Modeling Bond Yields in Finance and Macroeconomics
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From a macroeconomic perspective, the short-
term interest rate is a policy instrument under
the direct control of the central bank, which
adjusts the rate to achieve its economic stabili-
zation goals. From a finance perspective, the
short rate is a fundamental building block for
yields of other maturities, which are just risk-
adjusted averages of expected future short rates.
Thus, as illustrated by much recent research, a
joint macro-finance modeling strategy will pro-
vide the most comprehensive understanding of
the term structure of interest rates. In this paper,
we discuss some salient questions that arise in
this research, and we also present a new exam-
ination of the relationship between two promi-
nent dynamic, latent factor models in this
literature: the Nelson-Siegel and affine no-arbitrage
term-structure models.

I. Questions about Modeling Yields

1. Why Use Factor Models for Bond
Yields >—The first problem faced in term-struc-
ture modeling is how to summarize the price
information at any point in time for the large
number of nominal bonds that are traded. In
fact, since only a small number of sources of
systematic risk appear to underlie the pricing of
the myriad of tradable financial assets, nearly all
bond price information can be summarized with
just a few constructed variables or factors.
Therefore, yield-curve models almost invari-
ably employ a structure that consists of a small
set of factors and the associated factor loadings
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that relate yields of different maturities to those
factors. Besides providing a useful compression
of information, a factor structure is also consis-
tent with the celebrated “parsimony principle,”
the broad insight that imposing restrictions
(even those that are false and may degrade
in-sample fit) often helps both to avoid data-
mining and to produce good forecasting models.
For example, an unrestricted Vector Autore-
gression (VAR) provides a very general linear
model of yields, but the large number of esti-
mated coefficients renders it of dubious value
for prediction (Diebold and Calin Li, 2005).
Parsimony is also a consideration for determin-
ing the number of factors needed, along with the
demands of the precise application. For exam-
ple, to capture the time-series variation in
yields, one or two factors may suffice since the
first two principal components account for al-
most all (99 percent) of the variation in yields.
Also, for forecasting yields, using just a few
factors may often provide the greatest accuracy.
However, more than two factors will invariably
be needed in order to obtain a close fit to the
entire yield curve at any point in time, say, for
pricing derivatives.

2. How Should Bond Yield Factors and Fac-
tor Loadings Be Constructed?—There are a va-
riety of methods employed in the literature. One
general approach places structure only on the
estimated factors. For example, the factors
could be the first few principal components,
which are restricted to be mutually orthogonal,
while the loadings are relatively unrestricted.
Indeed, the first three principal components
typically closely match simple empirical prox-
ies for level (e.g., the long rate), slope (e.g., a
long minus short rate), and curvature (e.g., a
mid-maturity rate minus a short- and long-rate
average). A second approach, which is pop-
ular among market and central-bank practitio-
ners, is a fitted Nelson-Siegel curve (introduced
in Charles Nelson and Andrew Siegel [1987]).
As described by Diebold and Li (2005), this
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representation is effectively a dynamic three-
factor model of level, slope, and curvature.
However, the Nelson-Siegel factors are unob-
served, or latent, which allows for measurement
error, and the associated loadings have plausible
economic restrictions (forward rates are always
positive, and the discount factor approaches
zero as maturity increases). A third approach is
the no-arbitrage dynamic latent-factor model,
which is the model of choice in finance. The
most common subclass of these models postu-
lates flexible linear or affine forms for the latent
factors and their loadings along with restrictions
that rule out arbitrage strategies involving var-
ious bonds.

3. How Should Macroeconomic Variables
Be Combined with Yield Factors?—Both the
Nelson-Siegel and affine no-arbitrage dynamic
latent-factor models provide useful statistical
descriptions of the yield curve, but they offer
little insight into the nature of the underlying
economic forces that drive its movements. To
shed some light on the fundamental determi-
nants of interest rates, researchers have begun to
incorporate macroeconomic variables into these
yield-curve models.

For example, Diebold et al. (2005b) provide a
macroeconomic interpretation of the Nelson-
Siegel representation by combining it with
VAR dynamics for the macroeconomy. Their
maximum-likelihood estimation approach ex-
tracts three latent factors (essentially level,
slope, and curvature) from a set of 17 yields on
U.S. Treasury securities and simultaneously re-
lates these factors to three observable macro-
economic variables (specifically, real activity,
inflation, and a monetary-policy instrument).

The role of macroeconomic variables in a
no-arbitrage affine model is explored by several
papers. In Piazzesi (2005), the key observable
factor is the Federal Reserve’s interest-rate tar-
get. The target follows a step function or pure
jump process, with jump probabilities that de-
pend on the schedule of policy meetings and
three latent factors, which also affect risk pre-
miums. The short rate is modeled as the sum of
the target and short-lived deviations from target.
The model is estimated with high-frequency
data and provides a new identification scheme
for monetary policy. The empirical results show
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that, relative to standard latent-factor models,
using macroeconomic information can substan-
tially lower pricing errors. In particular, includ-
ing the Fed’s target as one of four factors allows
the model to match both the short and the long
end of the yield curve.

In Andrew Ang and Piazzesi (2003) and Ang
et al. (2004), the macroeconomic factors are
measures of inflation and real activity. The joint
dynamics of these macro factors and additional
latent factors are captured by VARs. In Ang and
Piazzesi (2003), the measures of real activity
and inflation are each constructed as the first
principal component of a large set of candidate
macroeconomic series, to avoid relying on spe-
cific macro series. Both papers explore various
methods to identify structural shocks. They dif-
fer in the dynamic linkages between macro fac-
tors and yields, discussed further below.

Finally, Rudebusch and Tao Wu (2004a) pro-
vide an example of a macro-finance specification
that employs more macroeconomic structure and
includes both rational expectations and inertial
elements. They obtain a good fit to the data with
a model that combines an affine no-arbitrage
dynamic specification for yields and a small
fairly standard macro model, which consists of a
monetary-policy reaction function, an output Eu-
ler equation, and an inflation equation.

4. What Are the Links Between Macro Vari-
ables and Yield-Curve Factors?—Diebold et al.
(2005b) examine the correlations between
Nelson-Siegel yield factors and macroeconomic
variables. They find that the level factor is
highly correlated with inflation, and the slope
factor is highly correlated with real activity. The
curvature factor appears to be unrelated to any
of the main macroeconomic variables. Similar
results with a more structural interpretation are
obtained in Rudebusch and Wu (20044a); in their
model, the level factor reflects market partici-
pants’ views about the underlying or medium-
term inflation target of the central bank, and the
slope factor captures the cyclical response of the
central bank, which manipulates the short rate
to fulfill its dual mandate to stabilize the real
economy and keep inflation close to target. In
addition, shocks to the level factor feed back to
the real economy through an ex ante real inter-
est rate.
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Piazzesi (2005), Ang and Piazzesi (2003),
and Ang et al. (2004) examine the structural
impulse responses of the macro and latent fac-
tors that jointly drive yields in their models. For
example, Piazzesi (2005) documents that
monetary-policy shocks change the slope of the
yield curve, because they affect short rates more
than long ones. Ang and Piazzesi (2003) find
that output shocks have a significant impact on
intermediate yields and curvature, while infla-
tion surprises have large effects on the level of
the entire yield curve. They also find that better
interest-rate forecasts are obtained in an affine
model in which macro factors are added to the
usual latent factors.

For estimation tractability, Ang and Piazzesi
(2003) only allow for unidirectional dynamics
in their arbitrage-free model, specifically,
macro variables help determine yields but not
the reverse. Diebold et al. (2005b) consider a
general bidirectional characterization of the dy-
namic interactions and find that the causality
from the macroeconomy to yields is indeed
significantly stronger than in the reverse direc-
tion but that interactions in both directions can
be important. Ang et al. (2004) also allow for
bidirectional macro-finance links but impose
the no-arbitrage restriction as well, which poses
a severe estimation challenge that is solved via
Markov chain Monte Carlo methods. The au-
thors find that the amount of yield variation that
can be attributed to macro factors depends on
whether or not the system allows for bidirec-
tional linkages. When the interactions are con-
strained to be unidirectional (from macro to
yield factors), macro factors can only explain a
small portion of the variance of long yields. In
contrast, the bidirectional system attributes over
half of the variance of long yields to macro
factors.

5. How Useful Are No-Arbitrage Modeling
Restrictions ?—The assumption of no arbitrage
ensures that, after accounting for risk, the dy-
namic evolution of yields over time is consistent
with the cross-sectional shape of the yield curve
at any point in time. This consistency condition
is likely to hold, given the existence of deep and
well-organized bond markets. However, if the
underlying factor model is misspecified, such
restrictions may actually degrade empirical per-
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formance. (Of course, the ultimate goal is a
model that is both internally consistent and cor-
rectly specified.) Ang and Piazzesi (2003)
present some empirical evidence favorable to
imposing no-arbitrage restrictions because of
improved forecasting performance. As dis-
cussed below, this issue is worthy of further
investigation.

6. What Is the Appropriate Specification of
Term Premiums?—With risk-neutral investors,
yields are equal to the average value of expected
future short rates (up to Jensen’s inequality
terms), and there are no expected excess returns
on bonds. In this setting, the expectations hy-
pothesis, which is still a mainstay of much
casual and formal macroeconomic analysis, is
valid. However, it seems likely that bonds,
which provide an uncertain return, are owned
by the same investors who also demand a large
equity premium as compensation for holding
risky stocks. Furthermore, as suggested by
many statistical tests in the literature, these risk
premiums on nominal bonds appear to vary over
time, contradicting the assumption of risk-
neutrality. To model these premiums, Ang and
Piazzesi (2003) and Rudebusch and Wu
(20044, b) specify time-varying “prices of risk,”
which translate a unit of factor volatility into a
term premium. This time variation is modeled
using business-cycle indicators such as the
slope of the yield curve or measures of real
activity. However, Diebold et al. (2005b) sug-
gest that the importance of the statistical devi-
ations from the expectations hypothesis may
depend on the application.

II. Example: An Affine Interpretation of
Nelson-Siegel

In this section, we develop a new example to
illustrate several of the above issues, particu-
larly the construction of yield-curve factors and
the imposition of the no-arbitrage restrictions.
By showing how to impose no-arbitrage restric-
tions in a Nelson-Siegel representation of the
yield curve, we outline a methodology to judge
these restrictions. The Nelson-Siegel model is a
popular model that performs well in forecasting
applications, so it would be interesting to compare
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its accuracy with and without these restrictions
(a subject of our ongoing research).

The two-factor Nelson-Siegel model speci-
fies the yield on a 7-period bond as

() W= at b,
where X, is a two-dimensional vector of latent

factors (or state variables) and the yield coeffi-
cients depend only on the time to maturity 7

2) =0
1 —exp(—k7)|"
NS _ 4
3) b = [l T .

The two coefficients in b give the loadings of
yields on the two factors. The first loading is
unity, so the first factor operates as a level
shifter and affects yields of all maturities one-
for-one. The second loading goes to 1 as 7 — 0
and goes to zero as T — o (assuming k > 0), so
the second factor mainly affects short maturities
and, hence, the slope. Furthermore, as maturity
T goes to zero, the yield in equation (1) ap-
proaches the instantaneous short rate of interest,
denoted r,, and since the second component of
b goes to 1, the short rate is just the sum of
the two factors,

) ro=x+x;

and is latent as well. Finally, as in Diebold and
Li (2005), we augment the cross-sectional equa-
tion (1) with factor dynamics; specifically, both
components of x, are independent AR(1)’s:

() X; =pn; t Pixj—l + viS;

with Gaussian errors 8;', i = 1, 2. Therefore, the
complete Nelson-Siegel dynamic representa-
tion, (1), (2), (3), (5), has seven free parameters:
k, i, p1s U1, Mo, pa, and v,.

Consider now the two-factor affine no-
arbitrage term-structure model. This model
starts from the linear short-rate equation (4);
however, rather than postulating a particular
functional form for the factor loadings as above,
the loadings are derived from the short-rate
equation (4) and the factor dynamics (5) under
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the assumption of an absence of arbitrage op-
portunities. In particular, if there are risk-neutral
investors, they are indifferent between buying a
long bond that pays off $1 after 7 periods and an
investment that rolls over cash at the short rate
during those 7 periods and has an expected
payoff of $1. Thus, risk-neutral investors would
engage in arbitrage until the m-period bond price
equals the expected roll-over amount, so the
yield on a T-period bond will equal the expected
average future short rate over the 7 periods
(plus a Jensen’s inequality term). Risk-averse
investors will need additional compensation for
holding risky positions, but the same reason-
ing applies after correcting for risk premiums.
Therefore, to make the Nelson-Siegel model
internally consistent under the assumption of
no-arbitrage, yields computed from expected
average future short rates using (4) with the
factor dynamics (5) must be consistent with
the cross-sectional specification in equations
(1)-3).

To enforce this no-arbitrage internal consis-
tency, we switch to continuous time and fix the
sampling frequency so that the interval [t — 1, 7]
covers, say, one month. The continuous-time
AR(1) process corresponding to (5) is

(6) dx! = k;(0; — x})dt + 0.dB!

where k;, 0, and o, are constants and B’ is a
Brownian motion (which means that dB' is
normally distributed with mean zero and vari-
ance dt). (In continuous time, the Nelson-
Siegel has seven parameters: k, k;, 0, oy,
K,, 0,, and o,.)

We first consider the model with risk-neutral
investors, which consists of the linear short-rate
equation (4) and the factor dynamics (6), and
has six parameters: k;, 0,, 0, K,, 6,, and o5.
Investors engage in arbitrage until the time-t
price P{™ of the t-bond is given by

t+T
@) Pﬁ” = E,| exp —j rds
t

This expectation can be computed by hand,
since the short rate is the sum of two Gaussian
AR(1)’s and is thus normally distributed. (An
appendix available from the authors upon re-
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quest details these calculations.) The resulting
T-period yield is

log P”
T

(8) ¥ =

al® + b - x,

with the no-arbitrage factor loadings given by

®

1 —exp(—k,7)

NA _
b =

1— exp(—Kﬂ)}T

KT KT

The equations (4), (6), (8), and (9) constitute
a canonical affine term-structure specification
with two Gaussian factors. Intuitively, in the
risk-neutral world, where yields are based only
on expected future short rates, the cross-
sectional factor-loading coefficients bX* are re-
stricted to be functions of the time series pa-
rameters k, and k,. The constant aX** absorbs
any Jensen’s inequality terms. In general, the
Nelson-Siegel representation does not impose
this dynamic consistency restriction because the
loadings bY® are not related to the time-series
parameters from the AR(1). However, the no-
arbitrage restriction can be applied to the
Nelson-Siegel model under two conditions.
First, let k, go to zero and set k, = k, since for
these parameter values, bfA = bfs. Second, it
will have to be case that the constant aX*, which
embeds the Jensen’s inequality terms, is close
to zero for reasonable parameter values (i.e.,
a® ~ gN% = 0). (As a rule, macroeconomists
often ignore Jensen’s terms; however, with near-
random-walk components in the short-rate pro-
cess as k; goes to zero, the Jensen’s terms may
be large, especially for long maturities 7.)

Now consider the more general case of no-
arbitrage with risk-averse investors. To accom-
modate departures from risk-neutrality, we
parametrize the risk premiums used to adjust
expectations. For example, suppose the pricing
kernel solves

dm,

= —rdt — \dB' — \’dB?

t
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where
= A+ A

and A{), A} are constants. The variables A are the
prices of risk for each Brownian motion and are
affine functions of the factors and so vary over
time. The no-arbitrage factor loadings are given
by

(10)
A [1 —exp(—«ki1) 1 —exp(—«kin]"
b7" = * *
KT K,T
where

k¥= Kk, + o\l
This two-factor Gaussian model has 10 param-
eters: Ao, A1, A3, AL, k,, 0,, 0, K5, 0,, and 0.
Now it is possible to pick the slope parameters,

i, so that the loadings, bY*, equal the Nelson-
Siegel loadings, bN°. The values for A} that
meet this condition are obtained by setting k7 =
0 and k%5 = k, and these imply that

K
| — -
)\1__
]
k— k
2
2 _
AT =
(%}

The constant terms in the market prices of risk
are unrestricted, so we can set Ay = A = 0.
Again, it will have to be case that the Jensen’s
inequality terms should be close to zero, so

A N
at ~ NS = 0.

III. The Future

The macro-finance term-structure literature is
in its infancy with many unresolved but prom-
ising issues to explore. For example, as sug-
gested above, the appropriate specification for
the time-series forecasting of bond yields is an
exciting area for additional research, especially
in a global context (Diebold et al., 2005a). In
addition, the goal of an estimated no-arbitrage
macro-finance model specified in terms of
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underlying preference and technology parame-
ters (so the asset-pricing kernel is consistent with
the macrodynamics) remains a major challenge.
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