

第七章 受拉构件截面承载力计算

- 7.1 概述
- 7.2 轴拉构件承载力
- 7.3 偏拉构件正截面承载力
- 7.4 偏拉构件斜截面承载力

7.1 概述

轴拉构件的工程实例

克服缺陷的技术

7.2 轴拉构件承载力

受力及破坏特征

第一阶段: 从加载到混凝土受拉开裂前

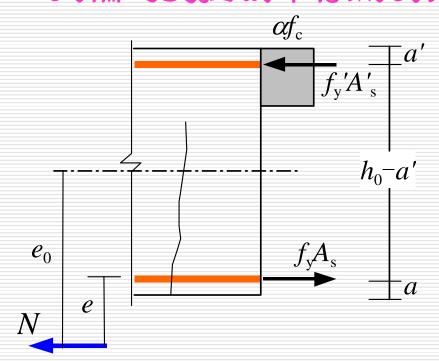
第二阶段: 混凝土开裂后至钢筋即将屈服

第三阶段: 受拉钢筋开始屈服至全部受拉钢筋屈服

承载力计算

$$N_u = f_y A_s$$
 (fy $\leq 300 N/mm$)

大小偏拉的判别


大偏心受拉构件

偏拉构件〈

小偏心受拉构件

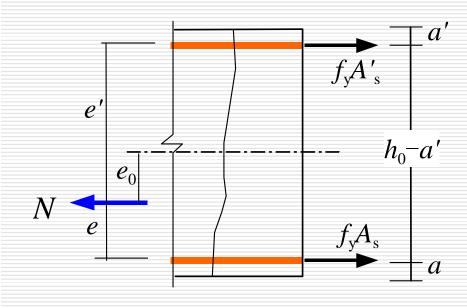
大偏心受拉破坏特点及计算

大偏心受拉构件

轴向拉力N在 A_s 外侧, A_s 一侧受拉, A'_s 一侧受压,混凝土开裂后不会形成贯通整个截面的裂缝。

最后,与大偏心受压情 况类似,*A*_s达到受拉屈服, 受压侧混凝土受压破坏。

大偏心受拉构件


适用条件
$$\xi \leqslant \xi_{\rm b}$$
 $x \geqslant 2a'$

$$e = e_0 - 0.5h + a_s$$

$$N_u=f_yA_s-f_y'A_s'-lpha_1f_bx$$

$$N_u\cdot e\leq lpha_1f_bx(h_0-rac{x}{2})+f_y'A_s'(h_0-a_s')$$
 对称西角 取 $x=2a_s$

小偏心受拉破坏特点及计算

小偏心受拉构件

特点:轴向拉力N在A_s与A'_s之间,全截面均受拉应力,但A_s一侧拉应力较大,A'_s一侧拉应力较小。随着拉力增加,A_s一侧首先开裂,但裂缝很快贯通整个截面,A_s和A'_s纵筋均受拉,最后A_s和A'_s均屈服而达到极限承力。

南京理工大学土木工程系

小偏心受拉公式:

$$N_u e \leq f_y A_s (h_0 - a_s)$$

$$N_u e^{\epsilon} \leq f_y A_s (h_0 - a_s)$$

$$e = \frac{h}{2} - e_0 - a_s$$
 $e' = \frac{h}{2} + e_0 - a_s'$

对称配筋

$$A_{s} = A_{s}' = \frac{N_{e}'}{f_{y}(h_{0} - a_{s}')}$$

7.4 偏拉构件斜截面承载力

轴向拉力对斜截面承载力的影响

影响趋势:

原因:

偏压构件斜截面承载力计算

$$\triangle T$$
: $V \le \frac{1.75}{\lambda + 1.0} f_t bh_0 + 1.0 f_{yv} \frac{nA_{svl}}{S} h_0 - 0.2 N$

适用范围: $V_u \geq 1.0 f_y h_o / s$