
On the Development of a High-Order, Multi-GPU

Enabled, Compressible Viscous Flow Solver for Mixed

Unstructured Grids

Patrice Castonguay�, David M. Williamsy, Peter E. Vincentz, Manuel Lopezx, Antony Jameson{

Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 94305

This work discusses the development of a three-dimensional, high-order, compressible
viscous
ow solver for mixed unstructured grids that can run on multiple GPUs. The solver
utilizes a range of so-called Vincent-Castonguay-Jameson-Huynh (VCJH)
ux reconstruc-
tion schemes in both tensor-product and simplex elements. Such schemes are linearly stable
for all orders of accuracy and encompass several well known high-order methods as special
cases. Because of the high arithmetic intensity associated with VCJH schemes and their
element-local nature, they are well suited for GPUs. The single-GPU solver developed in
this work achieves speed-ups of up to 45x relative to a serial computation on a current
generation CPU. Additionally, the multi-GPU solver scales well, and when running on 32
GPUs achieves a sustained performance of 2.8 Tera
ops (double precision) for 6th-order ac-
curate simulations with tetrahedral elements. In this paper, the techniques used to achieve
this level of performance are discussed and a performance analysis is presented. To the au-
thors’ knowledge, the aforementioned
ow solver is the �rst high-order, three-dimensional,
compressible Navier-Stokes solver for mixed unstructured grids that can run on multiple
GPUs.

I. Introduction

In recent years, the development of high-order methods for unstructured grids has been a subject of
ongoing research. High-order methods could potentially yield better accuracy and reduced computational
costs when compared to low-order methods (order of accuracy � 2) for problems with low error tolerances.
However, existing high-order methods for unstructured grids are generally less robust and more complex to
implement than their low-order counterparts and these issues must be addressed for their wide-spread use.
One of the most promising classes of schemes are the Discontinuous Galerkin (DG) methods, which were
originally proposed by Reed and Hill1 in 1973 to solve the neutron transport problem and for which the
theoretical basis has been provided in a series of paper by Cockburn and Shu.2{5 Among variants of DG
methods, the nodal DG approach, for which an exposition can be found in the recent textbook by Hesthaven
and Warburton,6 is perhaps the simplest and most e�cient. Similar to the nodal DG method is the spectral
di�erence (SD) method, for which the foundation was �rst put forward by Kopriva, and Kolias7under the
name of \stagered grid Chebyshev multidomain" methods. In 2006, Liu, Wang and Vinokur8 presented a
more general formulation for both triangular and quadrilateral elements. In recent years, a range of studies
have succesfully employed the SD method to solve a wide range of problems.9{11 In 2007, the relationship
between the nodal DG and the SD methods was clari�ed by Huynh, who presented the
ux reconstruction
(FR) approach in a notable paper.12 Huynh’s formulation allows the recovery of well-known high-order
schemes, including a particular nodal DG method and the SD method (at least for linear advection). In
�Ph.D. Candidate, Department of Aeronautics and Astronautics, Stanford University, AIAA Student Member
yPh.D. Candidate, Department of Aeronautics and Astronautics, Stanford University, AIAA Student Member
zPostdoctoral Scholar, Department of Aeronautics and Astronautics, Stanford University
xMaster’s Student, Department of Aeronautics and Astronautics, Stanford University
{Thomas V. Jones Professor of Engineering, Department of Aeronautics and Astronautics, Stanford University, AIAA

Member

1 of 29

American Institute of Aeronautics and Astronautics

20th AIAA Computational Fluid Dynamics Conference
27 - 30 June 2011, Honolulu, Hawaii

AIAA 2011-3229

Copyright © 2011 by Patrice Castonguay. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

2009, Huynh13 extended the FR approach to di�usion problems. Recently, by extending the proof of stability
of a SD scheme by Jameson,14 the authors have identi�ed a range of FR schemes that are guaranteed to be
stable (for linear advection) for all orders of accuracy. The 1D formulation of those schemes was presented
by Vincent et al.15 in 2010 and the formulation for triangles was presented by Castonguay et al.16 in 2011.
These energy stable FR schemes are the ones used in the present work and will henceforth be referred to as
VCJH (Vincent-Castonguay-Jameson-Huynh) schemes.

The advent of General Purpose Graphical Processing Units (GPGPUs) in the last few years has brought
about an important change in the world of computing. GPGPUs, such as the NVIDIA Tesla C2070, are
massively parallel processing units that are tailored towards general computing. In recent years, several
groups have demonstrated how GPGPUs can be used to dramatically improve the performance of certain
algorithms. For example, in 2009, Klockner et al.17 demonstrated a substantial performance gain when
using GPUs to solve the Maxwell’s equations using the DG method. Because the FR and DG approaches
are similar in many regards, the task of developing a multi-GPU, high-order, unstructured Navier-Stokes
solver that uses the FR approach has been undertaken by the authors in the hope of achieving similar levels
of performance. The FR method is well suited to GPUs for two main reasons. Firstly, the vast majority of
operations are performed in an element-local fashion, without coupling between elements. This locality in
memory access allows the e�cient use of a fast access memory available on the GPU called shared memory.
Secondly, high-order methods typically require more work per degree of freedom than low-order methods,
hence they can bene�t the most from the high computational throughput of GPUs.

In this work, a multi-GPU enabled, high-order, compressible Navier-Stokes solver that can run on mixed
unstructured grids is developed. This paper starts by brie
y presenting the FR approach in 1D, on quadrilat-
eral elements, on simplex elements and on prismatic elements. Then, the implementation of the single-GPU
and multi-GPUs algorithms is explained and the performance of the algorithms is analyzed. Finally, two
realistic test cases are considered, demonstrating the performance of the solver.

II. Flux Reconstruction Method

In this section, a brief overview of the FR approach and VCJH schemes is given. For more details, the
reader is encouraged to read the articles by Huynh,12,13 Vincent et al.,15 Jameson et al.18 and Castonguay
et al.16

A. FR Approach in One Dimension

In this subsection, a review of the FR approach in one dimension is presented. Consider solving the following
1D scalar conservation law

@u

@t
+
@f

@x
= 0 (1)

within an arbitrary domain
, where x is a spatial coordinate, t is time, u = u(x; t) is a conserved scalar
quantity and f = f(u; @u@x) is the
ux in the x direction. This scalar equation is a good model for the Navier-
Stokes equations. Furthermore, consider partitioning
 into N non-overlapping, conforming elements each
denoted
n = fxjxn < x < xn+1g such that

 =
N[
n=1

n: (2)

Finally, having partitioned
 into separate elements, consider representing the exact solution u within each

n by a function denoted by u�n = u�n(x; t) which is a polynomial of degree p within
n and zero outside the
element. Similarly, consider representing the exact
ux f within each
n by a function denoted f�n = f�n(x; t)
which is a polynomial of degree p + 1 inside
n and identically zero outside the element. Thus, the total
approximate solution u� = u�(x; t) and the total approximate
ux f� = f�(x; t) over the domain
 can be
written as

u� =
NX
n=1

u�n � u; f� =
NX
n=1

f�n � f:

2 of 29

American Institute of Aeronautics and Astronautics

In order to simplify the implementation, it is advantageous to transform each
n to a standard element

S = f�j � 1 � � � 1g via the mapping �n(�),

x = �n(�) =
�

1� �
2

�
xn +

�
1 + �

2

�
xn+1: (3)

Having performed such a transformation, the evolution of u�n within any individual
n (and thus the evolution
of u� within
) can be determined by solving the following transformed equation within the standard element

S

@û�

@t
+
@f̂�

@�
= 0; (4)

where
û� = û�(�; t) = Jnu

�
n(�n(�); t) (5)

is a polynomial of degree p,
f̂� = f̂�(�; t) = f�n(�n(�); t); (6)

is a polynomial of degree p+ 1, and Jn = (xn+1 � xn)=2.
The FR approach to solving equation (4) within the standard element
S consists of seven main stages.

The �rst stage is to de�ne a speci�c form for û�. In the FR approach, a set of N1D
s = p+ 1 solution points

are de�ned within
S , with each point located at a distinct position �i (i = 1 to N1D
s). As suggested by the

authors,18,19 the solution points should be located at good quadrature points to minimize aliasing errors.
Hence, in 1D, the solution points are located at Gauss points. Two
ux points are also de�ned, which lie
at the boundary of the element, as shown in �gure (1). The approximate solution û� is represented by a
polynomial of degree p of the form

û� =
N1D
sX
i=1

û�i li; (7)

where li = li(�) is the 1D Lagrange polynomial associated with solution point i and û�i = û�i (t) are the values
of û� at the solution points �i.

ξ

Figure 1: 1D reference element (
S) for p=2. Solution points are represented by red circles and
ux points by blue
squares

The second stage of the FR approach involves calculating a common solution value at either end of the
standard element
S (at � = �1). In order to calculate this common value, one must �rst obtain values for
the approximate solution at either end of the standard element via equation (7). Once these values have been
obtained, they can be used in conjunction with analogous information from adjoining elements to calculate
a common interface solution. In what follows, the transformed common interface solution associated with
the left and right ends of
n will be denoted û�IL and û�IR , respectively. In this work, the BR2 approach of
Bassi and Rebay20 is used to deal with viscous terms, and therefore the common interface solution u�I is
computed as the average of the solutions from the left and right side of the interface (i.e. u�I = u�++u��

2
where the superscripts - and + refer to information on the left and right sides of the interface, respectively).

The third stage involves computing a corrected solution gradient, denoted by q̂� which approximates the
solution gradient within the reference element. In order to de�ne q̂�, consider �rst de�ning degree p + 1
correction functions gL = gL(�) and gR = gR(�) that approximate zero (in some sense) within
S , as well
as satisfying

gL(�1) = 1; gL(1) = 0; (8)

gR(�1) = 0; gR(1) = 1; (9)

3 of 29

American Institute of Aeronautics and Astronautics

and, based on symmetry considerations
gL(�) = gR(��): (10)

The corrected gradient q̂� takes the form

q̂� =
@û�

@�
+ (û�IL � û�L)

dgL
d�

+ (û�IR � û�R)
dgR
d�

: (11)

where û�IL and û�IR are the transformed common solutions at the left and right interfaces and û�L = û�(�1)
and û�R = (̂u)�(1) are the values of the approximate solution at the left and right interfaces, evaluated from
equation (7). The exact form of gL and gR will be discussed at the end of the subsection.

The fourth stage of the FR approach involves constructing a degree p polynomial f̂�D = f̂�D(�), de�ned
as the approximate transformed discontinuous
ux within
S . A collocation projection at the p+ 1 solution
points is employed to obtain f̂�D, which can hence be expressed as

f̂�D(�) =
N1D
sX
i=1

f̂�Di li(�) (12)

where the coe�cients f̂�Di = f̂�Di are simply the values of the transformed
ux at each solution point �i
evaluated directly from the approximate solution û� , and the corrected gradient q̂�. The
ux f̂�D is termed
discontinuous since it is calculated from the approximate solution, which is in general piecewise discontinuous
between elements.

The �fth stage of the FR approach involves calculating numerical interface
uxes at either end of the
standard element
S (at � = �1). In order to calculate these
uxes, one must �rst obtain values for the
approximate solution and the corrected gradient at either end of the standard element via equations (7) and
(11), respectively. Once these values have been obtained they can be used in conjunction with analogous
information from adjoining elements to calculate numerical interface
uxes. The common numerical interface

uxes associated with the left and right ends of
n will be denoted f�IL and f�IR , respectively. Their
transformed counterparts for use in
S will be denoted by f̂�IL and f̂�IR respectively. The exact methodology
for calculating such numerical interface
uxes will depend on the nature of the equations being solved.
When solving the Navier-Stokes equations, the common numerical interface
ux is computed as the sum of
an inviscid and viscous part. The inviscid common numerical
ux is computed using a Roe type approximate
Riemann solver,21 or any other two-point
ux formula that provides for an upwind bias, using u�+ and u��

(the approximate solution on each side of the interface). Following the BR2 approach,20 the viscous common
numerical
ux is computed using the average value of the solution ((u�+ + u��)=2) and the average value of
the corrected gradient ((q�+ + q��)=2).

The penultimate stage of the FR approach involves adding a degree p + 1 transformed correction
ux
f̂�C = f̂�C(�) to the approximate transformed discontinuous
ux f̂�D, such that their sum equals the
transformed numerical interface
ux at � = �1, yet follows (in some sense) the approximate discontinuous

ux within the interior of
S . In order to de�ne f̂�C such that it satis�es the above requirements, consider
�rst de�ning degree p + 1 correction functions hL = hL(�) and hR = hR(�) which are analogous to the
correction functions gL and gR used to construct the corrected gradient. The correction functions hL and
hR also approximate zero within
S , as well as satisfying

hL(�1) = 1; hL(1) = 0; (13)

hR(�1) = 0; hR(1) = 1; (14)

and, based on symmetry considerations
hL(�) = hR(��): (15)

A suitable expression for f̂�C can now be written in terms of hL and hR as

f̂�C = (f̂�IL � f̂�DL)hL + (f̂�IR � f̂�DR)hR; (16)

where f̂�DL = f̂�D(�1) and f̂�DR = f̂�D(1). Using this expression, a degree p+1 approximate total transformed

ux f̂� = f̂�(�) within
S can be constructed from the discontinuous and correction
uxes as follows

f̂� = f̂�D + f̂�C = f̂�D + (f̂�IL � f̂�DL)hL + (f̂�IR � f̂�DR)hR: (17)

4 of 29

American Institute of Aeronautics and Astronautics

The �nal stage of the FR approach involves calculating the divergence of f̂� at each solution point �i
using the expression

@f̂�

@r
(�i) =

N1D
sX
j=1

f̂�Dj
dlj
d�

(�i) + (f̂�IL � f̂�DL)
dhL
d�

(�i) + (f̂�IR � f̂�DR)
dhR
d�

(�i): (18)

These values can then be used to advance the approximate transformed solution û� in time via a suitable
temporal discretization of the following semi-discrete expression

dû�i
dt

= �@f̂
�

@�
(�i): (19)

The nature of a particular FR scheme depends solely on three factors, namely the location of the solution
collocation points �i, the methodology for calculating the common interface solution u�I and common nu-
merical interface
ux f�I , and �nally the form of the corrected gradient and
ux correction functions gL and
hL (and thus gR and hR). Huynh has shown that a collocation based (under integrated) nodal DG scheme
is recovered in 1D for the linear advection equation if the correction functions hL and hR are the right and
left Radau polynomials respectively.12 Huynh has also shown that SD type methods can be recovered for
the linear advection equation if the corrections hL and hR are set to zero at a set of p points within
S

(located symmetrically about the origin).12 Huynh also suggested several additional forms of hL (and thus
hR), leading to the development of new schemes, with various stability and accuracy properties. In 2010,
Vincent, Castonguay and Jameson15 identi�ed a class of correction functions hL and hR that lead to FR
schemes which are linearly stable for all orders of accuracy. Those schemes are referred to as VCJH schemes
and they are the ones implemented in the Navier-Stokes solver developed in this work. If the correction
functions gL and gR (used to construct the correction gradient q̂) are chosen as the VCJH correction func-
tions, linear stability for the advection-di�usion equation can also be shown. The proof will be presented in
a subsequent publication.

B. FR Approach for Quadrilateral and Hexahedral Elements

The FR framework can easily be extended to quadrilateral and hexahedral elements. In this section, the
procedure will be summarized for the quadrilateral element only, but the extension to the hexahedral element
is straightforward. More details can be found in the articles by Huynh.12,13

Consider the 2D scalar conservation law

@u

@t
+rxy � f = 0 (20)

within an arbitrary domain
, where f = (f; g) where f = f(u;ru) and g = g(u;ru) are the
uxes in the
x and y directions respectively. Consider partitioning the domain
 into N non-overlapping, conforming
quadrilateral elements
n such that

 =
N[
n=1

n: (21)

To facilitate the implementation, each quadrilateral element in the physical domain (x; y) is mapped to a
reference element in the transformed space (�; �) as shown in �gure (2). The transformation can be written
as

x

y

!
=

KX
i=1

Mi(�; �)

xi

yi

!
(22)

where K is the number of points used to de�ne the shape of the physical element, (xi; yi) are the cartesian
coordinates of those points and Mi(�; �) are the shape functions.

After transformation, the evolution of u�n within any individual
n (and thus the evolution of u� within

) can be determined by solving

@û�

@t
+r�� � f̂� = 0 (23)

5 of 29

American Institute of Aeronautics and Astronautics

where

û� = û�(�; �; t) = Jn u
�
n(�n(�; �); t); (24)

f̂� = f̂�(�; �; t) = (f̂�; ĝ�) (25)

=
�
@y

@�
f�n �

@x

@�
g�n;�

@y

@�
f�n +

@x

@�
g�n

�
(26)

and the metric terms Jn, @x@� ;
@x
@� ;

@y
@� and @y

@� (which depend on the shape of element n) can be evaluated from
equation (22).

Inside the reference quadrilateral element, a set of Nquad
s = (p+ 1)2 solution points are de�ned and are

represented by red dots in �gure (3). For hexahedral elements, the number of solution points is Nhex
s =

(p+ 1)3. They are generated by taking the tensor product of a set of 1D solution points. Furthermore, a set
of
ux points are de�ned on the boundary of the reference element. For the quadrilateral element, (p + 1)

ux points are de�ned on each edge (represented by blue squares in �gure (3)) and for hexahedral elements,
(p + 1)2
ux points are used on each face. The total number of
ux points is thus Nquad

f = 4(p + 1) for
quadrilateral elements and Nhex

f = 6(p+ 1)2 for hexahedral elements.

ξ

η

x

y

x = Θn(ξ, η)

Figure 2: Mapping between the physical space (x; y) and the computational space (�; �)

ξ

η

Figure 3: Quadrilateral reference element (
S) for p=2. Solution points are represented by red circles and
ux
points by blue squares

Within the reference element, the approximate solution û� is written as

û� =
NquadsX
i=1

û�i;j li(�)lj(�) (27)

6 of 29

American Institute of Aeronautics and Astronautics

where li(�) and lj(�) are 1D Lagrange polynomials associated with the 1D solution points at �i and �j
respectively and u�i;j is the value of û� at the solution point located at (�i; �j).

The corrected gradient q̂� = (q̂�� ; q̂
�
�) is obtained using the 1D correction functions gL and gR. At each

solution point, the � and � components of the corrected gradient q̂� = (q̂�� ; q̂
�
�) are corrected independently

as

q̂��(�i; �j) =
@û�

@�
(�i; �j) + (û�IL � û�L)

@gL
@�

(�i) + (û�IR � û�R)
@gR
@�

(�i) (28)

q̂��(�i; �j) =
@û�

@s
(�i; �j) + (û�IB � û�B)

@gB
@s

(�j) + (û�IT � û�T)
@gT
@�

(�j) (29)

where û�IR , û�IL , û�IT , û�IB are the transformed common interface values of the approximate solution at the

ux points located along the lines � = �i and � = �j respectively (see �gure (4)). The correction functions
gB(�) and gT (�) are simply gB(�) = gL(� = �) and gT (�) = gR(� = �). As shown in �gure (4), the gradient
at a single solution point depends on the common interface solution values at 4
ux points.

T

B

L R

Figure 4: Sketch of the reference quadrilateral element illustrating which
ux points contribute to the approximate
gradient and approximate divergence of the
ux at one solution point

The corrected gradient in the entire element is then constructed as

q̂� =
NquadsX
i=1

q̂�i;j li(�)lj(�): (30)

As in the 1D FR approach, the total transformed approximate
ux f̂� = (f̂�; ĝ�) is written as the sum of a
discontinuous component f̂�D and a correction component f̂�C ,

f̂� = f̂�D + f̂�C : (31)

The transformed discontinuous
ux f̂�D is computed as

f̂�D(�; �) =
NquadsX
i=1

f̂�Di;j li(�) lj(�) (32)

where the coe�cients f̂�Di;j are simply the values of the transformed
ux at the solution point (�i; �j) evaluated
directly from the approximate solution û�, and the corrected gradient q̂�. The divergence of the discontinuous

ux is thus

r�� � f̂�D(�; �) =
@f̂�D

@�
+
@ĝ�D

@�
(33)

=
NquadsX
i=1

f̂�Di;j
@li(�)
@�

lj(�) +
NquadsX
i=1

f̂�Di;j li(�)
@lj(�)
@�

: (34)

7 of 29

American Institute of Aeronautics and Astronautics

The divergence of the transformed correction
ux r�� � f̂�C = @f̂�C

@� + @ĝ�C

@� at solution point (�i; �j) is
computed following the 1D methodology as

@f̂�C

@�
(�i; �j) = (f̂�IL � f̂�DL)

@hL
@�

(�i) + (f̂�IR � f̂�DR)
@hR
@�

(�i) (35)

@ĝ�C

@�
(�i; �j) = (ĝ�IB � ĝ�DB)

@hB
@�

(�j) + (ĝ�IT � ĝ�DT)
@hT
@�

(�j) (36)

where hB(�) = hL(� = �) and hT (�) = hR(� = �). In equations (35) and (36), f̂�IL , f̂�IR , ĝ�IB and ĝ�IT are the
transformed interface numerical
uxes computed at the
ux points located along lines � = �i and � = �j .
The discontinuous transformed
uxes f̂�DL , f̂�DR , ĝ�DB and ĝ�DT are computed from equation (32).

Finally, the solution at the solution points can be updated from

dû�i;j
dt

= �@f̂
�

@r
(�i; �j) +

@ĝ�

@s
(�i; �j) (37)

where the RHS can be evaluated from equations (31), (32), (35) and (36).

C. FR Approach for Simplex Elements

The FR procedure can be extended to deal with simplex elements (triangles in 2D and tetrahedrals in 3D).
In this section, the approach discussed in the article by Castonguay et al.16 is summarized. In addition,
the methodology used to handle di�usion terms is presented. For simplicity, the procedure will be presented
for the triangle case, but it can be extended to tetrahedral elements. Consider the 2D scalar conservation
law given by equation (20). As before, the domain
 is partitioned into N non-overlapping, conforming
triangular elements
n such that

 =
N[
n=1

n: (38)

Each element
n in physical space is mapped to a reference triangle
S using a mapping �n, as shown
in �gure (5).

x

y

x = Θn(ξ, η)

ξ

η

Figure 5: Mapping between the physical space (x; y) and the computational space (�; �)

After transformation, the evolution of u�n within any individual
n (and thus the evolution of u� within

) can be determined by solving

@û�

@t
+r�� � f̂� = 0: (39)

The approximate solution û� within the reference triangular element
S is represented by a multi-
dimensional polynomial of degree p, de�ned by its values at a set of N tri

s = 1
2 (p + 1)(p + 2) solution

points (represented by red circles in �gure (6)). For tetrahedral elements, the number of solution points is
N tet
s = 1

6 (p+ 1)(p+ 2)(p+ 3).

8 of 29

American Institute of Aeronautics and Astronautics

ξ

η

Figure 6: Solution points (red circles) and
ux points (blue squares) in the reference element for p= 2

The approximate solution in the reference element takes the form

û�(�; t) =
NtrisX
i=1

û�iLi(�) (40)

where � = (�; �), û�i = Jn � u�(��1
n (�i); t) is the value of û� at the solution point i and Li(�) is the multi-

dimensional Lagrange polynomial associated with the solution point i in the reference equilateral triangle

S .

The corrected gradient q̂�i at the solution point located at �i = (�i; �i) is computed from

q̂�i =
�
r��û�

���
�i

+
3X

f=1

p+1X
j=1

�
û�If;j � û�f;j

�
 f;j j�i n̂f;j (41)

In the previous equation, expressions subscripted by the indices f; j correspond to a quantity at the
ux
point j of face f , where 1 � f � 3 and 1 � j � (p+ 1). The convention used to number the faces and
ux
points is illustrated in �gure (7).

j = p + 1 = 3

ξ

η
j = 1 j = 2 j = p + 1 = 3

f = 1

f
=

2f
=

3

j = 1

j = 1

j = 2 j = 2

j = p + 1 = 3

Figure 7: Numbering convention for the faces and
ux points on the reference triangular element. Example shown
corresponds to p = 2.

Each edge of the reference triangle element has (p + 1)
ux points while each face of the reference
tetrahedral element has 1

2 (p+ 1)(p+ 2)
ux points. Thus, the triangle element has a total of N tri
f = 3(p+ 1)

ux points while the tetrahedral element has N tet
f = 2(p + 1)(p + 2)
ux points. In equation (41), û�If;j is

the common interface values of the approximate solution at the
ux points f; j. Finally, f;j = f;j(�; �)

9 of 29

American Institute of Aeronautics and Astronautics

is a correction �eld associated with
ux point f; j. The nature of f;j will be discussed at the end of the
subsection. The corrected gradient q̂� inside the reference element is constructed as

q̂�(�) =
NtrisX
i=1

q̂�iLi(�): (42)

As in the 1D FR approach, the total transformed approximate
ux f̂� = (f̂�; ĝ�) is written as the sum of a
discontinuous component f̂�D and a correction component f̂�C ,

f̂� = f̂�D + f̂�C : (43)

The transformed discontinuous
ux f̂�D = (f̂�D; ĝ�D) is computed by constructing a degree p polynomial
for each of its components as follows

f̂�D =
NtrisX
i=1

f̂�Di Li (44)

where f̂�Di is the value of the transformed
ux at the solution point i evaluated directly from the approx-
imate solution ûi and the approximate corrected gradient q̂i (i.e. f̂�Di = f̂(ûi; q̂i)). The divergence of the
transformed discontinuous
ux is therefore

r�� � f̂�D =
NtrisX
i=1

f̂�Di
@Li
@�

+
NtrisX
i=1

ĝ�Di
@Li
@�

(45)

The transformed correction
ux f̂�C is constructed as follows

f̂�C(�) =
3X

f=1

p+1X
j=1

h
(f̂ � n̂)�If;j � (f̂�D � n̂)f;j

i
hf;j(�) (46)

f̂�C(�) =
3X

f=1

p+1X
j=1

�f;jhf;j(�) (47)

In equation (46), (f̂�D � n̂)f;j is the normal component of the transformed discontinuous
ux f̂�D at the
ux
point f; j and (f̂ � n̂)�If;j is a transformed normal numerical
ux computed at
ux point f; j. Finally, hf;j(�)
is a vector correction function associated with
ux point f; j. Each vector correction function hf;j(�) is
restricted to lie in the Raviart-Thomas space22 of order p. Because of this property, the divergence of each
correction function (r�� �hf;j) is a polynomial of degree p and the normal trace hf;j �n̂ is also a polynomial of
degree p along each edge. The latter property is required to prove that the resulting scheme is conservative.
The correction functions hf;j satisfy

hf;j(�f2;j2) � nf2;j2 =

(
1 if f = f2 and j = j2

0 if f 6= f2 or j 6= j2
(48)

An example of a vector correction function hf;j is shown in �gure (8) for the case p = 2.

1 0.5 0 0.5 1 1.5
1

0.5

0

0.5

1

1.5

X

Y

Figure 8: Example of a vector correction function hf;j associated with
ux point f = 2; j = 1 for p = 2

10 of 29

American Institute of Aeronautics and Astronautics

The correction �eld �f;j(�) is de�ned as the divergence of the correction function hf;j(�), i.e.

�f;j(�) = r�� � hf;j(�): (49)

Finally, combining equations (39), (43), (45) and (47), the approximate solution values at the solution points
can be updated from

dû�i
dt

= �
�
r�� � f̂�

� ���
�i

(50)

= �
�
r�� � f̂�D

� ���
�i
�
�
r�� � f̂�C

� ���
�i

(51)

= �
NtrisX
k=1

f̂�Dk
@Lk
@�

���
�i
�
NtrisX
k=1

ĝ�Dk
@Lk
@�

���
�i
�

3X
f=1

(p+1)X
j=1

�f;j�f;j(�i): (52)

The nature of a particular FR scheme on triangular elements depends on four factors, namely the location
of the solution points �i, the location of the
ux points �f;j , the methodology for calculating the common
interface solutions u�I and numerical interface
uxes (f � n)�If;j and �nally the form of the correction �elds
 f;j and �f;j . In reference 16, Castonguay et al. identify a range of correction �elds �f;j that are guaranteed
to yield a linearly stable scheme for all orders of accuracy and can also provide an increased time step limit
compared to the DG scheme. These schemes are referred to as VCJH schemes on triangles. If the correction
�elds f;j (used to construct the correction gradient q̂) are chosen as the VCJH correction �elds, linear
stability for the advection-di�usion equation can also be shown. The proof will be presented in a subsequent
publication.

D. FR Approach for Prismatic Elements

To extend the approach to prismatic elements, a tensor-product combination of the FR approaches described
in subsections A and C is used. The approximate solution û� within the reference prismatic element
S

is represented by a multi-dimensional polynomial de�ned by its values at a set of Npri
s = N tri

s (p + 1) =
1
2 (p + 1)(p + 2)(p + 1) solution points (represented by red circles in �gure (9)). The solution points are
numbered using two indices (i; j), the index i indicates the position of the point on the triangle in the �; �
plane and the index j indicates the position along the �-direction. Thus, the solution point with index (i; j)
is located at (�i; �i; �j).

The approximate solution in the reference element takes the form

û�(�; �; �) =
NtripX
i=1

p+1X
j=1

û�i;jLi(�; �)lj(�) (53)

where û�i;j is the value of û� at the solution point (i; j), Li(�; �) is the 2D dimensional Lagrange polynomial
associated with the solution point i in the reference triangle, and lj(�) is the one-dimensional Lagrange
polynomial associated with the solution point located at �j .

The corrected gradient q̂� = (q̂�� ; q̂
�
�; q̂

�
�) is computed in a decoupled manner. The � and � components of

the correction gradient at the solution points are computed using the methodology used on triangles, i.e.

q̂��
��
�i;j

=
@û�

@�

����
�i;j

+
3X

f=1

p+1X
k=1

�
û�If;k;j � û�Df;k;j

�
 f;kj�i;j (n̂�)f;k;j (54)

q̂��
��
�i;j

=
@û�

@�

����
�i;j

+
3X

f=1

p+1X
k=1

�
û�If;k;j � û�Df;k;j

�
 f;kj�i;j (n̂�)f;k;j (55)

where the subscripts f; k refers to the position of the
ux point in the reference triangle element, and the
subscript j refers to the position of the
ux point in the � direction. The � component of the corrected
gradient at the solution points is computed using the 1D correction functions hT and hB , i.e.

q̂��
��
�i;j

=
@û�

@�

����
�i;j

+ (û�IT;i � û�T;i)
dhT
d�

(�j) + (û�IB;i � û�B;i)
dhB
d�

(�j): (56)

11 of 29

American Institute of Aeronautics and Astronautics

ξ

η
ζ

Figure 9: Solution points, represented by red circles in
the reference prismatic element for p= 2

ξ

η
ζ

Figure 10: Flux points represented by blue squares in the
reference prismatic element for p= 2

where the subscript i in û�T;i, û
�
B;i, û

�I
T;i and û�IB;i refers to the position of the
ux point on the triangular

faces at the top (T) and bottom (B) of the prismatic element. The corrected gradient in the rest of the
element takes the form

q̂�(�; �; �) =
NtripX
i=1

p+1X
j=1

q̂�i;jLi(�; �)lj(�) (57)

The discontinuous approximate
ux is

f̂�D(�; �; �) =
NtripX
i=1

p+1X
j=1

f̂�Di;j Li(�; �)lj(�): (58)

Finally, the divergence of the correction
ux at the solution points takes the form

r��� � f̂�C
���
�i;j

=
3X

f=1

p+1X
k=1

h
(f̂ � n̂)�If;k;j � (f̂�D � n̂)f;k;j

i
�f;k(�i; �i) (59)

+
h
(f̂ � n̂)�IT;i � (f̂ � n̂)�DT;i

i dhT
d�

(�j) (60)

+
h
(f̂ � n̂)�IB;i � (f̂ � n̂)�DB;i

i dhB
d�

(�j) (61)

where (f̂ � n̂)�If;k;j are the transformed common numerical interface
uxes on the side faces of the reference
prismatic element (faces with n̂� = 0) and (f̂ � n̂)�IT;i and (f̂ � n̂)�IB;i are the transformed common numerical
interfaces
uxes on the top and bottom faces.

E. Extension to Navier-Stokes Equations

The FR procedure described in the previous sections can be used to solve the Navier-Stokes equations.
The GPU algorithm presented in this work solves the unsteady, three-dimensional, compressible, un�ltered
Navier-Stokes equations which can be expressed as

@U

@t
+r � F = 0 (62)

12 of 29

American Institute of Aeronautics and Astronautics

where F = (F;G;H) = (FI ; GI ; HI) � (FV ; GV ; HV). The state vector U , inviscid
ux vectors FI ,GI and
HI , along with the viscous
ux vectors FV ,GV and HV are

U =

0BBBBB@
�

�u

�v

�w

�e

1CCCCCAFI =

0BBBBB@
�u

�u2 + p

�uv

�uw

�eu+ p

1CCCCCA ; GI =

0BBBBB@
�v

�uv

�v2 + p

�vw

�ev + p

1CCCCCA ; HI =

0BBBBB@
�w

�uw

�uw

�w2 + p

�ew + p

1CCCCCA (63)

FV =

0BBBBB@
0
�xx

�xy

�xz

ui�ix � qx

1CCCCCA ; GV =

0BBBBB@
0
�yx

�yy

�yz

ui�iy � qy

1CCCCCA ; HV =

0BBBBB@
0
�zx

�zy

�zz

ui�iz � qz

1CCCCCA : (64)

In these de�nitions, � is the density, u; v and w are the velocity components in the x; y and z directions
respectively and e is the total energy per unit mass. The pressure is determined from the equation of state,

p = (
 � 1)�
�
e� 1

2
(u2 + v2 + w2)

�
: (65)

For a Newtonian
uid, the viscous stresses are

�ij = �

�
@ui
@xj

+
@uj
@xi

�
� 2

3
��ij

@uk
@xk

(66)

and the heat
uxes are
qi = �k @T

@xi
: (67)

The coe�cient of thermal conductivity and the temperature are computed as

k =
Cp�

Pr
; T =

p

R�
(68)

where Pr is the Prandtl number, Cp is the speci�c heat at constant pressure and R is the gas constant. For
the cases considered in this paper,
 = 1:4 and Pr = 0:72. The dynamic viscosity � can be computed from
Sutherland’s law as

� = �ref

�
T

Tref

� 3
2 Tref + S

T + S
(69)

Note that F is a function of U and rU and therefore the methodology presented in the previous sections can
be applied, the main di�erence being that the Navier-Stokes equations are a coupled system of 5 equations
instead of just one scalar equation.

III. Overview of the steps in the FR approach

In this section, the steps required to update the solution at one solution point are summarized and are
formulated in a way that applies to all element types. The objective of this section is to provide insights into
how the steps in the FR approach are implemented on the GPU. It should also be noted that if the solution
points and
ux points are overlapped, many of the steps can be neglected. However, theoretical analysis18

and numerical experiments19 suggests that locating the solution points at good volume quadrature points
and the
ux points at good face quadrature points is essential to prevent instabilities due to aliasing errors.

Step 1: Compute the approximate solution at the
ux points

First, for each element, the approximate transformed solution must be computed at the
ux points located at
the cell interfaces. Consider de�ning a matrix [Ûs] of dimension Ns � 5 (where Ns is the number of solution

13 of 29

American Institute of Aeronautics and Astronautics

points per cell and 5 is the number of equations in the 3D compressible Navier-Stokes equations) which
stores the approximate solution at the solution points of a cell. Furthermore, consider de�ning a matrix [Ûf]
of dimension Nf � 5 (where Nf is the number of
ux points per cell) that stores the approximate solution
at the
ux points of a cell. For the Navier-Stokes equations, the matrices [Ûs] and [Ûf] have the form

[Ûs] =

2666664
�̂�1 c�u�1 c�v�1 c�w�1 b�e�1
�̂�2 c�u�2 c�v�2 c�w�2 b�e�2
: : : : :

: : : : :

�̂�Ns c�u�Ns c�v�Ns c�w�Ns b�e�Ns

3777775 (70)

and

[Ûf] =

26666664
�̂�1 c�u�1 c�v�1 c�w�1 b�e�1
�̂�2 c�u�2 c�v�2 c�w�2 b�e�2
: : : : :

: : : : :

�̂�Nf c�u�Nf c�v�Nf c�w�Nf b�e�Nf

37777775 : (71)

To compute the approximate solution û� at the
ux points, one must perform

[ÛDf] = M1[Ûs] (72)

at the cell level, where the matrix M1 of dimension Nf � Ns depends on the type of element used and is
the same for all elements of the same type. For tetrahedral elements, M1 is dense while for hexahedral and
prismatic elements M1 is sparse because of their tensor product formulation. In the following steps, the
subscript s will be used to indicate a quantity stored at the solution points, and the subscript f to indicate
a quantity stored at the
ux points.

Step 2: Compute the discontinuous solution gradient r̂û�

The corrected gradient q̂� is the sum of a discontinuous solution gradient r̂û� and a correction, which
depends on a common solution value at the cell interfaces. Consider de�ning the matrix [Q̂Ds] of dimension
(3Ns) � 5 which stores the discontinuous gradient r̂û� at the solution points. The discontinuous solution
gradient is obtained from

[Q̂Ds] = M2[Ûs] (73)

where M2 is of dimension 3Ns �Ns. Again, the structure of M2 depends on the type of element used and
is the same for all elements of the same type.

Step 3: Compute the common interface values u�I and the inviscid part of the common interface
ux (f �n)�I

for each
ux point pair

In this step, a common value of the solution and the numerical inviscid
ux must be computed for each
ux
point pair at the cell interfaces. In the algorithm, this step involves looping over all the face
ux point pairs,
loading the data on the left and right sides of the interface, computing the common interface solution u�I

and common normal interface inviscid
ux (finv �n)�I and storing the results. For each cell, let the matrices
[Û If] and [(F̂ � n̂)If] contain the transformed common interface solution û�I and the transformed common
normal interface
ux (f̂ � n̂)�I . Both matrices are of dimension Nf � 5.

Step 4: Compute the corrected gradient q̂� at the solution points

After the transformed common approximate solution value has been computed at each
ux point pair, the
corrected gradient q̂� is computed at the solution points. Within each element, this is represented by a
matrix-matrix multiplication of the form

[Q̂s] = M3

�
[Û If]� [ÛDf]

�
+ [Q̂Ds] (74)

where the matrix M3 is of dimension 3Ns �Nf .

14 of 29

American Institute of Aeronautics and Astronautics

Step 5: Compute the transformed discontinuous
ux f̂�D at the solution points

The transformed discontinuous
ux at the solution points depends on the approximate solution û� and the
corrected gradient q̂ which were computed in the previous steps. This operation is performed independently
for each solution point in the mesh. For each cell, the result is stored in a matrix of dimension 3Ns � 5
denoted by [F̂Ds].

Step 6: Compute the discontinuous
ux divergence r � f̂�D

The discontinuous
ux divergence is computed as

[(div F̂)Ds] = M4[F̂Ds] (75)

where the matrix M4 is of dimension Ns � (3Ns).

Step 7: Compute the corrected gradient q̂ at the
ux points

In order to evaluate the common viscous interface
ux at the
ux points, the corrected gradient must �rst
be evaluated at the
ux points. This is done using matrix M1 as follows

[Q̂f] =

264M1 0 0
0 M1 0
0 0 M1

375 [Q̂s] (76)

Step 8: Compute the normal discontinuous
ux (f̂�D � n̂) at the
ux points

The normal discontinuous
ux at the
ux points, which will be denoted by the matrix [(F̂ � n̂)Df], is required
to form the correction
ux f̂�C . It is computed from

[(F̂ � n̂)Df] = M5[F̂Ds] (77)

where M5 is of dimension Nf � 3Ns.

Step 9: Compute the viscous part of the common interface
ux (f̂ � n̂)�I at the
ux points

In this step, a common value of the numerical viscous
ux must be computed for each
ux point pair at the
cell interfaces. As in step 3, this step involves looping over all the face
ux point pairs, loading the data on
the left and right sides of the interface, computing a common normal interface viscous
ux (fvis � n)�I and
adding the results to the normal interface inviscid
ux computed in step 3 and stored in [(F̂ � n̂)If].

Step 10: Correct the divergence of the discontinuous
ux

In this penultimate step, the divergence of the total approximate
ux can be computed by adding the
divergence of the correction
ux r � f̂�C to the divergence of the discontinuous
ux r � f̂�D. Using the
matrices introduced in the previous steps, this is represented as

[(div F̂)s] = M6

�
[(F̂ � n̂)If]� [(F̂ � n̂)Df]

�
+ [(div F̂)Ds] (78)

where M6 is an operator matrix of dimension Nf �Ns.

Step 11: Using the corrected divergence, update the solution at solution points.

Finally, a time integration scheme (such as the 5-stage, 4th order accurate Runga-Kutta scheme23 used in
this work) is used to update the solution at the solution points, using the previously computed divergence
of the
ux at the solution points. This step can be performed independently for each solution point in the
mesh.

15 of 29

American Institute of Aeronautics and Astronautics

IV. CUDA Overview

Our GPU implementation uses the CUDA architecture from NVIDIA and was designed to run on the
newest Fermi architecture. The cases presented in this work were run on the Tesla C2050 GPU which is a
single chip GPU with 448 cores and 3GB of memory. The C2050 supports Error Correction Code (ECC)
protection for DRAM and IEEE-compliant double precision math. It has a peak double precision
oating
point performance of 515 G
ops. The chip in the Tesla C2050 has 14 streaming multi-processors (SMs)
and each SM contains 32 cores, for a total of 448 cores. On a GPU, a parallel code is executed by so-called
threads and the SM is responsible for creating, managing and executing those threads in groups of 32 parallel
threads called warps.

The Tesla C2050 card has 3GB of global o�-chip DRAM to which all threads have access to. The global
o�-chip GPU memory and the host CPU’s memory have separate memory spaces and the data can be moved
between the two via the PCIE bus. On the Tesla C2050 card, the memory bandwidth between the GPU
global memory and the GPU chip is about 126 GB/sec with ECC turned on. However, this peak bandwidth
can be attained only for certain memory access patterns. In this work, caching loads are used, hence if threads
in a warp read from the same 128-byte memory region in the same cycle, these reads are batched into a single
operation via a process known as memory coalescing. On the other hand, if threads in a warp access global
memory in a random fashion, up to 31/32 of the available memory bandwidth can be wasted. Therefore, in
order not to waste memory bandwidth, threads in the same warp must access sequential memory locations
at the same time. In addition to the global o�-chip memory, the Tesla C2050 has a read-only on-chip cache
called texture memory, and a con�gurable 64KB shared memory/L1 cache which can be con�gured as 16
KB or 48 KB of L1 cache with the remaining space taken up by shared memory.

The CUDA architecture may be programmed via the programming language CUDA C, which extends
the C/C++ language to allow the management of the GPU’s memory and the execution of kernels (which
are functions running on the GPU). A kernel is executed by threads, which are organized into a two-level
hierarchy. Individual threads are grouped into batches of up to 1024 called thread blocks. Threads within
the same thread block are guaranteed to run on the same SM at the same time. However, thread blocks can
run in any order, so they must be independent. The set of all thread blocks is called a thread grid and all
threads in a grid must execute the same kernel. A grid of threads is launched via a modi�ed function call
syntax that speci�es the kernel function name, its parameters, the number of threads in each block, and the
number of blocks in the grid. It should be noted that the shared memory/L1 cache con�guration can be set
per kernel, allowing the programmer to �nd the best con�guration for a given kernel. For more details on
the CUDA programming model, see the CUDA programming guide.24

V. Single GPU Implementation

The CFD code developed in this work can be split in three main phases. First, in the setup phase, the
input and mesh �les are read, the operating matrices (M1 to M6) are created and the initial conditions are
set. In the computational phase, the steps presented in section III are performed to advance the simulation in
time. Finally, at regular intervals during the computation, the data is written to the disk for post-processing,
in a phase termed the output phase.

The total time required by the setup and output phases is very small compared to the computational
phase (typically less than 0.1%) and therefore, they were not ported to the GPU. The computational phase
(which consists of all the steps presented in section III and which dominates the total running time) was
ported entirely to the GPU. This was done in order to avoid data transfers across the PCIE bus at each
iteration. The PCIE x16 Gen 2 runs at a peak bandwidth of 8 GB/sec, hence even small data transfers at
each iteration would dramatically o�set any performance improvement on the GPU. Thus, after the setup
phase, all data is copied from the CPU to the GPU and stays on the GPU for the entire run of the algorithm.
At regular intervals, the data is copied to the CPU for writing to the disk. By using the asynchronous transfer
API, this can be done without slowing down the GPU computation.

The steps presented in section III can be grouped into three main types of operations: element-local,
point-local and interface operations.

Steps 1, 2, 4, 6, 7, 8 and 10 are performed in an element-local fashion, with no element-to-element
coupling. In these steps, data is loaded and used multiple times, hence they tend to have a large instruction
to memory fetches ratio. For example, in step 1, the approximate solution at each
ux points depends on

16 of 29

American Institute of Aeronautics and Astronautics

the approximate solution at multiple solution points inside the cell, hence the data stored at the solution
points is reused multiple times. Furthermore, these steps are computationally intensive.

Steps 5 and 11 are point-local. In these steps, the output quantity depends on the data stored a single
solution point. For example, in step 11, the residual at a single solution point is used to advance the solution
at the same solution point. These operations bene�t from the massively parallel nature of GPUs as they can
be executed in parallel for all solution points in the mesh.

Finally, steps 3 and 9 are operations performed at the interfaces between cells. In these steps, for each
interface
ux point pair, data from neighbouring cells is loaded, a common interface value is computed and
written back at the cell level.

The GPU implementation of these three types of operations is discussed in the next subsections. To limit
the scope of the article, not all implementation details are presented.

A. Element-local Operations

As discussed in section III, a large fraction of the steps in the FR method can be represented as a matrix-
matrix multiplication performed at the cell level. This typical matrix-matrix multiplication operation will
be represented by

AB = C (79)

where the matrix A is the operator matrix (of size MA �KA), the matrix B holds the �eld data that will
be operated on (of size KA�NB) and C is the resulting matrix (of size MA by NB). For the matrix-matrix
multiplication steps presented in section III, the number of columns of matrices B and C (denoted by NB)
is 5 (the number of states in the solution vector U). For tetrahedral elements, the operator matrices (M1 to
M6) are dense while for hexahedral and prismatic elements, those matrices are sparse because of their tensor
product formulation. The size of the operator matrices is of the order of the number of solution points or
the number of
ux points per cell.

These matrix-matrix operations could have been performed on the GPU using the CUBLAS library.25

However, it was found that a custom matrix-matrix multiplication algorithm that makes use of texture and
shared memory outperforms CUBLAS. This can be attributed to three factors. First, the use of custom
kernels allows a reduction in the number of global memory fetches since the kernels can be altered to modify
the input matrix B or the output matrix C inside the matrix multiplication kernel without having to launch
an additional kernel. Second, the operator matrices (M1 to M6) are constant throughout the computation
and are the same for all cells of the same type, hence in our GPU implementation, they are bound to
the small amount of read-only cached memory called texture memory. It was found that the use of texture
memory leads to a signi�cant increase in performance. Pro�ling of the code using the CUDA compute pro�ler
indicates that the texture binding is very e�ective as the texture hit rate is always higher than 95%. Third,
because of the large amount of data reuse when performing a matrix-matrix multiplication, the fast on-chip
shared memory (which has two orders of magnitude lower latency than global memory) was used to store
the matrix B, which contains the �eld data to be acted on. This strategy was adopted by Klockner et al.17

in their GPU implementation of the DG scheme for Maxwell’s equations. Numerical experiments indicate
that the use of custom kernels to perform the cell-local operations leads to an increase in performance of up
to 40% for those kernels, compared to the CUBLAS (version 3.2) implementation.

For the matrix-matrix multiplication kernels, one thread is assigned to each row of the output matrix
C. This approach leads to a slightly higher number of registers than when one thread is assigned per entry
of the output matrix. However, it reduces the number of global memory fetches for matrix A, and also
allows for instruction level parallelism. For each matrix multiplication kernel, a number of cells is assigned
per thread block, a quantity which will be denoted by Km. Thus for each matrix-matrix multiplication
kernel, the number of threads is Km �MA. Because the size of the matrices di�er for the various cell-local
steps, we allow the number of cells per block to vary from one kernel to the next. This allows us to choose
an optimum value of Km for each matrix-matrix multiplication kernel in the algorithm. Using the CUDA
compute pro�ler, the optimal number of cells per thread block can be identi�ed for all orders and all element
types. One consequence of allowing the number of cells per block to vary is that the data cannot be padded
to ensure that global memory fetches are always aligned for all the matrix-matrix multiplication kernels.
However, it was found that the added
exibility to vary the number of cells per block for the di�erent
kernels outweighs the penalty due to unaligned loads. In fact, thanks to the L1 and L2 caches on the newest

17 of 29

American Institute of Aeronautics and Astronautics

Fermi architecture, sequential non-aligned memory loads only su�er from a slight decrease in performance
compared to sequential aligned memory loads. Since the matrix-matrix multiplication kernels tend to be
compute bound, the impact is limited. Because of the choice of computational layout (and also to ensure
coalesced memory accesses for the point-local operations presented in the next subsection), quantities at the
solution points or
ux points for all the cells of the same type are stored as shown in �gure (11). The extra
padding is introduced to ensure fully coalesced loads for the point-local operations (steps 5 and 11).

Ns

128 byte boundary

padding

...

Cell 1 Cell 2 Cell N-1 Cell N

Field 1
Field 2
Field 3
Field 4
Field 5

or
Nf

Ns

or
Nf

Figure 11: Data layout used to store the �eld variables

1. Dense matrix-matrix multiplication

For the tetrahedral element, the operator matrices (M1 to M6) are dense, hence the element-local operations
can be represented by a dense matrix-matrix multiplication. Because one thread is assigned per row of the
matrix C, the matrix A must be stored in column major format in order to have neighbouring threads access
neighbouring data in texture memory.

A pseudo-code of a kernel performing step 1 of section III is shown in listing 1. First, threads load entries
of the matrix B from global memory and store them in shared memory. Because the number of rows in
matrix C might be higher than the number of rows in matrix B, multiple fetch cycles might be required.
With the data in shared memory, the matrix-matrix multiplication is performed. Because all the threads
within one element load elements in matrix B in order, those accesses are handled as broadcast and therefore
typically con
ict free. Con
icts can occur when the number of cells per block is not one, but the degree of
the con
ict is always less than the number of cells per block and therefore, its impact on the performance
is limited. Finally, the data is stored. Note that as mentioned earlier, the global memory fetches by a warp
are not always aligned to 128 bytes boundary but are nevertheless sequential.

const int i c l o c = t i d / n e d f g p t s p e r c e l l ;
const int i f p = tid� i c l o c � n e d f g p t s p e r c e l l ;
const int i c = blockIdx . x� c e l l s p e r b l o c k+ i c l o c ;
const int s t r i d e s h a r e d = c e l l s p e r b l o c k � n qpts ;

i f (t i d < c e l l s p e r b l o c k � n e d f g p t s p e r c e l l && i c < n c e l l s)
f

// Fetching data to shared memory
int n f e t c h l o o p s = (n qpts �1)/(n e d f g p t s p e r c e l l)+1;

#pragma u n r o l l
for (int i =0; i<n f e t c h l o o p s ; i++)
f

i q p t= i � n e d f g p t s p e r c e l l+i f p ;
i f (i qpt <n qpts)
f

// Fetch the four f i e l d v a l u e s o f s o l u t i o n po in t i q p t
m = i c l o c � n qpts+i q p t ;
m1 = i c � n qpts+i q p t ;

s q q p t s [m] = g q qpt s [m1] ; m += s t r i d e s h a r e d ; m1 += s t r i d e q p t ;

18 of 29

American Institute of Aeronautics and Astronautics

s q q p t s [m] = g q qpt s [m1] ; m += s t r i d e s h a r e d ; m1 += s t r i d e q p t ;
s q q p t s [m] = g q qpt s [m1] ; m += s t r i d e s h a r e d ; m1 += s t r i d e q p t ;
s q q p t s [m] = g q qpt s [m1] ; m += s t r i d e s h a r e d ; m1 += s t r i d e q p t ;
s q q p t s [m] = g q qpt s [m1] ;

g
g

g
sync th r ead s () ;

i f (t i d < c e l l s p e r b l o c k � n e d f g p t s p e r c e l l && i c < n c e l l s)
f

// With data in shared memory , perform matrix m u l t i p l i c a t i o n
// 1 thread per f l u x po in t
for (int i =0; i<n qpts ; i++)
f

m = i � n e d f g p t s p e r c e l l+i f p ;
m1 = n qpts � i c l o c+i ;

mat entry = f e t c h d o u b l e (t in t e rp mat 0 ,m) ;
q0 += mat entry � s q q p t s [m1] ; m1 += s t r i d e s h a r e d ;
q1 += mat entry � s q q p t s [m1] ; m1 += s t r i d e s h a r e d ;
q2 += mat entry � s q q p t s [m1] ; m1 += s t r i d e s h a r e d ;
q3 += mat entry � s q q p t s [m1] ; m1 += s t r i d e s h a r e d ;
q4 += mat entry � s q q p t s [m1] ;

g

// Store in g l o b a l memory
m = i c � n e d f g p t s p e r c e l l+i f p ;

g q e d f g p t s [m] = q0 ; m += s t r i d e e d ;
g q e d f g p t s [m] = q1 ; m += s t r i d e e d ;
g q e d f g p t s [m] = q2 ; m += s t r i d e e d ;
g q e d f g p t s [m] = q3 ; m += s t r i d e e d ;
g q e d f g p t s [m] = q4 ;

g

Listing 1: Dense matrix multiplication kernel to compute the approximate solution at the
ux points in step 1

2. Sparse matrix-matrix multiplication

When dealing with hexahedral and prismatic elements, the operator matrix A is sparse since those elements
use a tensor product formulation. For hexahedral elements, the number of non-zero elements per row is
constant for all the matrices M1 to M6. For prismatic elements, the number of non-zero elements per row
in matrices M1 to M6, although not constant, does not vary considerably. To take advantage of this matrix
property, the ELLPACK26 format was used to store the operator matrices. For an M by N matrix with a
maximum of K nonzeros per row, the ELLPACK format stores the nonzero values in a dense M by K array
Data, where rows with fewer than K non-zeros are zero-padded. Similarly, the corresponding column indices
are stored in a dense array Indices, again with zero, or some other
ag value used for padding. Figure (12)
illustrates the ELLPACK representation of a matrix with a maximum of four nonzeros per row. Again, to
ensure that threads access the data and index matrices sequentially, they are stored in column major format
as shown in Figure (12). A snippet of the sparse matrix-matrix multiplication kernel for step 1 is shown
in listing 2. The data and index matrices are bound to texture memory. In the actual implementation,
padding was added in shared memory to reduce the number of bank con
icts, which are more signi�cant for
the hexahedral element.

19 of 29

American Institute of Aeronautics and Astronautics

A =

1 3 0 0 5 0
7 0 9 5 2 0
0 8 9 6 0 7

 Data =

1 3 5 ∗
7 9 5 2
8 9 6 7

 Indices =

0 1 4 ∗
0 2 3 4
1 2 3 5



0 0 1 1 2 2 4 3 3 ∗ 4 5

1 7 8 3 9 9 5 5 6 ∗ 2 7

Indices =

Data =

1 3 5 ∗
7 9 5 2
8 9 6 7



Figure 12: Arrays Data and Indices which are used to represent matrix A when using the ELLPACK format

for (int i =0; i<n nz0 ; i++)
f

m = i � n e d f g p t s p e r c e l l+i f p ;
m1 = n qpts � i c l o c + tex1Dfetch (t i n d i c e s 0 ,m) ;

mat entry = f e t c h d o u b l e (t data 0 ,m) ;
q0 += mat entry � s q q p t s [m1] ; m1 += s t r i d e s h a r e d ;
q1 += mat entry � s q q p t s [m1] ; m1 += s t r i d e s h a r e d ;
q2 += mat entry � s q q p t s [m1] ; m1 += s t r i d e s h a r e d ;
q3 += mat entry � s q q p t s [m1] ; m1 += s t r i d e s h a r e d ;
q4 += mat entry � s q q p t s [m1] ;

g

Listing 2: Snippet of the sparse matrix multiplication kernel to compute the approximate solution at the
ux points
in step 1

B. Point-local operations

The point-local operations in the algorithm consist of step 5 in which the total
ux is computed at each
solution point in the mesh and step 11, in which the solution is advanced in time. For these steps, one
thread is assigned per solution point and we allow the number of threads per thread block to be arbitrary.
Because solution points in the same cells do not share data, there is not incentive to assign a number of
cells per thread block. By making the thread block size a multiple of 32, the global memory loads and
writes are fully coalesced thanks to the padding shown in �gure (11). In order to reduce the number of
registers used, step 5 was split into two kernels: one that computes the inviscid
ux and one that computes
the viscous
ux. Although this leads to additional reads and writes from global memory, the added fetch
cost is easily amortized by the increased occupancy achieved due to the lower register pressure for the
inviscid kernel. Furthermore, splitting the operation allows increased overlap between communication and
computation when using multiple GPUs.

C. Interface Operations

Because of the data storage pattern, which was chosen to bene�t the most computationally expensive parts of
the algorithm (the cell-local and point-local operations), global memory accesses tend to be uncoalesced for
the interface operations. Steps 3 and 8 are separated in two kernels, one which computes the average solution
and the common inviscid interface
ux, and the second which computes the common viscous interface
ux.

The main objective for these steps was two-fold: �rst, minimize the number of global memory fetches
and second, minimize thread divergence. To minimize the number of global memory fetches, one thread is
assigned for each
ux point pair. Hence, one thread is responsible for loading the 5 �elds from each
ux
point on each side of the interface and compute a common interface
ux. Again, we do not assign a number
of faces or cells per thread block and are free to change the size of the thread blocks as desired. Luckily,
because neighbouring threads typically fetch data from the same cells, the L1 and L2 caches introduced
in the Fermi architecture helps to reduce data fetches from DRAM. This strategy was used instead of the
redundant computation strategy used by Klockner et al.17 which would lead to additional global memory
fetches. The trade-o�s between the two approaches has not been thoroughly investigated.

The interface operation kernels were also split into boundary and interior face kernels in order to minimize
thread divergence, which can have a signi�cant impact on performance. Thread divergence occurs when

20 of 29

American Institute of Aeronautics and Astronautics

threads in the same warp execute di�erent instructions. Since all the threads assigned to interior
ux point
pairs are executing the same instructions, there is no penalty due to thread divergence. For the boundary
kernel,
ux points pairs were ordered by boundary type, and threads were sequentially assigned to
ux point
pairs. This strategy ensures that a minimum number of warps will be divergent.

VI. Multi-GPU Implementation

The multi-GPU algorithm uses a mixed MPI-Cuda implementation that can make use of an arbitrary
number of GPUs running simultaneously. The cells in the mesh are divided in a number of partitions and one
GPU is assigned to each partition. The algorithm is designed to work at large scales, so the mesh is loaded
in parallel and is partitioned in parallel using the graph partitioning software ParMETIS.27 The MPICH-2
implementation of the MPI standard is used.

Because GPUs cannot communicate directly with each other, the exchange of data must be done by the
CPUs controlling the GPUs. When using the FR approach, data must be exchanged at two occasions in each
iteration: �rst, before computing the common interface solution and common interface inviscid
ux values
and second, before computing the common interface viscous
ux values. In order to achieve good scaling
with large number of GPUs, this exchange process must be done optimally.

For completeness, the three implementation approaches proposed by Jacobsen et al.28 were considered.
The performance of the three approaches will be discussed in section VII. The �rst approach consists of
using non-blocking MPI calls without overlap between communication and computations. A pseudo-code
that uses this methodology for the �rst data exchange is shown in listing 3.

// Step 1 : Compute s o l u t i o n at f l u x p o i n t s
c a l c q e d f g p t s k e r n e l <<<g r i d s i z e 1 , b l o c k s i z e 1 > > >(. . .) ;

// Step 2 : Compute d i scont inuous g r a d i e n t
c a l c d i s g r a d q p t s <<<g r i d s i z e 2 , b l o c k s i z e 2 > > >(. . .) ;

// Step 5 (i n v i s c i d par t) : Compute the i n v i s c i d d i scont inuous f l u x at s o l u t i o n p o i n t s
c a l c i n v d i s f l u x q p t s <<<g r i d s i z e 5 , b l o c k s i z e 5 > > >(. . .) ;

// Pack m p i b u f f e r
pack out bu f f e r <<<g r i d s i z e b u f , b l o c k s i z e b u f >>>(d ou t bu f f e r , . . .) ;

// Copy b u f f e r from GPU to CPU
cudaMemcpy(h out bu f f e r , d ou t bu f f e r , s i z e b u f f e r , cudaMemcpyDeviceToHost) ;

// Exchange data between CPUs
MPI Isend (h out bu f f e r , . . .) ;
MPI Irecv (h i n b u f f e r , . . .) ;

// Copy b u f f e r from CPU to GPU
cudaMemcpy(d i n b u f f e r , h i n b u f f e r , s i z e b u f f e r , cudaMemcpyHostToDevice) ;

// Step 3 . . .

Listing 3: First approach used to perform the data exchange between GPUs. Non-blocking sends and receives are
used without any overlap between computation and communication

The second approach involves overlapping MPI communication with GPU computations. This can be
done because step 2 and the computation of the inviscid
ux in step 5 do not depend on the values being
exchanged between GPUs. Hence, while the CPUs are exchanging data, the GPUs can do useful work.
A schematic representation of the second strategy is shown in �gure (13). A pseudo-code that uses this
approach is shown in listing 4.

21 of 29

American Institute of Aeronautics and Astronautics

Step 1 Step 3

Time

GPU

CPU

Pack
Buffer Step 2 Step 5Memcpy

GPU to CPU

MPI Exchange

Overlap Region

Memcpy
CPU to GPU

Figure 13: Schematic representation of the second approach used to perform the data exchange between GPUs.
This approach overlaps MPI communications and GPU computations

// Step 1 : Compute s o l u t i o n at f l u x p o i n t s
c a l c q e d f g p t s k e r n e l <<<g r i d s i z e 1 , b l o c k s i z e 1 > > >(. . .) ;

// Pack m p i b u f f e r
pack out bu f f e r <<<g r i d s i z e b u f , b l o c k s i z e b u f >>>(d ou t bu f f e r , . . .) ;

// Copy b u f f e r from GPU to CPU
cudaMemcpy(h out bu f f e r , d ou t bu f f e r , s i z e b u f f e r , cudaMemcpyDeviceToHost) ;

// Exchange data between CPUs
MPI Isend (h out bu f f e r , . . .) ;

// Step 2 : Compute d i scont inuous g r a d i e n t
c a l c d i s g r a d q p t s <<<g r i d s i z e 2 , b l o c k s i z e 2 > > >(. . .) ;

// Step 5 (i n v i s c i d par t) : Compute the i n v i s c i d d i scont inuous f l u x at s o l u t i o n p o i n t s
c a l c i n v d i s f l u x q p t s <<<g r i d s i z e 5 , b l o c k s i z e 5 > > >(. . .) ;

MPI Irecv (h i n b u f f e r , . . .) ;

// Copy b u f f e r from CPU to GPU
cudaMemcpy(d i n b u f f e r , h i n b u f f e r , s i z e b u f f e r , cudaMemcpyHostToDevice) ;

// Step 3 . . .

Listing 4: Second approach used to perform the data exchange between GPUs. Non-blocking sends and receives
are used and communication between CPUs is overlapped with computations performed on the GPU

The third approach uses asynchronous memory copies between the CPU and the GPU to perform steps 2
and 5 while the data is copied between the CPU and GPU. This strategy allows to overlap GPU computations,
CPU communications and CPU-GPU transfers. A schematic representation of the overlapping strategy is
shown in �gure (14) and a pseudo-code that uses this approach is shown in listing 5.

Step 1 Step 3

Time

GPU
Stream 0

Stream 1
GPU

CPU

Pack
Buffer

Step 2 Step 5

Memcpy
GPU to CPU

MPI Exchange

Overlap Region

Memcpy
CPU to GPU

Figure 14: Schematic representation of the third approach used to perform the data exchange between GPUs. This
approach overlaps MPI communications, GPU computations and CPU-GPU memory copies

22 of 29

American Institute of Aeronautics and Astronautics

// Step 1 : Compute s o l u t i o n at f l u x p o i n t s
c a l c q e d f g p t s k e r n e l <<<g r i d s i z e 1 , b l o c k s i z e 1 > > >(. . .) ;

// Pack m p i b u f f e r
pack out bu f f e r <<<g r i d s i z e b u f , b l o c k s i z e b u f >>>(d ou t bu f f e r , . . .) ;

// Copy b u f f e r from GPU to CPU
cudaMemcpyAsync (h out bu f f e r , d ou t bu f f e r , s i z e b u f f e r , cudaMemcpyDeviceToHost , STREAM[0]) ;

// Step 2 : Compute d i scont inuous g r a d i e n t
c a l c d i s g r a d q p t s <<<g r i d s i z e 2 , b l o c k s i z e 2 , 0 ,STREAM[1]>>>() ;

// Step 5 (i n v i s c i d par t) : Compute the i n v i s c i d d i scont inuous f l u x at s o l u t i o n p o i n t s
c a l c i n v d i s f l u x q p t s <<<g r i d s i z e 5 , b l o c k s i z e 5 , 0 ,STREAM[1]>>>() ;

// Exchange data between CPUs
MPI Isend (h out bu f f e r ,) ;

MPI Irecv (h i n b u f f e r ,) ;

// Copy b u f f e r from CPU to GPU
cudaMemcpyAsync (d i n b u f f e r , h i n b u f f e r , s i z e b u f f e r , cudaMemcpyHostToDevice ,STREAM[0]) ;

// Step 3 . . .

Listing 5: Third approach used to perform the data exchange between GPUs. This approach overlaps MPI com-
munications, GPU computations and CPU-GPU memory copies

VII. Performance Analysis

A. Single GPU

In order to compare the GPU and CPU implementations of our solver, the solution for the viscous
ow over
a sphere at a Reynolds number of 100 and Mach 0.2 was calculated. The solution was advanced in time
using a low-storage 4th order Runga-Kutta scheme.23 The performance of the CPU and GPU codes are
compared by measuring the time taken to run 100 time advancement iterations. Three di�erent grid types
were used, each one containing one element type, namely tetrahedra, hexahedra and prisms. The number
of cells in each grid, along with the total number of degrees of freedom (DOFs) for the di�erent orders of
accuracy considered is shown in table (1). All GPU results were obtained using a Tesla C2050 GPU, using
double precision with ECC turned on. The CPU results were obtained on a single core of a Xeon x5670 2.93
GHz processor. In order to ensure a fair comparison, every e�ort was made to maximize the performance of
the CPU version of the code, which uses the Intel Math Kernel Library version 10.3 to perform the dense
matrix operations and the Optimized Sparse Kernel Interface (OSKI)29 for the sparse matrix operations.

Overall performance of the GPU code is shown in �gure (15) for the di�erent element types and orders of
accuracy. For tetrahedral elements, the overall performance of the GPU implementation reaches 116 G
ops
for a 6th order accurate solution. Also, for tetrahedra, as the order of accuracy is increased, performance of
the GPU code increases gradually. This can be explained by the fact that as the order of accuracy increases,
there is an increase in the amount of work per degree of freedom and also, more data reuse. The overall
performance of the GPU code on hexahedral and prismatic element is signi�cantly less than for tetrahedral
elements. This can be explained by the fact that the operator matrices for prisms and hexahedra are very
sparse, hence the element-local operations tend to have a much lower instruction to memory access ratio.

Figure (16) shows the overall speedup of the GPU code compared to a serial version of the CPU code
running on a single core of the Xeon x5670 processor. The GPU code achieves speedups of at least 25 for
all orders of accuracy tested and for all element types. Thus, even if the GPU code running on hexahedra
and prisms does not reach the level of performance attained when running on tetrahedra, the speedup is
still signi�cant for all element types. The best speedup is observed for a 4th order accurate simulation with
hexahedral elements. This can be explained by the fact that for that order, the number of solution points
and
ux points per cell are 64 and 96 respectively, both of which are multiples of 32, the warp size. Hence, for
that case, all the global memory reads and writes in the cell-local kernels are performed in a fully coalesced
manner.

23 of 29

American Institute of Aeronautics and Astronautics

Element Type Order of Accuracy # of cells # of DOFs
Tet 3 27,915 279,150
Tet 4 27,915 558,300
Tet 5 27,915 977,025
Tet 6 27,915 1,563,240
Hex 3 20,736 559,872
Hex 4 20,736 1,327,104
Hex 5 20,736 2,592,000
Hex 6 10,206 2,204,496

Prism 3 40,500 729,000
Prism 4 40,500 1,620,000
Prism 5 20,412 1,530,900
Prism 6 20,412 2,571,912

Table 1: Number of cells used to measure the performance of the GPU and CPU codes for the various element types
and orders of accuracy

The performance of the double precision high-order Navier-Stokes developed in this work compares
favourably to the performance of double precision Navier-Stokes solvers developed by other groups. Un-
fortunately, we could not �nd another GPU-enabled unstructured high-order Navier-Stokes solver hence,
comparison will be made with low-order unstructured Navier-Stokes solvers. Corrigan et al.30 showed an
unstructured grid solver achieving a speedup of 7.4x over a serial computation for double precision, compar-
ing a NVIDIA Tesla 10 card to a Core 2 processor . Kampolis et al.31 achieved a 19.5x speedup for their
Navier-Stokes solver on a GTX285 compared to a Code 2 Duo 3.8GHz. DeVito et al.32 also obtained a 19.5x
speedup (comparing a Tesla C2050 with a single core of a Xeon X5650 processor) using Liszt, a domain
speci�c language for building mesh-based PDE solvers. The performance of the GPU code developed in
this work outperforms the other solvers. This can be explained by the fact that high-order solvers typically
have more operations per DOFs than their low-order counterparts, hence bene�t the most from the high
computational throughput of GPUs.

Figures (17) through (19) shows the performance (in terms of G
ops) of the kernels responsible for the
cell-local, point-local and interface operations. For tetrahedral elements, the cell-local operations achieve an
impressive level of performance (up to 138 G
ops). For hexahedral and prismatic elements, those operations
cannot reach this level of performance because of the sparsity of the operator matrices.

!"#$!%

&$#'(%

"&#""%

(()#!*%

'"#+$%

,(#,(%
*!#!"% **#,)%

*&#("%

,&#),%
,,#)"%

!'#+)%

+%

'+%

,+%

)+%

&+%

(++%

('+%

(,+%

*% ,% !%)%

!"
#$
%#
&
'(

)"
*+,

-%
./
0*

1#2"#*%$*3))4#')5*

-./0%

1.20%

345060%

Figure 15: Performance in G
ops of the single-GPU al-
gorithm. Computations were performed using double pre-
cision.

!"#$"% !"#"&%

$'#()%
$)#')%

!$#*!%

&)#*+%

!(#+"%
!&#)!%

$)#)"%

$+#!+%

!'#"(%

$)#+(%

*%

)%

"*%

")%

$*%

$)%

!*%

!)%

&*%

&)%

)*%

!% &%)% (%

!"
##
$%

"&

'($#(&)*&+,,%(-,.&

,-./%

0-1/%

234/5/%

Figure 16: Speedup of the single-GPU algorithm relative
to a serial computation on a single core of the Xeon x5670
CPU

24 of 29

American Institute of Aeronautics and Astronautics

!"#$%&

"'(#)$& "')#*$&

"+$#$%&

+$#!,& +!#!(& +!#*(& *,#!)&

''#%+& '+#$!& '%#,!& '(#+,&

,&

',&

*,&

),&

$,&

",,&

"',&

"*,&

"),&

+& *& %&)&

!"
#$
%#
&
'(

)"
*+,

-%
./
0*

1#2"#*%$*3))4#')5*

-.//0/123/&14.536178& 91:7;0/123/&<4.536178& =7;.5>32.&<4.536178&

Figure 17: Performance in G
ops of each part of the FR
algorithm, when running on tetrahedral elements

!"#$%&

'%#(!&

)"#!'&

)!#$*&

)"#!$&)"#%'&)+#%'&)"#%'&

!!#%)& !)#+"& !%#("&
!*#)(&

(&

%&

,(&

,%&

!(&

!%&

)(&

)%&

'(&

'%&

%(&

)& '& %& $&

!"
#$
%#
&
'(

)"
*+,

-%
./
0*

1#2"#*%$*3))4#')5*

-.//0/123/&14.536178& 91:7;0/123/&<4.536178& =7;.5>32.&<4.536178&

Figure 18: Performance in G
ops of each part of the FR
algorithm, when running on hexahedral elements

!"#$%&

%'#()&

*(#'+&

*)#+,&

$)#!,& $)#""& !(#!*& $)#""&

'$#)"&
'"#',& '%#)"&

+)#(!&

(&

+(&

'(&

$(&

!(&

*(&

%(&

"(&

$& !& *& %&

!"
#$
%#
&
'(

)"
*+,

-%
./
0*

1#2"#*%$*3))4#')5*

-.//0/123/&14.536178& 91:7;0/123/&<4.536178& =7;.5>32.&<4.536178&

Figure 19: Performance in G
ops of each part of the FR
algorithm, when running on prismatic elements

B. Multi GPU

The multi-GPU version of the code was tested on a 16-node cluster at NVIDIA, with each node having two
Tesla C2070 GPUs and two Intel Xeon x5670 processors. The nodes are SuperMicro 6061 compute nodes
and each GPU card is connected via a PCIE Gen 2 x16 connection, which leaves a x4 connection for the
single port QDR In�niband interface. To illustrate the e�ect of overlapping GPU computations with MPI
communication and GPU transfers, the scalability of the code on up to 32 GPUs was investigated using
the three strategies discussed in section VI. A sixth order accurate solution was obtained on a mesh with
55,947 tetrahedral elements (3.13 million DOFs). The speedup versus the number of GPUs is shown in �gure
(20). The results indicate that the use of CUDA streams to overlap GPU computations, GPU transfers and
MPI communication has a bene�cial impact on the scaling. In fact, when running on 32 GPUs, the fully
overlapped version achieves a speedup of 24.7 while the version without any overlap achieves a speedup of
20.6. Similar trends are observed for all orders of accuracy and element types. Based on these results, the
third data exchange approach was the one used in the multi-GPU code as it leads to the best scaling. It
should be noted that when running on 32 GPUs, the 6th order simulation on tetrahedral elements reaches
an overall performance of 24:7� 116:53 G
ops = 2:88 Tera
ops.

To investigate the scalability of the code, a weak scalability study was conducted for all orders of accuracy
and for all element types. The code was run on up to 32 GPUs by keeping the number of cells per GPU
constant. The number of cells per GPU was 27; 915� 1% for the runs on tetrahedral grids, 10; 206� 2% for
the runs on hexahedral meshes and 20; 412� 1% for the runs on prismatic grids. Figures (21) through (23)
shows the e�ciency of the computation versus the number of GPUs (denoted by �), calculated as the time
taken by � GPUs divided by the time taken by a single GPU. Results indicate very good weak scalability
for all orders of accuracy and all element types, as the cluster e�ciency is close to 90% for all the cases
considered.

25 of 29

American Institute of Aeronautics and Astronautics

!"

#"

$!"

$#"

%!"

%#"

&!"

%" '" (" $%" $)" &%"

!"
##
$%

"&
'#
()
*
+#
&,-

&.
&/
01

&

2%34#'&-5&/016&

*+",-./012"

3+44567819+6",-./012"

3+44567819+6"16:";<=">/16?@./?",-./012"

Figure 20: Speedup relative to 1 GPU versus the number of GPUs for a 6th order accurate simulation running on
a mesh with 55947 tetrahedral elements. The three data exchange strategy discussed in section VI are compared

!"#$

!%#$

&"#$

&%#$

'"#$

'%#$

(""#$

"$)$ &$ (*$ (+$ *"$ *)$ *&$,*$

!"
#$
%&

#'
(

)*+,%-(./(0123(

-.*$ -.,$ -.)$ -.%$

Figure 21: Weak scalability of the multi-GPU implemen-
tation running on tetrahedral elements

!"#$

!%#$

&"#$

&%#$

'"#$

'%#$

(""#$

"$)$ &$ (*$ (+$ *"$ *)$ *&$,*$

!"
#$
%&

#'
(

)*+,%-(./(0123(

-.*$ -.,$ -.)$ -.%$

Figure 22: Weak scalability of the multi-GPU implemen-
tation running on hexahedral elements

!"#$

!%#$

&"#$

&%#$

'"#$

'%#$

(""#$

"$)$ &$ (*$ (+$ *"$ *)$ *&$,*$

!"
#$
%&

#'
(

)*+,%-(./(0123(

-.*$ -.,$ -.)$ -.%$

Figure 23: Weak scalability of the multi-GPU implemen-
tation running on prismatic elements

26 of 29

American Institute of Aeronautics and Astronautics

VIII. Numerical Experiments

Additional numerical experiments were conducted to demonstrate the capability of the multi-GPU al-
gorithm. For all cases, the CPU and GPU versions of the code produced identical results. Results were
obtained using the VCJH schemes de�ned in references 15 and 16. More speci�cally, the VCJH schemes
used have values of csd and �sd for hexahedral and prismatic elements, and �dg for tetrahedral elements.

A. Flow over sphere at Reynolds Number 118

As a �rst test case, the solution for the steady
ow over a sphere at a Reynolds number of 118 and a Mach
number of 0.2 was obtained. The code was run on a personal desktop computer built in our lab which has
3 Tesla C2050 GPUs. The mesh used is shown in �gure (24). It contains 38,500 prisms to capture the
boundary layer and 99,951 tetrahedral elements in the rest of the domain. A 4th order accurate simulation
was run, hence the total number of DOFs was 3.54 million. The solution was advanced in time using a
low-storage 4th order Runga-Kutta scheme.23 The contours of Mach number are shown in �gure (25). For
this test case, the simulation running on 3 GPUs on our desktop machine achieved the same performance as
the multi-CPU version of the code (which uses MPI for communication between cores) running on 15 nodes
of the NVIDIA cluster (where each node has two 6-core Xeon x5670 processors).

Figure 24: Mixed mesh used to simulate the viscous
ow
over a sphere at a Reynolds number 118 and a Mach num-
ber of 0.2

Figure 25: Contours of Mach number obtained using a
4th order accurate solution on a mixed mesh comprised of
prismatic and tetrahedral elements. The Reynolds number
is 118 and the Mach number 0.2

B. Transitional Flow over SD7003 airfoil at Reynolds 60000

The second test case considered was the transitional
ow over the SD7003 airfoil at a Reynolds number
of 60000, an angle of attack of 4 degrees and a Mach number of 0.2. For this case, a 4th order accurate
solution was obtained on a hexahedral mesh containing 331,776 cells, for a total of 21.2 million DOFs.
The instantaneous solution after 400,000 Runga-Kutta iterations is shown in �gure (26) and was obtained
in approximately 15 hours using the multi-GPU code running on 16 Tesla C2070 GPUs. The multi-CPU
version of the code took 102 hours when running on 32 Xeon x5670 processors.

27 of 29

American Institute of Aeronautics and Astronautics

Figure 26: Instantaneous iso-surfaces of Q-criterion colored by Mach number. Flow over SD7003 airfoil at a Reynolds
number of 60000, an angle of attack of 4 degrees and a Mach number of 0.2

IX. Conclusions

This work discusses the development of a three-dimensional, high-order, compressible viscous
ow solver
for mixed unstructured grids that can run on multiple GPUs. The study demonstrates that high-order,
unstructured Navier-Stokes solvers can achieve signi�cant performance improvements from the use of GPUs.
The single GPU algorithm developed in this work achieves speed-ups of at least 25 relative to a serial
computation on a current generation CPU for all orders of accuracy and element types investigated. The
multi-GPU solver scales well and, when running on 32 GPUs, achieves a sustained performance of 2.8
Tera
ops (double precision) for 6th order accurate simulations on tetrahedral elements. The e�cient use of
texture memory and shared memory, the ability to vary the number of cells per thread block for the cell-local
operations and the data layout which leads to e�cient global memory accesses allow the code to reach such
levels of performance. Although the GPU implementation is not optimal in several ways, it is able to make
use of the high computational power of GPUs to signi�cantly accelerate a complex high-order Navier-Stokes
solver for mixed unstructured grids. As demonstrated in section VIII, a small to medium size GPU cluster
can attain the same level of performance as a large and costly to maintain CPU cluster. The authors believe
that within the foreseeable future, these developments will enable high-order accurate large eddy simulations
(LES) for realistic industrial applications.

Acknowledgments

The authors would like to acknowledge the support for this work provided by the Stanford Graduate Fel-
lowships program, the Natural Science and Engineering Research Council (NSERC) of Canada, the Fonds
Qu�eb�ecois de la Recherche sur la Nature et les Technologies (FQRNT), the National Science Foundation
(grants 0708071 and 0915006)), the Air Force O�ce of Scienti�c Research (grants FA9550-07-1-0195 and
FA9550-10-1-0418) and the National Science Foundation Graduate Research Fellowship Program for sup-
porting this work. The authors would also like to thank Thomas Reed and Stan Posey from NVIDIA for
their technical support and hardware donations.

28 of 29

American Institute of Aeronautics and Astronautics

References

1Reed, W. and Hill, T., \Triangular mesh methods for the neutron transport equation," Los Alamos Report LA-UR-73-
479 , 1973.

2Cockburn, B. and Shu, C., \for Conservation Laws II: General Framework," Mathematics of Computation, Vol. 52, No.
186, 1989, pp. 411{435.

3Cockburn, B., Lin, S., and Shu, C., \TVB Runge-Kutta local projection discontinuous Galerkin �nite element method
for conservation laws III: one-dimensional systems," Journal of Computational Physics, Vol. 84, No. 1, 1989, pp. 90{113.

4Cockburn, B., Hou, S., and Shu, C., \The Runge-Kutta local projection discontinuous Galerkin �nite element method
for conservation laws IV: the multidimensional case," Math. Comp, Vol. 54, No. 190, 1990, pp. 545{581.

5Cockburn, B. and Shu, C., \The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V* 1:: Multidi-
mensional Systems," Journal of Computational Physics, Vol. 141, No. 2, 1998, pp. 199{224.

6Hesthaven, J. and Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications,
Springer Verlag, 2007.

7Kopriva, D. A. and Kolias, J. H., \A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible
Flows," Journal of Computational Physics, Vol. 125, 1996, pp. 244{261.

8Liu, Y., Vinokur, M., and Wang, Z. J., \Spectral di�erence method for unstructured grids I: Basic formulation," Journal
of Computational Physics, Vol. 216, 2006, pp. 780{801.

9Wang, Z., Liu, Y., May, G., and Jameson, A., \Spectral Di�erence Method for Unstructured Grids II: Extension to the
Euler Equations," Journal of Scienti�c Computing, Vol. 32, 2007, pp. 45{71.

10Liang, C., Kannan, R., and Wang, Z. J., \A p-Multigrid Spectral Di�erence Method with explicit and implicit smoothers
on unstructured triangular grids," Computers and Fluids, Vol. 38, 2009, pp. 254{265.

11Castonguay, P., Liang, C., and Jameson, A., \Simulation of Transitional Flow over Airfoils using the Spectral Di�erence
Method," AIAA P., Vol. 2010-4626, 2010.

12Huynh, H., \A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods," AIAA
P., Vol. 4079, 2007, 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, Jun 25{28, 2007.

13Huynh, H., \A Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin for Di�usion," AIAA
P., Vol. 403, 2009, 47th AIAA Aerospace Sciences Meeting, Orlando, FL, Jan 5{8, 2009.

14Jameson, A., \A Proof of the Stability of the Spectral Di�erence Method for All Orders of Accuracy," J. Sci. Comput.,
Vol. 45, October 2010, pp. 348{358.

15Vincent, P. E., Castonguay, P., and Jameson, A., \A New Class of High-Order Energy Stable Flux Reconstruction
Schemes," Journal of Scienti�c Computing, Vol. 47, 2011, pp. 50{72.

16Castonguay, P., Vincent, P. E., and Jameson, A., \A New Class of High-Order Energy Stable Flux Reconstruction
Schemes for Conservation Laws on Triangular Grids," Journal of Scienti�c Computing, 2011, DOI: 10.1007/s10915-011-9505-3.

17Klockner, A., Warburton, T., Bridge, J., and Hesthaven, J., \Nodal discontinuous Galerkin methods on graphics proces-
sors," Journal of Computational Physics, Vol. 228, No. 21, 2009, pp. 7863{7882.

18Jameson, A., Vincent, P. E., and Castonguay, P., \On the Non-Linear Stability of Flux Reconstruction Schemes," Journal
of Scienti�c Computing, 2011, DOI: 10.1007/s10915-011-9490-6.

19Castonguay, P., Vincent, P. E., and Jameson, A., \Application of Energy Stable Flux Reconstruction Schemes to the
Euler Equations," AIAA P., Vol. 2011-0686, 2011.

20Bassi, F. and Rebay, S., \A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of
the Compressible Navier-Stokes Equations* 1," Journal of Computational Physics, Vol. 131, No. 2, 1997, pp. 267{279.

21Roe, P. L., \Approximate Riemann Solvers, Parameter Vectors and Di�erence Schemes," Journal of Computational
Physics, Vol. 43, 1981, pp. 357{372.

22Raviart, P. and Thomas, J., \A mixed hybrid �nite element method for the second order elliptic problems," Mathematical
Aspects of the Finite Element Method, Lectures Notes in Mathematics, 1977.

23Carpenter, M. H. and Kennedy, C., \Fourth-order 2N-storage Runge-Kutta schemes," Tech. Rep. TM 109112, NASA,
NASA Langley Research Center, 1994.

24NVIDIA Corporation, \CUDA Programming Guide," Version 3.2, 2010.
25NVIDIA Corporation, \CUDA CUBLAS Library," version 3.2, 2010.
26Grimes, R., Kincaid, D., and Young, D., \ITPACK 2.0 User’s Guide, CNA-150," Center for Numerical Analysis, Uni-

versity of Texas, Austin, Texas, Vol. 78712, 1979.
27Karypis, G., Schloegel, K., and Kumar, V., \PARMETIS 2.0: Parallel graph partitioning and sparse matrix ordering

library," Tech. rep., Technical report, Department of Computer Science, University of Minnesota, 1998.
28Jacobsen, D., Thibault, J., and Senocak, I., \An MPI-CUDA implementation for massively parallel incompressible
ow

computations on multi-GPU clusters," Mechanical and Biomedical Engineering Faculty Publications and Presentations, 2010,
pp. 5.

29Vuduc, R., Demmel, J., and Yelick, K., \OSKI: A library of automatically tuned sparse matrix kernels," Journal of
Physics: Conference Series, Vol. 16, IOP Publishing, 2005, p. 521.

30Corignan, A., Camelli, F., Lohner, R., and Wallin, J., \Running Unstructured Grid CFD Solvers on Modern Graphics
Hardware," AIAA P., Vol. 2009-4001, June 2009, 19th AIAA Computational Fluid Dynamics.

31Kampolis, I., Trompoukis, X., Asouti, V., and Giannakoglou, K., \CFD-based analysis and two-level aerodynamic opti-
mization on graphics processing units," Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 9-12, 2010,
pp. 712{722.

32Devito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M., Elsen, E., Ham, F., Aiken, A., Duraisamy,
K., Darve, E., Alonso, J., and Hanrahan, P., \Liszt: A Domain Speci�c Language for Building Portable Mesh-based PDE
Solvers," In Proceedings of the Conference on Supercomputing, November 2011.

29 of 29

American Institute of Aeronautics and Astronautics

