DOI: 10. 14077/j. issn. 1007-7812. 2015. 02. 004

海胆状纳米 MnO₂ 的制备及其对 CL-20 热分解性能的影响

刘健冰1,赵宁宁1,赵凤起2,宋纪萦1,3,马海霞1

(1. 西北大学化工学院,陕西 西安 710069; 2. 西安近代化学研究所燃烧与爆炸技术重点实验室,陕西 西安 710065; 3. 故宫博物院文保科技部,北京 100009)

摘 要:采用水热法合成海胆状纳米 MnO_2 颗粒,用 X 射线粉末衍射(XRD)和扫描电子显微镜及 X 射线能谱分析 (SEM-EDS)对该 MnO_2 颗粒进行物相组成及结构表征;用固体研磨法制备出质量比为 1:2、1:5 和 1:9 的纳米 MnO_2 /CL-20 混合物;用差示扫描量热(DSC)法考察了纳米 MnO_2 对 CL-20 热分解性能的影响。结果表明,纳米 MnO_2 的加入不会改变 CL-20 热分解过程的最可几机理函数;加入纳米 MnO_2 后, MnO_2 /CL-20 混合物的热分解峰温明显降低;与 CL-20 相比,不同质量比的 MnO_2 /CL-20 混合物表观活化能降低,表明海胆状纳米 MnO_2 可以促进 CL-20 的热分解。

关键词:物理化学;海胆状纳米 MnO2; CL-20; 热分解机理

中图分类号:TJ55; O643

文献标志码:A

文章编号:1007-7812(2015)02-0019-06

Preparation of Sea Urchin-shaped Nano-MnO and Its Effect on Thermal Decomposition Performance of CL-20

LIU Jian-bing , ZHAO Ning-ning , ZHAO Feng-qi , SONG Ji-rong 1,3 , MA Hai-xia 1

(1. School of Chemical Engineering, Northwest University, Xi'an 710069, China; 2. Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China;

3. Conservation Technology Department, the Palace Museum, Beijing 100009)

Abstract: Sea urchin-shaped nano MnO₂ particles were synthesized using N-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectrometry (SEM-EDS). MnO₂/CL-20 composites were prepared by grinding the mixture of nano-MnO₂ and CL-20 with the mass ratio of 1:2,1:5 and 1:9. The effect of nano-MnO₂ particles on the thermal decomposition performance of CL-20 was studied by differential scanning calorimetry (DSC). The results indicate that nano-MnO₂ does not change the most probable mechanism function of the thermal decomposition process of CL-20. The thermal decomposition peak temperature of CL-20 significantly decreases with the addition of nano-MnO₂. Compared with pure CL-20, the apparent activation energy of MnO₂/CL-20 mixture with different mass ratios reduces, indicating that the sea urchin-shaped nano-MnO₂ can accelerate the thermal decomposition of CL-20

Key words: physical chemistry; sea urchin-shaped nano-MnO2; CL-20; thermal decomposition mechanism

引言

纳米金属氧化物具有粒径小、比表面积大、表面活性中心多以及吸附能力强等诸多优点[1-2],将其

作为催化剂应用,具有很高的催化活性,近年来催化剂纳米化已成为改善催化性能研究的热点之一^[3-6]。过渡金属氧化物可以有效提高固体推进剂的燃烧速率,对含能材料的热分解具有优异的催化

收稿日期:2014-12-26; 修回日期:2015-02-03

基金项目:国家自然科学基金(21373161,21101127);教育部新世纪优秀人才支持计划基金(12-1047);高等学校博士学科点专项科研基金(20126101110009)资助项目

作者简介:刘健冰(1988一),男,硕士研究生,从事纳米含能材料的制备、表征及其性能应用研究。

通讯作者:马海霞(1974一),女,教授,博导,从事含能材料的合成、热力学性能及其量子化学研究。

作用[7-9]。杨毅等[10-11]研究了不同粒径 Fe₂O₃ 对高 氯酸铵(AP)热分解峰温的影响;马振叶等[12-15]研究 了不同粒径 Fe₂O₃ 对 AP 催化热分解的影响和 AP 包覆在 Fe₂O₃ 及过渡金属氧化物 CuO 和 Co₂O₃ 表 面后的热分解过程;徐宏等[16]研究了纳米 Fe₂O₃ 对 吸收药(硝化棉吸收硝化甘油的混合物),热分解反 应的催化作用,并提出了该催化反应的机理。六硝 基六氮杂异伍兹烷(CL-20, HNIW)是一种新型高 能量密度化合物,安红梅等[17-19]研究了 CL-20 作为 单元推进剂的燃烧性能,并研究了金属有机盐、金 属氧化物、炭黑等对 CL-20 热分解的影响,发现添 加剂对其分解过程产生影响。纳米 MnO₂ 作为过 渡金属氧化物及重要的无机功能材料,在催化、电 容和电极材料等领域已得到广泛应用[20-22]。

本研究通过水热法制备了海胆状纳米 MnO₂, 采用研磨法制备出不同质量比的纳米 MnO₂/CL-20 混合物,用差示扫描量热法(DSC)研究了纳米 MnO₂ 对 CL-20 热分解性能的影响及其分解反应特 性,并计算了纳米 MnO₂/CL-20 混合物以及 CL-20 热分解过程的反应动力学,为研究纳米 MnO2 对 CL-20 燃烧性能的影响及探索 CL-20 在复合团体推进剂中的应用提供参考。

1 实验

1.1 材料及仪器

1.1 材料及仪器

硫酸锰(MnSO₄ • H₂O,质量分数不小于 99.0%), 分析纯,天津永晟精细化工有限公司;过硫酸钠 (Na₂S₂O₈,质量分数不小于98.0%),分析纯,天津市盛 奥化学试剂有限公司;浓硫酸(H₂SO₄,质量分数为 95%~98%),分析纯,成都市科龙化工试剂厂;CL-20, 西安近代化学研究所燃烧与爆炸技术重点实验室;实 验用水均为去离子水。

日本理学公司 D/MAX-3C 型粉晶衍射仪,X 射 线源采用 CuK_a,波长为 0.15406 nm,测角仪精度± 0.02° , 重现性 $\pm 0.03^{\circ}(2\theta)$, 强度综合稳定度 $\pm 0.5\%$; 美国 FEI 公司 Quanta400 场发射环境扫描电子显微 镜,测试时设定高压为 30 kV, 电流为 4A; 英国牛津 公司 INCAIE350 能谱仪;美国 TA 公司 Q2000-DSC 型差示扫描量热仪,氮气流量为 50 mL/min,样品量 约为 0.10~0.15 mg,采用 2.5、5.0、7.5、10.0、12.5 和 15.0℃/min 的升温速率从室温升至 300℃。

1.2 纳米 MnO₂ 的制备

匀速搅拌下将 1. 72g MnSO4 · H2O 加入到 190 mL(0.5 mol/L)Na₂S₂O₈ 溶液中,滴加 10 mL 浓

硫酸,继续搅拌10 min 至形成均相溶液,转入50 mL 水热釜,在110℃下反应1h后取出水热釜,自然冷 却至室温。将沉淀物离心分离,分别用去离子水和 无水乙醇洗涤数次,将得到的沉淀物在80℃下干 燥,备用。

1.3 纳米 MnO₂/CL-20 混合物的制备

将纳米 MnO₂ 与 CL-20 按质量比为 1:2、1:5 和 1:9 研磨混合,得到 3 种纳米 MnO₂/CL-20 混 合物。

结果与讨论 2

2.1 纳米 MnO₂ 的表征

2.1.1 XRD 图谱

用晶粉衍射仪表征纳米 MnO₂ 的晶相结构,结 果如图1所示。

图 1 纳米 MnO₂ 的 XRD 图谱

Fig. 1 XRD pattern of MnO₂ nanoparticles

由图 1 可看出,图谱中所有衍射峰均与 MnO₂ 的标准 XRD 卡片 JCPDS No. 30-0820 一致,证明所制 备的 MnO₂ 属于六方晶系,空间群为 P63/mmc(194), 晶胞系数为 a=2.8Å b=2.8Å 和 c=4.45Å ,在 2θ 为 37. 120°、42. 401°、56. 027°和 66. 761°处出现强的衍射 峰,对应于 MnO_2 的(100)、(101)、(102)和(110) 晶面;衍射峰出现宽化现象,说明 MnO2 的晶粒较 小;在 XRD 图谱中未出现杂质峰,说明样品为 纯 MnO₂。

2.1.2 SEM-EDS 图谱

采用场发射扫描电子显微镜观察纳米 MnO2 的微观形貌,用能谱仪对 EDS 微区进行了分析,结 果如图 2 和图 3 所示。

从图 2 可以看出,制备的 MnO_2 呈海胆状,直 径约为1.3 µm,海胆球壳表面布满长短不一的纳米 棒,纳米棒直径约80nm,颗粒之间有团聚现象。由 图 3 可以看出,样品中只含有 Mn、O 两种元素,对 比 XRD 图进一步说明制备的样品为 MnO2, 无其他 杂质。

(a) × 50 000

(b) $\times 100000$

图 2 纳米 MnO₂ 的 SEM 照片

Fig. 2 SEM images of MnO₂ nanoparticles

Fig. 3 EDS spectrum of MnO₂ nanoparticles

2.2 纳米 MnO_2 含量对 CL-20 热分解的影响

在 10 ℃/min 升温速率下纳米 MnO₂/CL-20 混 合物和纯 CL-20 的 DSC 曲线如图 4 所示。

图 4 MnO₂/CL-20 混合物与 CL-20 在 10 °C/min 升温 速率下的 DSC 曲线

Fig. 4 DSC curves of MnO₂/CL-20 composites and CL-20 obtained at a heating rate of 10°C/min

由图 4 可看出,在 MnO₂/CL-20 混合物中, DSC曲线上的热分解起始温度、峰温、终止温度向 低温方向移动,且都小于 CL-20。 MnO₂ 与 CL-20 质量比为1:2、1:5 和1:9 时,其峰温相对于 CL-

20 分别降低了 7.87、7.65 和 7.05℃。这说明海胆 状纳米 MnO₂ 可以降低 CL-20 的热分解峰温,促进 CL-20 的热分解。

2.3 MnO₂/CL-20 混合物的热分解动力学

在升温速率为 2.5、5.0、7.5、10.0、12.5 和 15.0℃/ min 下,用差示扫描量热仪测试 3 种不同质量比的 $MnO_2/CL-20$ 混合物和 CL-20 的热分解过程,以获 得其最可几机理函数及动力学参数。为得到 MnO₂/CL-20 混合物及 CL-20 热分解反应的非等 温动力学方程,利用 Kissinger 方程(式 1)和 Ozawa 方程(式2)计算得到热分解动力学表观活化能 E。 和表观指前因子A。

$$\ln \frac{\beta}{T_p^2} = \ln \frac{AR}{E} - \frac{E}{RT_p} \tag{1}$$

$$\lg\beta = \frac{0.4567E}{RT} = C \tag{2}$$

将3种不同质量比的 MnO₂/CL-20 混合物和 CL-20 在不同升温速率下 DSC 曲线的温度 T 与转 化率 α ,根据式(2)计算出分解反应的表观活化能 E_a 随心的变化曲线(如图 5 所示。

图 5 由 Ozawa 法得到的 3 种 MnO₂/CL-20 混合物和 CL-20 的 $E_a - \alpha$ 曲线

Fig. 5 $E_a - \alpha$ curves of decomposition of the three composites and CL-20 by Ozawa's method

从图 5 可以看出,当 MnO2 与 CL-20 的质量比 为 1:2,1:5 和 1:9 时, $MnO_2/CL-20$ 混合物的转 化率 α 分别为 0. 225~0. 950、0. 100~0. 950 和 0.100~0.925, 其表观活化能随转化率的变化较 小。对于 CL-20,当转化率在 0.250~0.975 时,其 表观活化能随转化率的变化较小,表明在此过程中 分解机理没有本质的改变,或者发生的转变可以忽 略不计。

由 DSC 曲线得到不同升温速率下 MnO₂/CL-20 混合物和 CL-20 的起始温度(T_e)和分解峰峰温 $(T_{\rm b})$ 的动力学参数,见表 1。从表中 1 可以看出,加 入 MnO_2 后 CL-20 的热分解表观活化能 E_0 和 E_k 都降低,说明 MnO2 促进了 CL-20 的热分解。

表 1 用 Kissinger 和 Ozawa 法计算不同升温速率下的 CL-20 和 MnO₂/CL-20 混合物的动力学参数

Table 1 The kinetic parameters of CL-20 and the MnO_2/CL -20 composites calculated by Kissinger and Ozawa methods at different heating rates

样品	eta/	$T_{ m e}/{}^{\circ}\!{ m C}$	$E_{ m oe}$ /	$r_{ m oe}$	$T_{\mathrm{p}}/^{\circ}\mathbb{C}$	$E_{ m k}$	$r_{ m k}$	$\lg(A_{\mathrm{k}}/\mathrm{s}^{-1})$	$E_{\circ}/$	r_{\circ}
	(°C • min ⁻¹)		$(kJ \cdot mol^{-1})$			$(kJ \cdot mol^{-1})$			$(kJ \cdot mol^{-1})$	
CL-20	2.5	222.36	183. 37	0.9989	234.96	187.60	0.9985	16.85	186. 59	0.9986
	5.0	230.40			242.52					
	7.5	234.77			247.50					
	10.0	238.08			250.41					
	12.5	240.37			252.46					
	15.0	241.84			255.79					
	2.5	217.33			227.09					
	5.0	224.71			235.17					
MnO_2/CL -20	7.5	229.62	170. 56	0.9988	239.67	179.76	0.9995	16.32	179.01	0.9995
(1:2)	10.0	233.87			242.54					
	12.5	235.60			245.80					
	15.0	237.80			247.81					
	2.5	217.96			227.34					
	5.0	225.79			235.41					
MnO_2/CL -20	7.5	230.28	172 50	0.9994	240.04	179 18	0.9990 CN	16. 25	178. 47	0.9991
(1:5)	10.0	234.24	173. 59		242.76					
	12.5	236.17			246.38					
	15.0	238.34			247.94					
	2.5	218.75	182. 85	0/9993	228 52		0.9996	16.97	185. 27	0.9996
	5.0	226.68			228. 52 235. 96					
$MnO_2/CL-20$	7.5	230.58			240.97					
(1:9)	10.0	233.65			243.67					
	12.5	236.65	ntil		246.55					
	15.0	238.21	>		248.42					

注: T_e 为起始温度; E_∞ 为不同 T_e 下由 Ozawa 法计算的表观活化能; T_p 为峰温; E_k 为不同 T_p 下由 Kissinger 法计算的表观活化能; E_∞ 为不同 E_∞ 下由 Ozawa 法计算的表观活化能; E_∞ 为不同 E_∞ 为不同 E_∞ 下由 Ozawa 法计算的表观活化能; E_∞ 为不同 E_∞ 为不同 E_∞ 下由 Ozawa 法计算的表观活化能; E_∞ 为线性相关系数。

最可几动力学机理函数的计算方程见式(3)~(7)。

Mac Callum-Tanner 方程:

$$\lg[G(\alpha)] = \lg\left(\frac{AE}{\beta R}\right) - 0.4828E^{0.4357} - \frac{0.449 + 0.214E}{0.001}\frac{1}{T}$$
(3)

Satava-Sestak 方程:

$$\lg[G(\alpha)] = \lg\left(\frac{AE}{\beta R}\right) - 2.315 - 0.4567 \frac{E}{RT}$$
 (4)

Agrawal 方程:

$$\ln\left[\frac{G(\alpha)}{T^{2}}\right] = \ln\left\{\frac{AR}{\beta E} \left[\frac{1 - 2\left(\frac{RT}{E}\right)}{1 - 5\left(\frac{RT}{E}\right)}\right]\right\} - \frac{E}{RT} \quad (5)$$

The Ordinary-Integral 方程:

$$\ln \left[\frac{G(\alpha)}{T^2} \right] \ln \left[\frac{AR}{\beta E} \left(1 - \frac{2RT}{E} \right) \right] - \frac{E}{RT}$$
 (6)

The General-Integral 方程:

$$\ln \left[\frac{G(\alpha)}{T - T_0} \right] = \ln \left(\frac{A}{\beta} \right) - \frac{E_a}{RT} \tag{7}$$

式中: $G(\alpha)$ 为积分机理函数;T为在t时刻的温度(\mathbb{C}); T_p 为 DSC 曲线中的峰温; α 为转化率; β 为升温速率(\mathbb{C} /min);R 为摩尔气体常数(8. 314 J/(mol·K));E 为表观活化能(kJ/mol);A 为表观指前因子。

将 3 种 MnO_2/CL -20 混合物、CL-20 的 $T-\alpha$ 数据和 41 种机理函数 $P^{[23]}$ 分别代入式(3)~(7),运用最小二乘法计算获得不同升温速率下的表观活化能 P_{a} 和 P_{a} 根据单一非等温 DSC 曲线所选机理函数形式而得的 P_{a} 、 P_{a} 与用多重扫描速率法(Kissinger 法和 Ozawa 法)和等转化率法求得的值基本一致的原则,经逻辑选择法选择,得 P_{a} MnO₂ /CL-20 混合物和 P_{a} CL-20 分解反应机理函数的动力学参数,结果见表 2。

表 2 CL-20 和 $MnO_2/CL-20$ 混合物的热分解反应的动力学参数

Table 2 Thermal decomposition Kinetic parameters of CL-20 and MnO₂/CL-20

	β/ - (°C • min ⁻¹)	$E_{\alpha}/(\mathrm{kJ} \cdot \mathrm{mol}^{-1})$				$Lg(A/s^{-1})$				
计算方法		CI OO	MnO ₂ /CL-20			CI 90		MnO ₂ /CL-20		
		CL-20 -	1:2	1:5	1:9	CL-20 -	1:2	1:5	1:9	
Mac Callum-Tanner	2.5	183.22	170.18	169.90	190.27	16.43	15.35	15.30	17.44	
	5.0	194.14	178.05	188.74	195.02	17.57	16.19	17.30	17.94	
	7.5	187.61	181.73	185.71	185.52	16.88	16.57	16.94	16.91	
	10.0	189.08	189.46	184.47	176.76	17.04	17.38	16.85	16.01	
	12.5	185.74	176.53	172.58	181.82	16.70	16.02	15.59	16.54	
	15.0	175.71	179.90	185.83	181.66	15.68	16.38	16.97	16.51	
Satava-Sestak	2.5	181.17	168.86	168.60	187.83	16.25	15.24	15.20	17.22	
	5.0	191.49	176.29	186.39	192.31	17.32	16.03	17.08	17.84	
	7.5	185.31	179.77	183.52	183.34	16.67	16.40	16.76	16.71	
	10.0	186.70	187.07	182.35	175.07	16.82	17.16	16.66	16.01	
	12.5	183.55	174.86	171.13	179.85	16.50	15.89	15.47	16.36	
	15.0	174.08	178.04	183.64	179.70	15.54	16.21	16.77	16.51	
	2.5	182.11	169.30	169.05	189.25	16.35	15.30	15.26	17.37	
	5.0	192.82	176.98	187.61	193.83	17.47	16.12	17.21	17.84	
Δ 1	7.5	186.25	180.56	184.52	184. 32	16.78	16.49	16.88	16.82	
Agrawal	10.0	187.66	188.18	183.24	1750	16.93	17.28	16.76	15.93	
	12.5	184.30	175.29	171.39	180.56	16. 59	15.94	15.51	16.44	
	15.0	174.31	178.60	184.54	180.35	15.58	16.28	16.86	16.41	
普适积分法	2.5	181.38	168.40	168.12	188.35	14.96	13.92	13.88	17.37	
	5.0	192.25	176. 24	186.86	193.09	16.06	14.73	15.80	16.42	
	7.5	185.76	179.94	183.86	183.67	15.40	15.11	15.48	15.43	
	10.0	187.23	187. 59	182.63	174.98	15.55	15.89	15.37	14.56	
	12.5	183.92	174.77	170.84	180.02	15.22	14.58	14.16	15.07	
	15.0	173.96	178.11	184.00	179.86	14.24	14.92	15.49	15.04	
一般积分法	2.5	182.11	169.98	169.05	189.25	16.36	15.30	15.26	17.37	
	5.0	192.82	176.98	187.61	193.83	17.47	16.12	17.21	17.84	
	7.5	186.25	180.56	184.52	184.32	16.78	16.49	16.88	16.83	
	10.0	187.66	188.18	183.24	175.57	16.93	17.28	16.76	15.93	
	12.5	184.30	175.29	171.39	180.56	16.59	15.94	15.51	16.44	
	15.0	174.31	178.60	184.51	180.35	15.58	16.28	16.87	1641	
平均值		184.57	178.12	179.99	183.90	16.34	15.96	16.14	16.53	

根据表 2 可知,3 种 MnO_2/CL -20 混合物和 CL-20 的热分解反应遵循同一个最可几机理函数,均为随机成核和随后生长过程,最可几机理函数是 n=1/3 的 Avrami-Erofeev 方程,积分式为 $G(\alpha)=[-\ln(1-\alpha)]^{1/3}$,相应的微分式为 $f(\alpha)=3(1-\alpha)$

 $[-\ln(1-\alpha)]^{2/3}$ 。将上述最可几机理函数微分式 f (α)及表 2 中所求得对应的平均值 E_a 和 A 的平均值分别代入方程: $d\alpha/dt = Af(\alpha)\exp(-E/RT)$,得到动力学方程见表 3。

表 3 CL-20 和 MnO₂/CL-20 混合物的动力学方程

Table 3 Kinetic equations of CL-20 and the three composites

样品	$m(MnO_2)$: $m(CL-20)$	$E_{\rm a}/({\rm kJ \cdot mol^{-1}})$	$\lg(A/\mathrm{s}^{-1})$	$\mathrm{d} lpha / \mathrm{d} t$
CL-20	0:10	184.57	16.34	1016. $82(1-\alpha)[-\ln(1-\alpha)]^{2/3}\exp(-22199.90/T)$
MnO_2/CL -20	1:2	178.12	15.96	1016. $44(1-\alpha)[-\ln(1-\alpha)]^{2/3}\exp(-21424.10/T)$
MnO_2/CL -20	1:5	179.64	16.05	1016.53(1- α)[-ln(1- α)] ^{2/3} exp(-21606.92/T)
MnO_2/CL -20	1:9	183.90	16.53	1017.01(1- α)[-ln(1- α)] ^{2/3} exp(-22119.32/ T)

由表 3 可知,在 3 种 $MnO_2/CL-20$ 混合物中, CL-20 的热分解机理没有改变,当 MnO_2 与 CL-20 质量比为 1:2、1:5 和 1:9 时,混合物热分解的表观活化能分别为 178.12、179.99 和 183.90 kJ/mol, 比纯 CL-20(184.57 kJ/mol)分别降低 6.45、4.93 和 0.67 kJ/mol,因此 MnO_2 可以降低 CL-20 的活化能,对其热分解起到一定的促进作用。

3 结 论

- (1)利用水热法合成了海胆状纳米 MnO_2 ,并对其物相组成与结构进行了表征。用 DSC 法证明纳米 MnO_2 的加入不会改变 CL-20 热分解过程的最可几机理函数。
- (2) MnO₂/CL-20 混合物的热分解峰温和表观活化能比纯 CL-20 都有不同程度的降低,表明 MnO₂ 对 CL-20 的热分解具有促进作用。

参考文献:

- [1] 陈敬中,刘剑洪. 纳米材料科学导论[M]. 北京. 高等教育出版社, 2006.
 - CHEN Jing-zhong, LIU Jian-hong. Introduction of Nano-materials Science [M]. Beijing: Higher Education Press, 2006.
- [2] 张立德,牟季美. 纳米材料和纳米结构[M]. 北京,科学出版社,2001.
 ZHANG Li-de, MOU Ji-mei. Nanomaterials and Nanostructures[M]. Beijing; Science Press, 2001.
- [3] 张汝冰,刘宏英,李凤生.复合纳米材料制备研究(Ⅱ) [J]. 火炸药学报,2000,23(1):58-61. ZHANG Ru-bing, LIU Hong-ying, LI Feng-sheng. Preparation of composite nanometer-sized particle(Ⅱ) [J]. Chinese Journal of Explosives and Propellants, 2003,23(1):58-61.
- [4] Jiang Z, Li S F, Zhao F Q, et al. Research on the combustion properties of propellants with low content of nano metal powders[J]. Propellants, Explosives, Pyrotechnices, 2006, 31(2):139-147.
- [5] Prakash A, McCormick A V, Zachariah M R. Aerosol-gel synthesis of nanoporous iron-oxide particles; a potential oxidizer for nanoenergetic materials [J]. Chem Mater, 2004, 16:1466-1471.
- [6] Plantier K B, Pantoya M L, Gash A E. Combustion wave speeds of nanocomposite Al/ Fe₂O₃: the effects of Fe₂O₃ particle synthesis technique [J]. Combustion and Flame, 2005, 140:299-309.
- [7] Said A A. Thermal decomposition of ammonium metavanadate doped with Fe, Co or Ni hydroxides [J]. Thermal Analysis, 1991,37:849-860.

- [8] Shen S M, Chen S L, Wu B H. The thermal decomposition of ammonium perchlorate (AP) containing a burning-rate modifier [J]. Thermochim Acta, 1993, 223:135-143.
- [9] Kishore K, Sunitha M R. Effect of transition metal oxides on decomposition and deflagration of composite solid propellant systems: a survey[J]. AIAA Journal, 1979, 17(10):1118-1129.
- [10] Yang Y, Li F S, Liu H Y, et al. Catalysis of nanometer α-Fe₂O₃ on the thermal decomposition of AP[J]. Journal of China Ordnance Society, 2005;169-172.
- [11] 赵文忠,郑邯勇,林碧亮.纳米氧化铁的制备及其对高金属含量燃料的催化作用[J].火炸药学报,2008,31(5):69-72.
 - ZHAO Wen-zhong, ZHENG Han-yong, LIN Bi-liang, et al. Preparation of iron oxide nanoparticles and its catalysis on fuel with high metallic content[J]. Chinese Journal of Explosives and Propellants, 2008, 31 (5): 69-72.
- - MA Zhen-ye, LI Feng-sheng, CHEN Ai-si, et al. Preparation and thermal decomposition behavior of Fe₂O₃/ammonium perchlorate composite nanoparticles [J]. Acta Chimica Sinica, 2004, 62(13):1252-1255.
- [13] 马振叶,李凤生,崔平,等. 纳米 $Fe_2 O_3$ 的制备及其对高 氯酸铵热分解的催化性能 [J]. 催化学报,2003,24 (10):795-798.
 - MA Zhen-ye, LI Feng-sheng, CUI Ping, et al. Preparation of nanometer sized Fe_2O_3 and its catalytic performance for ammonium perchlorate decomposition [J]. Chinese Journal of Catalysis, 2003, 24 (10): 795-798.
- [14] Ma Z Y, Li F S, Bai H P. Effect of Fe₂O₃ in Fe₂O₃/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant [J]. Propellants, Explosives, Pyrotechnices, 2006, 31 (6):447-451.
- [15] Ma Z Y, Li F S, Chen A S. Preparation and thermal decomposition behavior of TMOs/AP composite nanoparticles[J]. Nanoscience, 2006,11(2):142-145.
- [16] 徐宏,刘剑洪,陈沛,等. 纳米氧化铁的制备及其对吸收药热分解催化作用的研究[J]. 火炸药学报,2002,23 (3):51-52.
 - XU Hong, LIU Jian-hong, CHEN Pei, et al. Synthesis and effect of nanometer-sized ferric oxide on catalyzing decomposition of absorbent powder[J]. Chinese Journal of Explosive and Propellants, 2002,23(3): 51-52.

- gies, 2011, 4(1):185-214.
- [15] Ernst-Christian Koch, Special materials in pyrotechnics: III. Application of lithium and its compounds in energetic systems[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(2):67-80.
- [16] Li Chuang, Zhou Dianwu, Peng Ping, et al. Firstprinciples calculation on dehydrogenating properties of LiBH₄-X (X=O, F, Cl) systems $\lceil J \rceil$. Acta Chimica Sinica, 2012,70(1):71-77.
- [17] Schlapbach L, Zuttel A. Hydrogen storage materials for mobile application [J]. Journal of Nature, 2001, 414: 353-358.
- [18] 谯娟. 聚合物相稳定硝酸铵的研究[D]. 南京:南京理 工大学,2009.
- [19] 王婧娜,胡岗,张皋,等. 球形 ADN 的吸湿机理[J]. 火 炸药学报,2014,37(1):86-90. WANG Jing-na, HU Lan, ZHANG Gao, et al. Hydroscopic mechanism of spherical ADN[J]. Chinese Journal of Explosives and Propellants, 2014, 37(1): 86-90.
- [20] 梅震华,钱华,吕春绪. 聚丙烯酸钾对酸铵相稳定的影

- crylic potassium salt polymer on the phase stabilization of ammonium nitrate [J]. Chinese Journal of Explosives and Propellants, 2010, 33(1): 19-21.
- [21] Marosi G, Ravadits I. Role of migration process in the efficiency of intumescent flame retardant additives in polypropylene [J]. Fire Retardancy of Polymers, 2000,2: 325
- [22] Cui Qingzhong, Jiao Qingjie, Ren Hui, et al. Study on Moisture-Resistant Black Powder [J]. Chinese Journal of Energetic Materials, 2007, 15(2):114-117.
- [23] Lang K, Sourirajan S, Matsuura T, et al. A study on the preparation of polyvinyl alcohol thin-film composite membranes and reverse osmosis testing[J]. Desalination, 1996, 104: 185-196.
- [24] Reed Blau. Low humidity uptake solid pyrotechnic compositions and methods for making the same: US, 0148541 A1[P]. 2002.
- [25] Hussain G, Rees G J. Combust ion of black powder, Part IV: Effect of carbon and other parameters[J].
- 相稳定的影 V-4. L26] Jenkin, William C. Method of encapsulation of lithium Effect of a borohydride. US 30704605 P3 11

- Study of combustion property of HNIW monopropellant[J]. Chinese Journal of Explosives and Propellants, 2001,24(1):36-37.
- [18] 安红梅,刘云飞,李玉平,等. 金属氧化物对 HNIW 单 元推进剂燃烧的催化研究[J]. 火炸药学报,2000,23 (4):27-28.
 - AN Hong-mei, LIU Yun-fei, LI Yu-ping, et al. Study on catalytic combustion of HNIW monopropellant by metal oxide [J]. Chinese Journal of Explosives and Propellants, 2000, 23(4):27-28.
- [19] 张杰,杨荣杰,邹彦文. HNIW 的燃烧性能研究[J]. 固 体火箭技术,2004,27(3):190-192. ZHANG Jie, YANG Rong-jie, ZOU Yan-wen. A study on combustion properties of hexanitrohexaazaisowurtzitae [J]. Journal of Solid Rocket Technology, 2004,27(3):190-192.

- [20] Ding Y S, Shen X F, Sitham B S, et al. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method[J]. Chem Mater, 2005,17:5382-5389.
- [21] 亓淑艳,冯静,闫俊,等. 海胆球形和纳米线性 MnO₂ 制备及其超级电容特性[J]. 中国有色金属学报, 2008,18(1):113-117. QI Shu-yan, FENG Jing, YAN Jun, et al. Hydrother
 - mal synthesis and supercapacitor properties of urchin sphere and nanowire MnO₂[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(1): 113-117.
- [22] Wang N, Pang H T, Peng H R, et al. Hydrothermal synthesis and electrochemical properties of MnO₂ nanostructures[J]. Cryst Res Technol, 2009, 44 (11): 1230-1234.
- [23] 胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学 [M]. (第 二版). 北京:科学出版社,2008:151-159. HU Rong-zu, GAO Sheng-li, ZHAO Feng-qi, et al. Thermal Analysis Kinetics[M]. (2nd). Beijing: Science Press, 2008:151-159.