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In this paper we carry out computational studies of three-dimensional flow over flapping

wings. The problems we have investigated include, firstly, three-dimensonal simulation of

flow over an extruded SD7003 airfoil in plunging motion at transitional Reynolds num-

ber and, secondly, flow over a pair of flapping rectangle wings with constant NACA0012

cross-sectional airfoil profile at low Reynolds number. The three-dimensional flapping wing

simulations are performed using high-order spectral difference method at low Mach num-

ber. The high-order method allows a very coarse starting mesh to be used. By using high

order solution, fine flow features in the vortex-dominated flow field are effectively captured.

For the plunging SD7003 airfoil, we examine the laminar to turbulence flow transitional

behavior at Re 40,000. For the NACA0012 rectangular wing, we analyze and compare the

flow fields and aerodynamic efficiencies of several flapping wing motions at Re 2000. The

flapping motions considered include wing plunging, twisting and pitching. Some of the

flapping wing motions are accommodated through dynamic mesh deformation.

I. Introduction

Flapping wing differs from fixed wing in the regard that it performs an integrated function of supporting
weight through lift and providing propulsion through thrust. This is commonly found in natural flyers such
as birds and insects. Despite flapping flight being widely adapted in nature, its understanding still poses
great challenges for biologists and aerodynamicists. Flapping wing aerodynamic has proved to be more
challenging than the traditional fixed wing aerodynamic. Not only is the fluid mechanics of flapping flight
more complicated, experimental study of flapping wing vehicles is also more difficult to perform in wind
tunnel than conventional airplanes. This leads to a shortage of experimental flapping flight test data.

The fluid mechanics of flapping flight is not well understood due to the complex unsteady fluid physics at
low Reynolds number. The flow tends to be heavily vortex dominated and sometimes exhibits transitional
behavior. It is further complicated by the intricate interaction between flexible wing structure and the
surrounding fluid. A lot of work has been done, by biologists and engineers alike, to extend the understanding
of animal flight. Study on trained animals in wind tunnel can be advantageous both in simulating the
actual flight and in avoiding developing complicated physical flapping wing model. However, there are great
difficulties working with animals and extracting useful information becomes challenging when there are many
limitations to what can be measured on real birds.

The motivation of the current study originates from the increasing interest to advance the design knowl-
edge of Micro Air Vehicles based on flapping wings. Micro Air Vehicles have been the subject of extensive
research and development over the last several years. Research have been driven in part by the civil and
military desires to build small vehicles to operate in hostile or urban environments. Some successful MAVs
have been built. A few examples include BlackWidow and MicroBat. The benefits of a flapping wing MAV
include its quiet operation, its ability to carry out short take off and landing, and its capability for impres-
sive maneuver and hovering. The challenge lies in the lack of efficient analytical tools, and the shortage of
experimental wind tunnel and flight test data. It is also very difficult to model the biological wing due to its
complex design and flexible nature. Equally challenging is the ability to simulate the motion of a biological
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flapping wing, which undergoes constant changes to optimize the flight. Computational fluid dynamics and
optimization tools provide a path to analyze flapping aerodynamics and subseqently design highly efficicient
flapping wing vehicle. While computational cost for full 3D simulation is still huge and remains a challenge to
be overcome, rapid growth of computational processing power, as well as the emergence of Graphic Process-
ing Units (GPUs), when combined with more efficient algorithms, make it feasible to conduct full 3D Direct
Numerical Simulation (DNS) of such a problem in the Reynolds number regime relevant to flapping flight.
Work towards this goal has been led by Peraire, Willis, Persson, Drela et al1, 2 to explore effective flapping
wing vehicle using a multifidelity framework. The recent study by Persson, Willis, and Peraire8 compared a
low fidelity but computationally efficient panel code with a high fidelity but expensive Navier-Stokes solver
for simulating a full 3D flapping wings with prescribed flapping and twisting motion, demonstrating the
capability of the state of the art CFD solver. To align with the research in this direction, in this paper we
consider the application of the high order spectral difference solver for the direct simulation of 3D flapping
wing. In particular, we are interested in examining the transitional flow behavior and the aerodynamic
characteristics of various flapping motions.

This paper is organized in the following order. We start by a short description of the computational
mesh used. The spectral difference method for the 3D Navier-Stokes equations is presented next. This
is followed by a brief discussion of mesh deformation method and the extension of the spectral difference
formulation to deforming mesh. In the validation section, we present the three-dimensional simulation of
flow over a stationary SD7003 airfoil. The accuracy of the present 3D solver and the ability to resolve some
transitional flow phenomenon are discussed. In the results section, we first present the simulation results of
three-dimensional flow over a plunging SD7003 airfoil at Re 40000. Flow over a flapping rectangular wing
with constant NACA0012 airfoil cross-section is discussed last.

II. Computational Setup

II.A. SD7003 Airfoil Geometry and Mesh

For the purpose of numerical validation, we performed 3D computations for the steady flow over an extruded
SD7003 airfoil. The SD7003 airfoil mesh has a C topology. The mesh is extended in the spanwise direction by
0.2c, where c is the chord length, to accommodate spanwise flow. The same mesh is used for the subsequent
3D unsteady simulation of flow over the plunging SD7003 airfoil. Figure 1 shows the mesh near the airfoil
surface in (a) and the mesh in the flow domain in (b). Figure 1 (a) also gives an example of the way the
mesh is partitioned for parallel computation. This will be discussed further.

X

Y

Z

(a) Mesh near the SD7003 airfoil (b) Flow domain volume mesh

Figure 1. Computation mesh of SD7003 airfoil

II.B. Naca0012 Wing Geometry and Mesh

The rectangular wing used in this study has a constant cross-sectional NACA0012 airfoil profile. The chord
has a length of 1. The wing span from tip to root is 4. The flow inlet is 15 chord away, the outlet is 10
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chord away, and the spanwise freestream boundary is 7 chord away from the tip of the wing. Figure 2 shows
the starting coarse mesh used for the subsequent high order simulations. The starting mesh has a total of
37,704 mesh cells.

X

Y

Z

X

Y

Z

(a) NACA0012 wing surface mesh (b) Flow domain volume mesh
Figure 2. Computation mesh of the NACA0012 wing

Note in both cases, high order curved boundary representation are implemented.

II.C. Plunging Motion of the SD7003 Airfoil

For the plunging SD7003 airfoil, the plunging motion is described by

h = h0cos(2πft)

where h0=0.05 and f=kU∞

π , with k=3.93 and U∞ = 0.1.

II.D. Flapping Motions of the NACA0012 Wing

For the flapping wing simulations of the NACA0012 wing, three flapping wing motions are considered. In
the first case, the pair of wings is plunging as a rigid body according to the following function

h = h0sin(2πft)

where h0=0.75 and f=StrU∞

h0
, with Str=0.2 and U∞ = 0.1. In the second case, the pair of wings is plunging

as a rigid body while at the same time pitching along the z-axis at 1/3 of the chord from the leading edge.
The plunging motion is the same as the previous case. The z-axis pitching angle is described by

θz = θz0sin(2πft + Φ)

where θz0=15o and f=StrU∞

h0
, with Str=0.2 and U∞ = 0.1 as before. Φ=75o describes the phase lead of the

z-axis pitching over the plunging motion. In the third case, the pair of wings is purely pitching along the
x-axis in the center line. The x-axis pitching angle is described by

θx = θx0sin(2πft)

where θx0=10.8o and f=StrU∞

h0
, with Str=0.2 and U∞ = 0.1. The resulting pitching motion also has a

maximum tip amplitude of 0.75, as in the previous two cases.

II.E. 3D Spatial Discretization with Spectral Difference Method

In the present work, the Navier-Stokes equations are solved using the high-order Spectral Difference method
for spatial discretization. The formulation of the equations on hexahedral grids is similar to the formulation
of Liu et al.,3 which will be summarized below for completeness.
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Consider the unsteady compressible Navier-Stokes equations in conservative form written as:

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0 (1)

where F = FI −FV , G = GI −GV and H = HI −HV . To achieve an efficient implementation, all element in
the physical domain (x, y, z) are transformed into a standard cubic element, 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1.
The transformation can be written as







x

y

z






=

K
∑

i=1

Mi(ξ, η, ζ)







xi

yi

zi






(2)

where K is the number of points used to define the physical elements, (xi, yi, zi) are the Cartesian coordinates
at those points, and Mi(ξ, η, ζ) are the shape functions. The metrics and Jacobian of the transformation can
be computed for the standard element. The governing equations in the physical domain are then transferred
into the computational domain, and the transformed equations take the following form:

∂Q̃

∂t
+

∂F̃

∂ξ
+

∂G̃

∂η
+

∂H̃

∂ζ
= 0 (3)

where Q̃ = |J |Q and






F̃

G̃

H̃






= |J |







ξx ξy ξz

ηx ηy ηz

ζx ζy ζz













F

G

H






(4)

The Jacobian matrix J is given by

J =
∂(x, y, z)

∂(ξ, η, ζ)
=







xξ xη xζ

yξ yη yζ

zξ zη zζ






(5)

In the standard element, two sets of points are defined, namely the solution points and the flux points, as
illustrated in Figure 3 for a 2D element. In order to construct a degree (N −1) polynomial in each coordinate

(a) 3rd order SD in 1D element (b) 3rd order SD in 2D element

Figure 3. Position of solution (triangles) and flux (circles) points on the standard 1D (left) and 2D (right) element for
3rd order SD

direction, solution at N points are required. The solution points in 1D are chosen to be the Gauss points
defined by:

Xs =
1

2

[

1 − cos

(

2s− 1

2N
π

)]

, s = 1, 2, ..., N. (6)
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The flux points were selected to be the Legendre-Gauss quadrature points plus the two end points 0 and 1,
as suggested by Huynh.4 Choosing P−1(ξ) = 0 and P0(ξ) = 1, the higher-degree Legendre polynomials are

Pn(ξ) =
2n − 1

n
(2ξ − 1)Pn−1(ξ) −

n − 1

n
Pn−2(ξ) (7)

The locations of these Legendre-Gauss quadrature points are the roots of equations Pn(ξ) = 0. Jameson5

proved that this particular choice of flux point leads to energy stable spectral difference scheme. Using the
solutions at N solution points, a degree (N − 1) polynomial can be built using the following Lagrange basis
defined as:

hi(X) =

N
∏

s=1,s6=i

(

X − Xs

Xi − Xs

)

(8)

Similarly, using the fluxes at (N + 1) flux points, a degree N polynomial can be built for the flux using a
similar Lagrange basis as:

li+1/2(X) =

N
∏

s=0,s6=i

(

X − Xs+1/2

Xi+1/2 − Xs+1/2

)

(9)

The reconstructed solution for the conserved variables in the standard element is the tensor product of the
three one-dimensional polynomials,

Q(ξ, η, ζ) =

N
∑

k=1

N
∑

j=1

N
∑

i=1

Q̃i,j

|Ji,j |
hi(ξ)hj(η)hk(ζ) (10)

Similarly, the reconstructed flux polynomials take the following form:

F̃ (ξ, η, ζ) =
N

∑

k=1

N
∑

j=1

N
∑

i=0

F̃i+1/2,j,k · li+1/2(ξ) · hj(η) · hk(ζ)

G̃(ξ, η, ζ) =

N
∑

k=1

N
∑

j=0

N
∑

i=1

G̃i,j+1/2,k · hi(ξ) · lj+1/2(η) · hk(ζ)

H̃(ξ, η, ζ) =
N

∑

k=0

N
∑

j=1

N
∑

i=1

H̃i,j,k+1/2 · hi(ξ) · hj(η) · lk+1/2(ζ) (11)

The reconstructed fluxes are only element-wise continuous, but discontinuous across cell interfaces. For
the inviscid flux, a Riemann solver is employed to compute a common flux at interfaces to ensure conservation
and stability. In our case, we have used both the Rusanov solver6 and the Roe7 solver to compute the interface
inviscid fluxes. The viscous flux is a function of both the conserved variables and their gradients. Therefore,
the solution gradients have to be calculated at the flux points. In our solver, the average approach described
in reference3 is used to compute the viscous fluxes.

III. Mesh Deformation

While wing plunging motion and wing pitching motion of the rigid wing along the z-axis can be achieved
by rigid translation and rotation of the entire flow domain volume mesh, the pitching motion along the wing
root center line needs to be accommodated through some mesh deformations. A simple algebraic way to
achieve this is used by Persson, Willis, and Peraire.8 The pitching motion is achieved through a combination
of mesh shearing and dilation. This also helps to preserve the volume of the flapping wing. An example of
the resulting mesh using this method is shown in figure 4. The method is outlined next.

Define the deformed physical mesh by (x, y, z)p, the original undisplaced mesh by (xr, yr, zr), the rota-
tional angle by θ, and the center of mesh rotation by (xr

0, y
r
0, z

r
0), the transformation from the stationary

reference mesh to the deformed mesh can now be represented as







xp

yp

zp






=







xr

yr

zr






+







1 1 0

0 secθx tanθx

0 0 cosθx













xr − xr
0

yr − yr
0

zr − zr
0






(12)
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Z

(a) Pitching wing surface mesh (b) Pitching wing flow domain volume mesh
Figure 4. Computation mesh of a pitching NACA0012 wing

IV. SD Extension to Moving Deforming Mesh Problem

In order to formulate SD on a dynamic deforming mesh, we first consider the fact that a moving mesh
at any new time instance leads to a new coordinate system. Hence one way to formulate the conservation
laws with SD on deformable mesh is to implement unsteady coordinate transformation. The time-dependent
transformation allows the boundary disturbance to propagate through the flow domain without deteriorat-
ing the accuracy of the spatial discretization method. The details of coordinate transformation and the
corresponding transformation of conservation laws are outlined in the subsequent sections.

IV.A. Time-dependent Coordinate Transformation

When the two coordinate systems are moving relative to one another, the unsteady transformation Tu is
now time dependent. Let’s consider the unsteady coordinate transformation between the physical space in
(x, y, z) and the reference space in (X, Y, Z).

(X, Y, Z) = Tu(x, y, z, t) (13)

and we have:
X = X(x, y, z, t), Y = Y (x, y, z, t), Z = Z(x, y, z, t)

Again using the chain rule to arrive at the unsteady transformation gradient as:

GTu =







∂x
∂X

∂y
∂X

∂z
∂X

∂x
∂Y

∂y
∂Y

∂z
∂Y

∂x
∂Z

∂y
∂Z

∂z
∂Z






(14)

The Jacobian of the unsteady transformation gradient is equal to:

JTu = det|GTu| (15)

IV.B. Navier-Stokes Equations in Transformed Reference Space

In the unsteady case, using the chain rule for differentiation, and define the following new identities

Ur = JTuU
p

Fr = JTu

(

Fp ∂X

∂x
+ Gp ∂X

∂y
+ Hp ∂X

∂z
+ Up ∂X

∂t

)

(16)
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Gr = JTu

(

Fp ∂Y

∂x
+ Gp ∂Y

∂y
+ Hp ∂Y

∂z
+ Up ∂Y

∂t

)

Hr = JTu

(

Fp ∂Z

∂x
+ Gp ∂Z

∂y
+ Hp ∂Z

∂z
+ Up ∂Z

∂t

)

where superscript p denotes variables in the physical domain, while superscript r denotes variables in the
reference domain. The governing equation in the new reference coordinate space in the unsteady case still
assumes the same conservation law form:

∂Ur

∂t
+

∂Fr

∂X
+

∂Gr

∂Y
+

∂Hr

∂Z
= 0 (17)

Note that the entire computation is carried out based on the reference domain. When physical space so-
lution is needed, the computed reference space solution can be readily mapped using the mapping Jacobians.

V. Domain Decomposition and Parallelization

The spectral difference method is a highly efficient high-order accurate method that is well suited for
large-scale time-dependent computations in which high accuracy is required. The discontinuous nature of the
spectral difference scheme and the fact that the current implementation of the 3D spectral difference method
uses an explicit time advancement scheme makes our current 3D code well suited for parralel computer
platforms. In the following paragraph, the parallel implementation of the 3D spectral difference code will be
discussed.

First, the domain is partitionned using the graph partitioning code METIS. An example of the partition-
ing obtained for the mesh used is shown in Figure 5.

Figure 5. Partitions obtained from graph partitioning software METIS

Once the domain is decomposed, each processor updates the solution at the interior points of the cells in
its domain following the same procedure as in the serial code. For element interfaces that are adjacent to a
partition boundary, non-blocking sends and receives are used to exchange the right and left state vector QL

and QR, along with the gradient of the state vectors ∇QR and ∇QL, so that the procedure to compute the
flux values at the interface can be applied. The MPI-based parallelization of the code is thus highly efficient
due to the non-blocking strategy used.

VI. Time Integration Method

All computations in this paper are advanced in time using a fourth-order strong-stability-preserving
five-stage Runge-Kutta scheme. For unsteady boundary moving problems, the deforming mesh is changing
in time. The transformation metrics for the rigidly displaced and deforming meshes need to be updated
at every stage of the Runge-Kutta to pass the unsteady information from the moving physical domain to
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the stationary reference domain, where computation is carried out. This also helps to preserve the formal
temporal accuracy of the Runge-Kutta scheme. The transformation metrics, velocities, and Jacobian are
calculated using the methods outlined in the previous section on unsteady transformations.

VII. Numerical Validation

Flow over Stationary SD7003 Wing

Flow over stationary SD7003 airfoil at an angle of attack of 4◦ at Reynolds number of 10000 and 60000 was
first calculated using the SD3D method by Castonguay, Liang and Jameson.9 A 4th order accurate solution
was obtained. In order to reduce the computational cost associated with initial transients from an uniform
initial solution, two-dimensional solutions were used for the initial condition on the three-dimensional mesh.
All mean values were calculated by averaging the spanwise averaged time accurate solution over a non-
dimensional time interval of around 8. A non-dimensional time step of 2 · 10−5 was used and solution was
recorded at every 1000 steps for the computation of the mean values.

VII.A. Reynolds Number=10000

At this Reynolds number, the flow is essentially two-dimensional with close-to-periodic vortex shedding.
Figure 6 a) and b) shows the history of lift and drag coefficients respecitively, after the initial transients
from a freestream initial solution have vanished. Figure 6 c) shows the mean surface coefficient of pressure
obtained from the SD3D code. The average drag and lift coefficient, as well as thhe Cp plot obtained
with the Spectral Difference method matches the results obtained by Urange et al.12 using a Discontinuous
Galerkin approach. As presented in Figure 7 a), which shows average Mach contours, the boundary layer
separates at 0.342 chords from the leading edge and does not reattach. Furthermore, the flow remains
laminar over the airfoil as seen by looking at contours of the Reynolds shear stress in Figure 7 b). Transition
is said to occur when the Reynolds shear stress reaches a value of 0.1% and exhibits a clear visible rise. The
flow becomes turbulent only at the trailing edge, where the boundary layers on the uper and lower surfaces
meet. The Q-criterion also provides a mean of visualizing vortex cores and identify turbulent structures. It
can be calculated from:

Q =
1

2
(ΩijΩij − SijSij) (18)

where Ωij and Sij are the anti-symmetric and symmetric of the velocity gradient tensor.

Ωij =
1

2

(

∂ui

∂xj
−

∂uj

∂xi

)

and Sij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

(19)

Figure 7 c) shows instantaneous iso-surfaces of Q-criterion and shows no spanwise variation over the
surface of the airfoil.

VII.B. Reynolds Number=60000

At a Reynolds number of 60000, transition takes place across a laminar separation bubble (LSB) over the
airfoil. Again, computations were performed on a mesh with 1.7 million degrees of freedom. Figure 8 a) and
b) shows the time history of the lift and drag coefficients. The average lift and drag coefficients were 0.610
and 0.229, respectively. The average pressure coefficient on the airfoil at this Reynolds number is presented in
Figure 8 c). The pressure gradient in the transition region is steeper than the one obtained by Uranga et al12

and matches very well the one obtained by Galbraith and Visbal13 who used a 6th order spatial discretization
on an overset mesh. A comparison of separation, transition and reattachment locations is given in Table
1. These values were obtained by looking at the streamlines of the mean velocity profile shown in figure 9
a) and contours of the Reynolds shear stress in figure 9 b). Results obtained with the Spectral Difference
method by means of a ILES are in excellent agreement with the experimental results obtained by Radiespel
et al.11 and the computational results of Visbal et al.13 Thus, even though the grid resoltion is clearly
too coarse to capture all scales of motion, the proposed method appears to accurately predict the laminar
separation and subsequent transition to turbulent flow. Finally, figures 9 c) shows instantaneous iso-surfaces
of the Q-criterion and vorticity. Three-dimensional structures associated with transition to turbulent flow
can easily be identified in these figures.
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Data Set Freestream Separation Transition Reattachment

Turbulence xsep xtr/c xr/c

TU-BS11 0.08% 0.30 0.53 0.64

HFWT10 0.1% 0.18 0.47 0.58

Visbal (ILES)13 0 0.23 0.55 0.65

Uranga (ILES)12 0 0.23 0.51 0.60

Present ILES 0 0.23 0.53 0.64

Table 1. Measured and Computed properties of flow over SD7003 at Re=60000, α = 4
◦
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Figure 6. Time history of (a) lift coefficient and (b) drag coefficient for SD7003 airfoil (c) Average pressure coefficient
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Figure 7. (a) Average Mach contours and streamlines (b) Reynolds shear stress (< u′v′ > /U2
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Figure 8. Time history of (a) lift coefficient and (b) drag coefficient for SD7003 airfoil (c) Average pressure coefficient

VIII. Numerical Results

VIII.A. Plunging SD7003 Airfoil

To investigate the ability of the current method to solve 3D unsteady flow and predict transitional phenom-
ena, we consider in this study a flow past a plunging SD7003 wing at Reynolds number of 40,000. With
experimental results available to compare with, this test case has been carefully examined by the referenced
study.14 We show here that similar results can be obtained with our present 3D solver to account for both

9 of 17

American Institute of Aeronautics and Astronautics



(a) (b) (c)

Figure 9. (a) Average Mach contours and streamlines (b) Reynolds shear stress (< u′v′ > /U2

∞
) (c) Instantaneous

iso-surfaces of Q-criterion at Re=60000

the plunging flow and the transitional behavior. The computational grid used here is the same as the one
used previously for the steady example. The parameters that define the flow conditions are: Mach=0.1;
Re=40,000; k=3.93; α0=4deg; h0/c=0.05. We perform this simulation using a 4th order SD solution, with
a total of 1.7 million degree of freedom. The aerodynamic lift and drag are plotted in Figure (11), together
with the corresponding results from the referenced study. Very good agreements are obtained. In terms of
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instabilities have just emerged, as shown in the corresponding near-
surface plot of Fig. 14b. Between and , the
dramatic breakdown of the leading-edge vortex system is apparent,
as seen in Figs. 13c and 14c. The outline of the original

concentrations of vorticity in the laminar dynamic-stall vortex
system are still discernible in Fig. 13c, however, by , the flow
structure has evolved into a single transitional leading-edge vortex.
Another qualitative change in flow structure associated with the
premature breakdown of the dynamic-stall vortices is the elimination
of the regular secondary vorticity ejection process noted earlier at
lower Reynolds number (seen in Fig. 4d).

The transformation of the phase-averaged leading-edge vortex
structure following the onset of transition is also examined in more
detail, because this type of representation is commonly rendered in
experimental studies. Before breakdown,while theflow is effectively
laminar, the dynamic-stall vortices are very compact and charac-
terized by fairly high values of vorticity magnitude (Fig. 15a). By the
time the spanwise breakdown is essentially completed, a rather
diffused vortex remains (Fig. 15c) with maximum values of vorticity
in its core that are an order of magnitude smaller than those existing
initially within vortex in Fig. 15a. This significant reduction in
phase-averaged vorticity is not solely the result of viscous dissipation
but rather it is promoted by the cancellation of primary (negative)
vorticity with the secondary (positive) vorticity ejected from thewall
(as seen in the instantaneous representation, Fig. 13d). The corre-
sponding phase-averaged streamwise velocity profiles through the
center of the vortex are shown in Fig. 15e. Following transition, the
reversed-flowvelocitymagnitudedecreases drastically,with a similar
pronounced reduction of the maximum velocity overshoot. Finally,
the streamline topology in the frame of reference moving with the
airfoil is displayed in Figs. 15b and 15d. The laminar dynamic-stall
vortex system comprises multiple vortices (or foci), as previously
observed in 2-D simulations [15,16]. Following transition, a simpler
topological pattern emerges characterized by a larger clockwise
vortex, as well as by a near-wall counterclockwise structure.

The spanwise breakdown of the laminar dynamic-stall vortex
previously described is clearly abrupt and takes place over a non-
dimensional time interval of order . This represents
a fast onset relative to either the plunging motion or the vortex
convection time scales. It remains to be seenwhether this process can
be duplicated by standard Reynolds-averaged eddy-viscositymodels

Fig. 15 Phased-averaged dynamic-stall vortex structure before and

after the onset of transition: (a,c) spanwise vorticity, (b,d) streamline
topology in the airfoil frame of reference, and (e) streamwise velocity

profiles through the center of the vortex ( 3 93, 4 ,

4 104).

Fig. 16 Computed lift and drag coefficient histories, 3 93, 4 .
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(a) CL Time History with SD3D (b) CL Time History from Visbal’s study14

Figure 10. Aerodynamic Lift Time History for a Transitional Flow over a Plunging SD7003 Airfoil at Re=40,000
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lower Reynolds number (seen in Fig. 4d).

The transformation of the phase-averaged leading-edge vortex
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in its core that are an order of magnitude smaller than those existing
initially within vortex in Fig. 15a. This significant reduction in
phase-averaged vorticity is not solely the result of viscous dissipation
but rather it is promoted by the cancellation of primary (negative)
vorticity with the secondary (positive) vorticity ejected from thewall
(as seen in the instantaneous representation, Fig. 13d). The corre-
sponding phase-averaged streamwise velocity profiles through the
center of the vortex are shown in Fig. 15e. Following transition, the
reversed-flowvelocitymagnitudedecreases drastically,with a similar
pronounced reduction of the maximum velocity overshoot. Finally,
the streamline topology in the frame of reference moving with the
airfoil is displayed in Figs. 15b and 15d. The laminar dynamic-stall
vortex system comprises multiple vortices (or foci), as previously
observed in 2-D simulations [15,16]. Following transition, a simpler
topological pattern emerges characterized by a larger clockwise
vortex, as well as by a near-wall counterclockwise structure.

The spanwise breakdown of the laminar dynamic-stall vortex
previously described is clearly abrupt and takes place over a non-
dimensional time interval of order . This represents
a fast onset relative to either the plunging motion or the vortex
convection time scales. It remains to be seenwhether this process can
be duplicated by standard Reynolds-averaged eddy-viscositymodels

Fig. 15 Phased-averaged dynamic-stall vortex structure before and

after the onset of transition: (a,c) spanwise vorticity, (b,d) streamline
topology in the airfoil frame of reference, and (e) streamwise velocity

profiles through the center of the vortex ( 3 93, 4 ,

4 104).

Fig. 16 Computed lift and drag coefficient histories, 3 93, 4 .
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(a) CD Time History with SD3D (b) CD Time History from Visbal’s study14

Figure 11. Aerodynamic Drag Time History for a Transitional Flow over a Plunging SD7003 Airfoil at Re=40,000

resolving the transitional flow from laminar to turbulent, the SD3D solver also produces results that exhibit
the transitional behavior depicted by experiments as well as Visbal’s computational study. The streamwise
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flow velocity contours at different phases of a plunging cycle are plotted and compared with the referenced
results in Figure (12).

vorticity of the opposite sign due to the ensuing vortex surface
interaction. This ejected vorticity is quite prominent between the two
primary dynamic-stall vortices (Fig. 4d), and eventually completely
surrounds the leading vortex (denoted as 1). Further downstream, this
secondary vorticity becomes less apparent due to spanwise instability
effects, as discussed later. Separation and formation of a single
dynamic-stall vortex is also observed on the airfoil lower surface
(Fig. 4b) as a result of the large negative angle of attack induced
during the upstroke. The dynamic-stall vortices generated near the
airfoil leading edge on the upper and lower surface of the airfoil are
observed to be more prominent at the end of the downstroke and
upstroke, respectively (Figs. 4a and 4c), rather than at the phases of
maximum downward or upward velocity. This lack of correlation
with instantaneous induced angle of attack is in part due to the well-
known separation delay associated with the phenomenon of dynamic
stall, wherein vortices emerge following an unsteady boundary-layer
separation process over the rounded leading edge. This behavior
contrasts with the vortices generated by the sharp trailing edge of the
plunging airfoil. As seen in Figs. 4b and 4d, the formation of the
trailing-edgevortices is found tobemore correlatedwith thephasesof
maximum plunging velocity.

A comparison of the computed and experimental phase-averaged
vortical structures is displayed in Fig. 5. Good overall agreement is
observed in terms of the coherent vortical structures, although the
computed results exhibit better defined flow features over the airfoil.
It should be noted that the experiments are averaged over manymore
cycles, which becomes prohibitive in the present 3-D calculations.
The experimental PIV resolution is limited by the desire to achieve a
global measurement including the wake. Also, details of the flow
below the airfoil are not provided in the experiments due to optical
access constraints.

The present implicit large-eddy simulations permit a detailed
description of the three-dimensional instantaneous flow structure
which complements experimental planar observations. The overall
instantaneous 3-D flow features are displayed for several phases in
Fig. 6. These plots show an isosurface of vorticity magnitude colored
by density to enhance contrast. At all phases of the plunging motion
shown, one can observe coherent spanwise vortical structures or
rollers that exhibit a fairly two-dimensional character. These vortices
are surrounded by complex three-dimensional flow features resulting
from spanwise instabilities. In particular, the dynamic-stall vortex
system forming near the leading edge retains its spanwise coherence.
However, the vorticity ejected from the airfoil surface (due to the
strong vortex surface interaction) rapidly breaks down, giving rise to
the appearance of longitudinal vortical structures. In the near wake,
the primary vortices shed from the plunging trailing edge exhibit a
two-dimensional character, whereas the feeding sheets associated
with these vortices break down into fine-scale structures. It is quite
likely that the primary wake vortices will also exhibit spanwise

Fig. 5 Comparison of computed (left) and experimental (right) phase-
averaged spanwise vorticity at selected phases of the plunging motion,

3 93, 4 , 104.

Fig. 6 Isosurfaces of instantaneous vorticity magnitude, 3 93,

4 , 104.

Fig. 7 Comparison of computed (left) and experimental (right) phase-

averaged spanwise vorticity at selected phases of the plunging motion,

3 93, 4 , 4 104.

Fig. 8 Comparison of computed (left) and experimental (right) phase-
averaged streamwise velocity at selected phases of the plunging motion,

3 93, 4 , 4 104.
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(a) Present result (b) Visbal’s result14 (c) Experiment result
Figure 12. Streamwise Velocity Contour of a Transitional Flow over a Plunging SD7003 Airfoil at Re=40,000

To illustrate the occurrence of flow transition, the spanwise vorticity contours during the transitional
process are shown in Figure (13). From the obtained results, we observe that the transitional process starts

(a) (b) (c)

(d) (e) (f)
Figure 13. Spanwise Vorticity Contour of a Transitional Flow over a Plunging SD7003 Airfoil at Re=40,000. Plots
(a)-(f) illustrate the process of flow transiting from laminar to turbulent.

with the formation of a large laminar flow bubble at the airfoil leading edge. This occurs at the bottom
of the downstroke, as the airfoil reverses its direction and creates vortical flow near its surface. When the
vortical bubble first forms at the leading edge, it begins to convect downstream. At the same time, the
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airfoil is moving upwards, interacting with the laminar bubble. The resistance of the laminar bubble to the
disturbance clearly depends on the flow properties, as defined by Reynolds number. In this particular case,
the upward moving airfoil effectively disperses the coherent laminar bubble into many smaller turbulent
structures, leading to flow transition.

VIII.B. Flapping Naca0012 Wing

The simulations for flow over the flapping Naca0012 wing have been performed with 5th order SD method.
With 37,704 cells in the starting mesh, this corresponds to 4,713,000 degrees of freedom. Figure 14 plots
three cut-planes of the computational mesh showing all the degrees of freedom.

(a) Cut planes of flow domain mesh (b) zoom of the computational mesh
Figure 14. Computational mesh showing all degrees of freedom for the 5th order SD method

The flow Reynolds number is 2,000. Mach number is 0.1. The flow solution is first run to a steady state.
The Mach number and pressure contours of the steady state solution are plotted in figure 15 (a) and (b).
The steady state drag coefficient based on the wing reference area S=4 is CD=0.083.

(a) Mach contour (b) Pressure contour

Figure 15. Steady flow over a naca0012 wing at Re=2,000 and M=0.1.

Starting with the steady state solution, simulations for three flapping wing motions have been computed
until steady periodic solutions are obtained. The results are summarized in figure 16, 17, and 18. In figure
16 the flow fields of the three flapping wing motions are illustrated by plotting the flow entropy contours near
the flapping wings at an instance when t=8.6s (about 2

3
through a downstroke) . The contours are colored by

the magnitude of Mach number. Wing surface pressure contours are also plotted (these are plotted again in
figure 18 for clearer illustration). The lift, drag and power coefficients time histories for two complete flapping
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cycles are also presented in the right column of the same figure. From figure 16(b), (d), and (e), we find
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(a) Entropy contour of plunging motion (b) Cl, Cd and Cp time histories of plunging motion
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(c) Entropy contour of plunging-pitching motion (d) Cl, Cd and Cp time histories of plunging-pitching motion
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Figure 16. Simulation results of flow over a flapping naca0012 wing at Re=2,000 and M=0.1. (a), (c) and (e) show the
flow entropy contours with Mach number colormap at t=8.6s. Wing surface pressure contours are also plotted. (b),
(d) and (f) plot the lift, drag and power coefficients time histories for two complete flapping cycles.

that all three flapping wing motions produce net thrust. Pure plunging motion of the entire wing produces
the most thrust of the three cases considered, but also at the expense of the largest power consumption.
Adding a phase-lead pitching motion along the 1/3 chord reduces the net thrust coefficient but also reduces
the power coefficient.The resulting aerodynamic efficiencies, measured by the ratio of time-averaged thrust
coefficient and time-average power coefficient, are comparable for these two cases. By switching to pure
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pitching wing motion, the aerodynamic efficiency however is much improved. Thrust is produced at about
one quarter reduced power input than the previous cases. The different amount of energy being put into

(a) x momentum contour of plunging motion (b) side view

(c) x momentum contour of plunging-pitching motion (d) side view

(e) x momentum contour of pitching motion (f) side view
Figure 17. Simulation results of flow over flapping naca0012 wings at Re=2,000 and M=0.1. The freestream momentum
contours are shown in the left column in top view, and in the right column in side view.

the flow field by the various flapping motions can be readily visualized by comparing the entropy contours
and velocity magnitudes in the left column of the figure. The amount of thrust being produced by the three
differerent flapping motions are visualized by plotting the net freestream momentum contours in figure 17.
The presence of a momentum jet in the wake of the flow behind the wing is clearly visible for the plunging
and the plunging-pitching motions. We observe that in both cases the flow pattern takes the form of a
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coherent backward moving momentum jets being surrounded by a spiral stream of reversing flow. For the
pitching wing motion, this type of flow pattern is confined to the wing tip region, and at a much reduced
scale. Nevertheless, similar flow patterns are present in all three cases.

(a) vorticity contour of plunging motion (b) wing surface pressure contour

(c) vorticity contour of plunging-pitching motion (d) wing surface pressure contour

(e) vorticity contour of pitching motion (f) wing surface pressure contour

Figure 18. Simulation results of flow over flapping naca0012 wings at Re=2,000 and M=0.1. The vorticity contours
with Mach number colormaps are shown in the left column. Wing surface pressure contours are plotted in the right
column.

Finally, figure 18 (a), (c) and (e) plot the vorticity contours over the three flapping wings. These contours
are again colormapped by the magnitudes of Mach number. Wing surface pressure contours are shown in
figure 18 (b), (d) and (f). We observe that the distributions and magnitudes of low pressure regions on the
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wing surfaces are closely related to the locations and intensities of the leading edge vortices.

IX. Conclusion

The objectives of the present study are two-folded. The first objective is related to numerical algorithm
development. In this regard, we developed and validated a high fidelity unsteady three-dimensional flow
solver based on spectral difference method. Three-dimensional simulations of flow over both a stationary and
a plunging SD7003 airfoil produced results that compare well with existing experimental and computational
studies. In addition, the favorable results coming out of the SD7003 airfoil test cases at transitional Reynolds
numbers not only help to provide validation for our numerical methods, but also hint the future potential
of using high order method as an efficient tool to resolve some fine scaled flow features without resorting to
explicit LES models. While further testings in this regard are needed, this nevertheless illustrates another
very encouraging aspect of the high order methods. The second objective is related to using the high fidelity
numerical analysis tool to better understand flapping wing aerodynamics. Flow solutions of three flapping
wing motions have been obtained. The chosen wing planform and flapping frequencies and amplitudes lead
to thrust producing flapping flights in all three cases. We observe that large thrust can be obtained by
maximizing the energy transfer from the flapping motion into as much surrounding air as possible. This is
the case for the rigidly plunging wing, but this is not necessarily the most aerodynamically efficient. With
the same Strouhal number based on the wing tip amplitude, pitching along the center line proved to be a
more aerodynamic efficient way to produce thrust. While exploring the vast design space using the present
high fidelity flow solver in search of the optimal flapping flyer can be very costly, the present study shows
that current numerical algorithm developments allow considerable insight into the three-dimensional flapping
wing flow features to be extracted and be made good use of in the design process.
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