo part of the damage). The vector Azy is recovered from (6) as Az =
dy — ATAy rather than —D5 Lo, This must lead to different iterates when the solves
are approximate, and may be beneficial in general (see §5).
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3.3. Stable reduction without partitions. Here we pursue the viewpoint of
“LU with row interchanges and threshold pivoting” to obtain KKT systems without
the help of partitions.

Reordering the rows of (6) gives

I —Q AT\ [ Az d
(13) J3A3=13 = S Z Ax g
A 8T Ay r

By Assumption 2 we can pivot on I with reasonable safety to eliminate S (because
||S|| is not enormously larger than 1), thereby obtaining

(14) |JeAz=r2 = (SQ+2) —8AT\ (Az\ (§-Sd
) 4 621 Ay B T

and

(15) Az =d+ QAz — ATAy.

This time we symmetrize J2 by row scaling (with —S~1). The resulting KKT system
proves to be exactly the same as (7). Thus, as long as Assumptions 2 and 3 are
satisfied, we see that the conventional reduction to (7) is stable after all. The only
difference is that Az should be obtained from (15) rather than the cheaper system
SAz=§— ZAx in (8).

4. Double bounds. Returning to the full system J{ A/ = 7/ (4), we examine
similar options for eliminating variables to obtain KKT systems.

4.1. Conventional reduction. Pivoting on S and T gives the symmetric KKT

system
—H AT A 1
(16) KA2=r2 = )[4,
A 82 Ay r
where
(17) H = Q+S'Z+T'w, SAz = §— ZAzx,
d = d—S"1g+Th, TAw = h+ WAz

As before, the reduction is apparently unstable because many components of s and ¢
become very small.

4.2. Four partitions. The approach of Freund and Jarre can be followed if we
partition the variables into four parts according to

s1 > 21 and t1 > wy,

S9 < Z9 and to > wa,
(18)

S3 > 23 and t3 < ws,

S4 < 24 and ty < wy.

Asin §3.2, “LU factorization with column interchanges” leads with maximum stability
to an unsymmetric system and thence to a KKT system via column scaling.
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Table 1
Stable factorizations for triangularizing the first two rows of J4, allowing for the relative sizes
of S, Z, T and W. In all cases, |D|| < 1 and ||E|| < 1. In the last case, T = T + WD and
F=D(D+ E)~1L.

D 5 S VA
T —-W
s I D
s-lz T-lw ( ) I —-E
T
I
2 I
Sz-1 1T-lw DE I
T —-W
D I
s I D
s-1z Tw-1 ( W> I
-E I
7 I I -1
Sz-1 Tw-1 ( 7 W) F I I
I D T

In essence, we need four stable factorizations to triangularize the first two rows
of J4. All cases in (18) can be dealt with in terms of diagonal matrices D; and F;
satisfying || D;|| <1 and || E;|| < 1. For example, the variables in partition 1 satisfy

I D
S z\ _ (s ; 7Ei
T —Wh e i

Table 1 shows this factorization and the other three (with subscripts omitted for
simplicity). The last factorization is nontrivial, but it is easily verified by multiplying
the factors.

We have implemented this four-partition method and obtained reliable perfor-
mance as expected. We now view it as unnecessarily complex, but it remains the only
method that uses “LU with maximal pivoting”.

4.3. Two partitions. As in §3.3 we may adopt the viewpoint of “LU with row
interchanges and threshold pivoting”. Reordering the rows and columns of (4) gives
the system

—1I I —-@Q AT Aw d
-~ S Z Az g

19 JIA, = = =| 7 ,
(19) | As=ry T o As 0
A 821 Ay r
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and by Assumption 2 we may pivot on —I to eliminate 7". Thus,

S Z Az g
(20)|J3As =73 = T —(W+TQ) TAT Az | =| h+Td
A 521 Ay

and Aw = Az — QAz + ATAy — d provide a reasonably stable reduction.
We now have two options for applying the [FJ95] approach to J3:
o (LU with column interchanges) Partition s and z as for (6) and reduce to a
KKT system with the help of column and row scaling.
e (LU with row interchanges) Partition s and ¢t and reduce to a KKT system
via column and row scaling.
We have implemented the first option successfully, but again we now view it as un-
necessarily complex.

4.4. No partitions. The transition from (19) to (20) is stable so far. To create
another suitable pivot, a simple device is to add the second row of (20) to the first
row:

S+T (Z-W—-TQ) TAT Az G+h+Td
(21) T —(W+TQ) TAT Az | =| h+Td
A 821 Ay r

Since S and T have positive entries, we can now pivot on S+ T to eliminate T'. After
some elaborate algebra and appropriate row scaling, we obtain exactly the KKT
system (16) that arises in the conventional reduction. The only difference is that we
should recover Az and Aw from

g = d+QAx— ATAy,
(22) (S+T)Az = g+h+Tq+ (W - 2Z)Ax,
Aw = Az-—q,

rather than from (17).

5. Numerical results. Our implementation of the above methods is based on
OSL, the IBM Optimization Subroutine Library [OSL]. The implementation took
place in two phases. The first required modification of the existing primal-dual
predictor-corrector barrier code [FT92] and the Cholesky factorization routines to
allow for the following items:

e Solving regularized LP problems of the form (1) with Q = ~21I.
e Solving KKT systems (or reduced KKT systems [GMPS94]) rather than the
normal equations used in [FT92].
e Computing sparse LDLT factors rather than LL”, with D diagonal but in-
definite.
Note that the regularization process for LPs can be accommodated while retaining the
normal equations approach. However, the KKT formulation and indefinite Cholesky
factorization are not only essential for QP problems, but they provide other recog-
nized advantages (such as direct handling of free variables, and better exploitation of
sparsity, especially in the presence of dense columuns).

As test problems we used a subset of the NETLIB collection [Gay85], namely

all problems with more than 1000 equations (with the exception of stocfor3, which
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is in inconvenient form). The subset includes 80baudb, bni2, cycle, d2q06¢, degens,
dfloo1, fit2p, ganges, greenbea, greenbeb, pilots, pilot87, sctap?2, sctap3, ship12l, ship12s,
stocfor2 and woodw. All models were scaled (see Assumption 1) but not presolved,
since that makes it difficult to reproduce results in other implementations.

The tests were performed on an IBM RS /6000 workstation with machine precision
€ ~ 10716, Experiments with various values of v and § are described in a companion
paper [ST96]. Here we set v = § = 4.0 x 10~%. The “effective condition” of the KKT
systems [Sau96] is then (||A]|/(73))? =~ 0.01/e, so that at least 2 digits of accuracy can
be expected in each search direction. Iterations were terminated when the relative
gap between the (regularized) primal and dual objectives was below 10~7, or the total
complementarity s’z 4 tTw (suitably normalized) was below 1076.

The second implementation phase involved coding the various reduction schemes.
As an accuracy check, we evaluated the “relative residuals” for the Newton system
(4); i.e., the norm of the residual on each row relative to ||74||. The standard method of
§4.1 served as a benchmark. In general, the relative residuals increase as the solution
is approached, but are never larger than O(10~2).

For the four-partition approach of §4.2—the most elaborate alternative—it was
initially disconcerting to find that the results were almost identical to those from the
standard reduction. The relative residuals for any given iteration were very similar,
as were the actual sequences of iterates. This was true even for the traditionally more
badly behaved NETLIB models such as 80bau3b.

The two-partition method of §4.3 (with s and z partitioned) also gave similar
results.

Finally, for the no-partitions method of §4.4 we again saw the now customary
behavior. However, this is the method we recommend, and we could observe one
benefit in terms of the residuals. From (17), we see that the conventional reduction
recovers Az and Aw directly from the first two rows of (4), while Az and Ay are
subject to errors in the KKT solve. Thus, the relative residuals for the first two rows
are O(e), while those for the last two rows are much larger.

On the other hand, when Az and Aw are recovered via (22), the third equation in
(4) is satisfied to O(e) and the unavoidable error in the KKT solve now manifests itself
in the residuals for the first two equations. It seems preferable to us that the search
direction should closely satisfy the Newton equation requiring dual feasibility, rather
than the complementarity equations, which we know are satisfied only approximately
in large-step algorithms (with p changing markedly at each iteration).

To test the need for Assumption 2, we changed all infinite bounds to +10'° and
found that the number of barrier iterations increased substantially in many cases.
However, there was no significant difference among the various reduction methods.
(The increase in computation time is one more reason for avoiding the bad modeling
practice of using large bounds for essentially unbounded quantities.)

6. Conclusions. For several years, the Newton equations for primal-dual bar-
rier methods have been reduced to KKT systems or normal equations by “naively”
pivoting on diagonal matrices regardless of their numerical values. Vanderbei [Van94]
commented on the apparent dangers. Freund and Jarre [FJ95] removed most doubts
by applying “LU factorization with column interchanges (and maximal pivoting)”.

Here we have explored Freund and Jarre’s approach, extending it to LP and
QP problems with upper and lower bounds. Under certain assumptions (§2), we
derived a simpler method based on “LU with threshold pivoting” and found that the
resulting KKT systems are the same as those obtained by the naive approach. Thus,



STABLE REDUCTION TO KKT SYSTEMS 9

the conventional method for obtaining the search vectors Az and Ay is seen to be
reasonably stable after all.

The same viewpoint suggests that the other search vectors Az and Aw should
be obtained differently from the naive approach, i.e., from (15) and (22) rather than
(8) or (17), although our numerical results do not reveal a significant effect on the
overall convergence of the barrier algorithm. (Far greater effects are obtained from
presolving, scaling, and avoiding large bounds.) Reliability concerns are largely swept
away by the judicious use of regularization.
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