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Fault Estimation and Monitoring with
Multi-Sensor Data Fusion: An Unscented
Kalman Filter Approach

Abstract— In this paper, an unscented Kalman filter (UKF)

is proposed in an integrated design frameworks to utilize

multi-sensor data fusion techniques for process fault mon-

itoring. The multi-sensor data fusion (MSDF) technique is

presented by frameworks of centralized and decentralized

architectures. A set of simulation studies has been conducted

to demonstrate the performance of the proposed scheme on

quadruple tank system (QTS) and industrial utility boiler

(IUB). It is established that the decentralized integrated

framework retrieves more effectively the critical information

about presence or absence of a fault from the dynamic
model with minimum time delay and provides accurate
unfolding-in-time of the finer details of the fault as compared
to the centralized integrated framework, thus completing
the overall picture of fault monitoring of the system under
test. Experimental results on QTS and IUB, show that the
proposed method is able to correctly identify various faults
even when the dynamics of the systems are large.

Index Terms— Fault monitoring, fault estimation, unscented
Kalman filter, integrated design framework, multi-sensor
data fusion, quadruple tank system, industrial utility boiler.

NOMENCLATURE

Table I shows the variables used in the paper.

I. INTRODUCTION

HE problem of fault monitoring has always been

an area of much importance for the research depart-
ments in the industries. And this importance become more
prioritized when we are dealing with the non-linear sys-
tems. Monitoring of uncommon behavior of the plants
and detecting the unprecedented changes in system are
the essential steps to maintain the health of the system,
followed by covering the removal of faulty components,
replacement with the better ones, restructuring system ar-
chitecture, and thus improving the overall system reli-
ability. However, with the increasing complexity of the
modern nonlinear systems, process engineers are facing
tough challenges to understand and trouble-shoot possible
system problems [1]. Further recent applications are found
in [2]-[8]. Therefore due to the large system structure,
highly efficient fault monitoring methods have become a
valuable asset for the life of the systems.
Failures can be classified as sudden or incipient. Sudden

TABLE I
NOMENCLATURE
Symbols Function
T mean
Py covariance
2L +1 Sigma vectors in UKF
QTS acronym for quadruple tank System
1UB acronym for industrial utility boiler
UT acronym for Unscented transformation
« Spread of the sigma points around x

K Secondary scaling parameter

X random variable (dimension L)

B incorporate prior knowledge of the dstrb. of x
A Composite scaling parameter

L Dimension of the augmented state

R Process-noise covariance

R™ Measurement-noise covariance
Wi weights
Wk Stationary process with identity state transition matrix
Tk Noise
dg desired output
Wi non-linear observation
Re constant diagonal matrix

ARLS forgetting factor
h; Level of water in tank 4 in QTS
a; Area of water flowing out from tank ¢ in QTS
A; Area of tank 7
Y1 tank 1 and tank 4 water diverting ration in QTS
Y2 tank 2 and tank 3 water diverting ration in QTS
k1 Gain of Pump 1 in QTS
ko Gain of Pump 2 in QTS
V1 Manipulated input 1 (pump 1) in QTS
2 Manipulated input 2 (pump 2) in QTS
g Gravitational constant in QTS

Aleakl Leak in pipe of tank 1 in QTS

Aleak2 Leak in pipe of tank 2 in QTS

Aleak3 Leak in pipe of tank 3 in QTS

Aleak4 Leak in pipe of tank 4 in QTS
Qin inflow in QTS

Gout outflow in QTS

ul feed water flow rate (kg/s) in IUB
ug fuel flow rate (kg/s) in IUB
us at temperator spray flow rate (kg/s) in IUB
Y1 drum level (m) in ITUB
Y2 drum pressure kPa in IUB
Y3 steam temperature C° in TUB
T2 Upstream pressure in [UB

Pheader Downstream pressure in [lUB
T fluid density of the system in IUB
Vr Total volume of the system in IUB

a blast occurs, the impact can be felt everywhere in the

vicinity. However, incipient or gradual failures are diffi-

failures are often the simplest form to diagnose since they

cult to detect since they manifest themselves as a slow

usually have a dramatic impact on performance, which

degradation in performance which can only be detected

can be detected at a number of downstream sensors. When

over time. The techniques which are based on identifying
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a model and using performance or error metrics to detect
failure will find it difficult to identify a failure which oc-
curs at a rate slower (often, much slower) than the model
drifts under normal conditions. It should be noted here
that there is another class of failure which has largely been
ignored in the fault detection literature is a ‘pre-existing’
failure. This is because a model of correct operation is
impossible to identify simply by looking at a unit after it
has already failed, and so most practical fault detection
techniques are simply inapplicable to this type of fault.
Some recent papers on the same or similar topic have been
published in [9]-[13] where modified Kalman filters have
been used for various applications such as green house
climate control, chaos systems, estimation problems etc.
Most recent approaches for fault monitoring and detection
can be found in [14]-[17].

In this paper, a UKF has been proposed in an integrated
design framework to utilize MSDF techniques for process
fault monitoring, thus completing a picture of a new au-
tomated fault detection and diagnosis system based on an
enhanced UKF estimator. The proposed methodology uti-
lizes a MSDF technique to enhance the accuracy and reli-
ability of parametric estimation in the process fault detec-
tion. This technique seeks to combine data from multiple
sensors and related information to achieve improved accu-
racies and more specific inferences. The technique encap-
sulates the UKF in centralized and decentralized architec-
tures for MSDF promoting to an improved fault monitor-
ing. The extended Kalman filter (EKF) based centralized
and decentralized fault monitoring MSDF was originally
proposed for a continuous time stirred tank reactor prob-
lem in [18] . We use a similar approach where a UKF
is used to detect the presence or absence of a fault. The
proposed scheme has then been successfully evaluated on
a QTS and an ITUB, thus corroborating the theory under-
pinning it.

The paper is organized as follows: in Section II the related
work is presented. Problem formulation is presented in
Section III. In Section IV, first, the UKF has been pre-
sented, then the integration of the UKF with centralized
and decentralized architectures of MSDF has been pre-
sented, followed by the evaluation of the proposed scheme
in section V. Section VI presents the simulation results
for the technique implemented. Finally some concluding
remarks are given in Section VII.

II. RELATED WORKS

This section contains the related work which has been
conducted in this area of performance monitoring of
plants: model based schemes for fault detection, model-
free schemes for fault detection, and probabilistic models
with fault detection.

II.A. Model-Based Schemes

The model-based approach is popular for developing
fault detection and isolation (FDI) techniques [19]. It

mainly consists of two stages [20]. The first one is to
generate residuals by computing the difference between
the measured output from the system and the estimated
output obtained from the state system estimator used (e.g
Kalman Filter). Any departure from zero of the residuals
indicates a fault has likely occurred [21]. However, these
methods are developed mainly for linear systems assum-
ing that a precise mathematical model of the system is
available. This assumption, however, may be difficult to
satisfy in practice, especially as engineering systems in
general are nonlinear and are becoming more complex
[22]. [23] has done a work of integration of industrial
system techniques with the development of model-based
adaptive control charts for quality monitoring.

I1.B. Model-Free Schemes

For model-free approaches, only the availability of a large
amount of historical process data is assumed. There are
different ways in which this data can be transformed and
presented as a-priori knowledge to a diagnostic system.
This is known as the feature extraction process from the
process history data, and it is done to facilitate later di-
agnosis [24]. This extraction process can proceed mainly
as either a quantitative or a qualitative feature extraction
process. Quantitative feature extraction can be either
statistical or non-statistical. Model-Free techniques such
as neural networks, fuzzy logic and genetic algorithms
are used to develop models for FDI techniques. These
models not only can represent a wide class of nonlinear
systems with arbitrary accuracy, they can also be trained
from data. Among these techniques, neural networks are
well recognized for their ability to approximate nonlinear
functions and for their learning ability [25]. For these
reasons, they have been used as models to generate
residuals for fault detection [26]-[30]. However, it is very
difficult to isolate faults with these networks as they are
black boxes in nature. Further, it is also desirable that
fault diagnostic system should be able to incorporate the
experience of the operators [31]. Fuzzy reasoning allows
symbolic generalization of numerical data by fuzzy rules
and supports the direct integration of the experience of the
operators in the decision making process of FDI in order
to achieve more reliable fault diagnosis [32]-[33]. A rule-
based expert system for fault diagnosis in a cracker unit is
described in [34]. Optimization algorithms such as genetic
algorithm and particle swarm optimization that simulate
biological processes to solve search and optimization
problems are also implemented to have a better pictorial
view of fault detection and even classification.

I1.C. Probabilistic Schemes

Bayesian belief networks provide a probabilistic approach
to consider cause-and-effect relation between process
variables. There have been a few attempts to apply
Bayesian belief networks for fault detection and diagno-
sis. [35] has worked in probabilistic sensor fault detection
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and identification. [36] proposed an approach to present
a Bayesian belief networks model in the form of a set of
nonlinear equations and constraints that should be solved
for the unknown probabilities. As an inference tool, [37]
used genetic algorithm for fault diagnosis in a Bayesian
belief networks representing a fluid catalytic cracking
process. [38] used the learning capability of Bayesian
belief networks to use process data in an adaptable
fault diagnosis strategy. Bayesian belief networks are
also used to perform fault detection and diagnosis for
discrete events like walking [39] and [40]. Probabilistic
approach with application to bearing fault-detection is
also implemented in [41].

To express the problem statement, fault is an undesirable
factor in any process control industry. It affects the ef-
ficiency of the system operation and reduces economic
benefits to the industry. The early detection and diagno-
sis of faults in mission critical systems becomes highly
crucial for preventing failure of equipment, loss of pro-
ductivity and profits, management of assets, reduction of
shutdowns.

III. PROBLEM FORMULATION

To have an effective fault diagnosis approach of highly
nonlinear systems, we have assumed various faults in
the system which have been successfully monitored and
estimated through the encapsulation of the UKF in various
architectures of multi-data fusion technique. Fig. 1 shows
the proposed scheme has been introduced here by show-
ing the implementation plan of fault monitoring using
UKEF. Assume that a process is monitored by /N different
sensors, described by the following general nonlinear
process and measurement models in discrete time state-
space framework:

zk) = flz(k—1),u(k—1),d(k—1))+wk—1)
zi = hi(z(k)+vi(k); i=1,..,N (1

where f(.) and h;(.) are the known nonlinear func-
tions, representing the state transition model and the
measurement model, respectively. z(k) € R, is the
process state-vector, u(k) € R, denotes the manipulated
process variables, d(k) € R, represents the process
faults modeled by the process disturbances, z;(k) € R, _,
are the measured variables obtained from the N installed
sensors, w(k) and v;(k) indicate the stochastic process
and measurement disturbances modeled by zero-mean
white Gaussian noises with covariance matrices (k) and
R;(k), respectively.

III.A. Discrete time UKF

In most practical applications of interest, the process
and/or measurement dynamic models are described by
nonlinear equations, represented in the system (1). This
means that the non-linear behavior can affect the process
operation at least through its own process dynamics

or measurement equation. In such cases, the standard

Kalman filter algorithm is often unsuitable to estimate

the process states using its linearized time-invariant state-

space model at the desired process nominal operating

point. UKF gives a simple and effective remedy to over-

come such nonlinear estimation problem. Its basic idea

is to locally linearize the nonlinear functions, described

by system (1), at each sampling time instant around the

most recent process condition estimate. This allows the

Kalman filter to be applied to the following linearized

time varying model:

z(k) = A(k)x(k—1)+ By(k)u(k — 1) + Bq(k)
d(k — 1) +w(k — 1)
zi(k) = Hik)x(k)+wvi(k); i=1,.,N )

where the state transition matrix A(k), the input matrices

B, (k) and By(k), and the observation matrix H;(k) are

the jacobian matrices which are evaluated at the most

recent process operating condition in real-time rather than

the process fixed nominal values:

A(k) = %@(k) )
Bu(k) = gj‘ib(k) “)
Balt) = Pl ©)
Hi(k) = %w), i=1,..,10 (6

In classical control, disturbance variables d(k) are treated

as known inputs with distinct entry in the process state-

space model. This distinction between state and distur-

bance as non-manipulated variables, however, is not jus-

tified from the monitoring perspective using the estima-
tion procedure. Therefore, a new augmented state variable
vector z*(k) = [dT (k) «T(k)]T is developed by con-
sidering the process disturbances or faults as additional
state variables. To implement this view, the process faults
are assumed to be random state variables governed by the
following stochastic auto-regressive (AR) model equation:

d(k) = d(k—1)+wa(k—1) %)

This assumption changes the linearized model formula-
tions in system (2) to the following augmented state-space
model:

(k) = A*(k)z*(k—1)+ B*(k)u(k — 1)+
w*(k—1)
zi(k) = Hj(k)z*(k)+wvi(k); i=1,..,N (8
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Fig. 1. Implementation plan for the evaluation of the UKF-based proposed scheme

Noting that:

. Indxnd Ond><nx

A (k) Bd(k‘)nrxnd Akn,Xn, (9)

B*(k) = [omoxme B,(k)ymxm 1T (10)

Hi(k) = [0 Hi(k)xn= | (11)
[

wa(k — 1)t w(k — 1)next 7
(12)
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Assumption 3.1: There exists a known positive constant

Lo such that for any norm bounded z1(t),z2(t) € R”",

the following inequality holds:

If(u(k),y(k),z1(k)) — f(ulk), y(k), z2(k))||

< Lollz1(k) — 22(k)|| (13)
Assumption 3.2: C[sI — (A — KC)]™'B is strictly pos-
itive real, where K € R™*" is chosen such that A — KC
is stable.
Remark 3.1: For a given positive definite matrix Q) > 0
€ R™ " there exists matrices P = PT > (0 € R"*™ and
a scalar R such that:

(A-KC)'P+P(A—-KO)
PB

-Q
CTR

(14)
15)
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to detect the fault, the following is constructed:

w(k) = Az(k)+g(u(k),y(k) + BEu f(u(k), y(k),
&(k)) + K(y(k) — g(k)) (16)
g(k) = Ci(k) (17)

where (k) € R™ is the state estimate, the input is u
€ R™, and the output is y € R". The pair (4,C) is
observable. The non-linear term g(u(k),y(k)) depends
on u(k) and y(k) which are directly available. The
f(u(k),y(k),xz(k)) € R" is a nonlinear vector function
of u(k), y(k) and x(k). The £(k) € R is a parameter
which changes unexpectedly when a fault occurs. Since
it has been assumed that the pair (A, C') is observable,
a gain matrix K can be selected such that A — KC' is a
stable matrix. We define:

ex(k) = a(t) —a(k), ey(k)=y(k)—g(k)(18)
Then, the error equations can be given by:

ex(k+1) = (A= KC)eg(k)+ BIE(k)f (u(k), y(k),

w(k)) = &u f(u(k),y(k),2(K))],  (19)

ey(k) = Ceu(k) (20)

The convergence of the above filter is guaranteed by the
following theorem:

Theorem 3.1: Under the assumption (3.2), the filter
is asymptotically convergent when no fault occurs

Proof: Consider the following Lyapunov function

Vie(k)) = eg(k)Pes(k)

2

where P is given by the system (14), ) is chosen such
that p1 = Apin(Q) — 2||C||.|R|€x Lo > 0 Along the tra-
jectory of the fault-free system (19), the corresponding
Lyapunov difference along the trajectories e(k) is:

AV = E{V(e(k+1)lex,pr)} — V(e(k))
E{eT(k+1)Pe(k+ 1)} — eT (k) Pie(k)
= (Aee, + BLue)TP(Aeex + Brue)
— el (k)Pe,(k)
= eT(k)[(P(A-KC)+ (A-KC)T'P)
+  PB&ulf(u(k),y(k), z(k))
= [fulk), y(k), &(k))lle(k)

From (3.1) and system (14), one can further obtain that

AV < —ep (k)Qeq(t) + 2lley (K)I|.|RIEm Lollea () |
< *mllexll <0 (23)

(22)

Thus, limg_ooey (k) = 0 and limy_o0e, (k) = 0. This
completes the proof. [ ]
The UKF essentially addresses the approximation issues
of the extended Kalman filter (EKF) [42]-[44]. The basic
difference between the EKF and UKF stems from the
manner in which Gaussian random variables (GRV) is

presented through system dynamics. In the EKF, the
state distribution is approximated by GRYV, which is then
propagated analytically though the first-order linearization
of the non-linear system. This can introduce large errors
in the true posterior mean covariance of the transformed
GRYV, which may lead to sub-optimal performance and
sometimes divergence of the filter. The UKF addresses
this problem by using a deterministic sampling approach.
The state distribution is again approximated by a GRV, but
is now represented using a minimal set of carefully chosen
sample points. These sample points completely capture
the true mean and covariance of the GRYV, and when
propagated through the ¢rue non-linear system, capture
the posterior mean and covariance accurately to second
order (Taylor series expansion) for any nonlinearity. The
EKF, in contrast, only achieves first-order accuracy (See
remark 3.3 for details).

1I1.B. Unscented Transformation (UT)

The structure of the UKF is elaborated by UT for calcu-
lating the statistics of a random variable which undergoes
a nonlinear transformation [44]. Consider propagating a
random variable x (dimension L) through a nonlinear
function, y = f(z). Assume x has mean Z and covariance
P.. To calculate the statistics of y, we form a matrix X
of 2L + 1 sigma vectors X according to:

X, = 1,
X, = z+(/(L+MNPy);, i=1,...L
X, = z2—(/(L+MNP,);—L, i=L+1,..,2L

(24)

where A = o?(L + k) — L is a scaling parameter. The
constant « determines the spread of the sigma points
around Z, and is usually set to a small positive value
(1 < a < 107%). The constant x is a secondary scaling
parameter, which is usually set to 3 — L, and ( is
used to incorporate prior knowledge of the distribution
of x (for Gaussian distributions, 5 = 2) is optimal).
(v (L+ A)Py); is the ith column of the matrix square
root (that is, lower-triangular Cholesky factorization).
These sigma vectors are propagated through the nonlinear
function Y; = f(&;),i = 0,...,2L. Now the mean
and covariance for y are approximated using a weighted
sample mean and covariance of the posterior sigma points:

2L
> Wiy,
=0

2L
Z Wi —9)Vi—9)",
=0

A

W(m) —
0 L+ )\

A

oy tl-a’+ B,

W(C) —
0 L+ A
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1

(m)
w! -
2(L+ )

i = WZ(C) = ’Z. = 17 ....,2L.

A block diagram illustrating the steps in performing the
UT is shown in Fig. 1.

Remark 3.2: Note that this method differs substantially
from general Monte Carlo sampling methods which re-
quire orders of magnitude more sample points in an
attempt to propagate an accurate (possibly non-Gaussian)
distribution of the state. The deceptively simple approach
taken with the UT results in approximations that are
accurate to the third order for Gaussian inputs for all
nonlinearities. For non-Gaussian inputs, approximations
are accurate to at least the second order, with the ac-
curacy of the third- and higher order moments being
determined by the choice of o and f.

II1.C. Extension to UT: The UKF

In view of the foregoing, the UKF is an extension of the
UT to the following recursive estimation:

Tk = Thyreaicrion T 5k Wk = Ykpreaicrion) (25
where the state random variables (RV) is redefined as the
concentration of the original state and noise variables:
¢ = [z} ol nt]T. The UT sigma point selection
scheme is then applied to this new augmented state RV
to calculate the corresponding sigma matrix, X}’. The
UKF equations are given below. Note that no explicit
calculations of Jacobian or Hessians are necessary to

implement this algorithm. Initialize with :

f() = E[.To],
Py = E[(zo — &o)(zo0 — £0)"],
¢ = E[z% =z o oT. (26)
For k € [1,....,00], calculate the sigma points as:
X =13 o+ Py 2o — vy Bl
(27)
The UKF time-update equations are:
X/ﬁk—l = F(X1, uk—1, XY ),
2L
T, = ZWimXigfk\kflv
i=0
2L
b = Z W (X o — 3 (X — )7,
i=0
Vik—1 = H(X 1, A1),

2L
I = D WVikk (28)
=0

6
The UKF measurement-update equations are:
2L
Py = > WEimp-1 — 95) Vigp-r — 3)"
i=0
2L
Popy, = ZWic(Xi,k\kfl — &) Vikpe—1 — 9)"
i=0
ke = szykqu,:lgkv
= 2 +re(ye — 5 ),
Pi = Py = rxPygsy (29)
where
¢ = [xT UT HT}T,
xXe = [(Xx)T (XU)T (X”)T]T,and
vy = VL+X (30)

In addition, A is the composite scaling parameter, L is the
dimension of the augmented state, R” is the process-noise
covariance, R™ is the measurement-noise covariance, and
W, are the weights.

The time-update equations are:

Xi|k71 = E(G-1ue—1,X5-1),
2L
= ZWimXiz,k\k—lv
i=0
2L
P = ZWiC(XiI,kUcfl - j;:)(Xf,k\kﬂ - i;)T»
i=0
2L
Yie-1 = BOGr_1Xi-1): I :ZWimXka@l)
i=0

The measurement-update equations are:

2L
Py.g, = Z Wi (Yik—1 — 0 ) Vi1 — 95) "
i=0
2L
Prye = Y Weuinkik—1 — 25) Yigp-1 — ;)7
i=0
K = Pwkykpzj,jlgk’ T = i‘]: + Hk(yk - Q;),
Pe = Py — Pyt (32)
where ¢ = [#t ot Rt x® =
(™) ) (M

v = VL 4+ A. In addition, A is the composite scaling
parameter, L is the dimension of the augmented
state, ¥ is the process-noise covariance, R™ is the
measurement-noise covariance, and W; are the weights.

III.D. UKF parameter estimation

Parameter estimation involves learning a nonlinear map-
ping y,, = G(xj,w), where w corresponds to the set of
known parameters [44]. G(.) may be a neural network or
another parameterized function. The EKF may be used
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to estimate the parameters by writing a new state-space
representation

(33)
(34)

Wi + 'y
G(:v;“wk) + ex

Wit1 =
d, =

where w;, corresponds to a stationary process with iden-
tity state transition matrix, driven by noise ry. The desired
output dj corresponds to a non-linear observation on wy,.
From the optimized perspective, the following prediction
error cost is minimized:
k
J(w) = Z[dt — G(x¢, W)]T(R®)Hd; — XG (4, w)]
i=1

(35)
Thus, if the noise covariance R® is a constant diagonal
matrix, then, in fact, it cancels out of the algorithm,
and hence can be set arbitrarily(e.g., R® = 0.5I). Al-
ternatively, R® can be set to specify a weighted MSE
cost. The innovations covariance E[ry r}] = R}, on
the other hand, affects the convergence rate and tracking
performance. Roughly speaking, the larger the covariance,
the more quickly older data is discarded. There are several
options on how to choose Rj.
e Set R}, to an arbitrary fixed diagonal value, which may
then be “annealed” towards zero as training continues.
e Set Rj=(\z; ¢ — 1)P,,, where Arrs € (0,1] is often
referred to as the “forgetting factor”. This provides for
an approximate exponentially decaying weighting on past
data. Note that A\py s should not be confused with A\ used
for sigma-point calculation.
o Set

R; = (1 — aRM)Rfil + OéRMK}:[dk — G(Xk,W)]
X [y — G(xg, W)]T (K})T

which is a Robbins-Monro stochastic approximation
scheme for estimating the innovations. The method as-
sumes that the covariance of the Kalman update model is
consistent with the actual update model. Typically, R}, is
also constrained to be a diagonal matrix, which implies
an independence assumption on the parameters. Note that
a similar update may also be used for R},.

Remark 3.3: Consider a state-space model given by:

f(Xt - ].) + ¢, X € R™ (36)
g(x¢) +v, yreRP (37)

X¢ =
yr =

Here, the system noise ¢ ~ N (0, X.) and the measurement
noise v ~ N(0, %,) noise are both Gaussian.

The EKF linearizes f and g at the current estimate of X;
and treats the system as a non-stationary linear system
even though it is not. The UKF propagates several
estimates of x; through [ and g and reconstructs a
Gaussian distribution assuming the propagated values
came from a linear system. Moreover, in non-linear
processes, when we are using EKF, the pdf is propagated
through a linear approximation of the system around
the operating point at each time instant. In doing so,

the EKF needs the Jacobian matrices which may be
difficult to obtain for higher order systems, especially
in the case of time-critical applications. Further, the
linear approximation of the system at a given time
instant may introduce errors in the state which may
lead the state to diverge over time. In other words, the
linear approximation may not be appropriate for some
systems. Also in EKF algorithm, during the time-update
(prediction) step, the mean is propagated through the
nonlinear function, in other words, this introduces an
error since in general § # g(X). Whereas, in case of the
UKF, during the time-update step, all the sigma points
are propagated through the nonlinear function which
makes the UKF a better and more effective nonlinear
approximator. The UKF principle is simple and easy
to implement as it does not require the calculation of
Jacobian at each time step. The UKF is accurate up to
second order moments in the pdf propagation where as
the EKF is accurate up to first order moment [45].

IV. IMPROVED MSDF TECHNIQUE

MSDF method has received major attention for various
industrial applications. MSDF can be done at a variety of
levels from the raw data or observation level to the fea-
ture/state vector level and the decision level. This idea can
lead to utilization of different possible configurations or
architectures to integrate the data from disparate sensors
in an industrial plant to extract the desired monitoring
information. Using Kalman filtering as the data fusion
algorithm, multiple sensors can be integrated in two
key architecture scenarios called centralized method and
decentralized or distributed method. These methods have
been widely studied over the last decade [46] and [47].

IVA.L. Centralized integration method

In centralized integration method, all the raw data from
different sensors is sent to single location to be fused. This
architecture is sometimes called as measurement fusion
integration method [46] and [47], in which observations
or sensor measurements are directly fuses to obtain a
global or combined measurement data matrix H T Then,
it uses a single Kalman filter to estimate the global state
vector based upon the fused measurement. Although this
conventional method provides high fusion accuracy to the
estimation problem, the large number of states may re-
quire high processing data rates that cannot be maintained
in practical real time applications. Another disadvantage
of this method is the lack of robustness in case of failure
in sensor or central filter itself. For these reasons, parallel
structures can often provide improved failure detection
and correction, enhance redundancy management, and
decreased costs for multi-sensor system integration. This
method integrates the sensor measurement information as
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follows:
2(k) = [a(k) ... 2n(k)]T (38)
H(k) = [Hy(k)... Hy(k)" (39)
R(k) = diag[Ry(k) ... Rn(k)] (40)

where R;(k) is the covariance matrix.

IV.AIl. Decentralized integration method

As such, there has recently been considerable interest
shown in distributed integration method in which the
filtering process is divided between some local Kalman
filters working in parallel to obtain individual sensor-
based state estimates and one master filter combining
these local estimates to yield an improved global state
estimate. This architecture is sometimes called as state-
vector fusion integration method [46] and [47]. The
advantages of this method are higher robustness due
to parallel implementation of fusion nodes and lower
computation load and communication cost at each fusion
node. It is also applicable in modular systems where dif-
ferent process sensors can be provided as separate units.
On the other hand, distributed fusion is conceptually a lot
more complex and is likely to require higher bandwidth
compared with centralized fusion. This method integrates
the sensor measurement information as follows:

N N

2(k) = [ZRf(k)rlZR;l(k)zj(k) (41)
"y "y

H(k) = [ZRJ»‘l(k)]*ZR‘;l(k)Hj(k) 42)
j;l Jj=1

R(k) = [ZRf(k)]*l 43)

where R;(k) is the covariance matrix.
In this paper, the architectures are being implemented
using UKF as shown in Fig. 2 and Fig. 3 respectively.

V. EVALUATION OF THE PROPOSED SCHEME

The evaluation of the proposed scheme has been made on
the following systems:

e A QTS, and

e An IUB.

The following sections show the detailed implementation
and simulation of the proposed scheme.

V.A. A QTS model

The process is called as QTS and consists of four inter-
connected water tanks and two pumps. Its manipulated
variables are voltages to the pumps and the controlled
variables are the water levels in the two lower tanks.
The QTS presents a multi-input-multi-output system. This
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system is a real-life control problem prototyped to exper-
iment on, and try to solve in the most efficient way, since
it deals with multiple variables, thus it gives a reflection
for the large systems in industry such as petro-chemical
plants, waste water treatment plants, liquid level systems
etc.

The schematic description of the QTS can be visualized
in Fig. 4. The system has two control inputs (pump
throughputs) which can be manipulated to control the
water level in the tanks. The two pumps are used to
transfer water from a sump into four overhead tanks. The
two tanks at the upper level drain freely into the two tanks
at the bottom level and the liquid levels in these bottom
two tanks are measured by pressure sensors. The piping
system is designed such that each pump affects the liquid
levels of both measured tanks. A portion of the flow from
one pump is directed into one of the lower level tanks and
the rest is directed to the overhead tank that drains into
the other lower level tank. By adjusting the bypass valves
of the system, the proportion of the water pumped into
different tanks can be changed to adjust the degree of
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Pump 1 Pump 2

Fig. 4. Schematic diagram of a Quadruple tank system

interaction between the pump throughputs and the water
levels. The output of each pump is split into two using
a three-way valve. Thus each pump output goes to two
tanks, one lower and another upper, diagonally opposite
and the ratio of the split up is controlled by the position
of the valve. Because of the large water distribution
load, the pumps have been supplied 12 V each. The
mathematical modeling of the quadruple tank process can
be obtained by using Bernoulli’s law [48]. The constants
are denoted in Table I. A nonlinear mathematical model
of the four-tank model is derived based on mass balances
and Bernoulli law. Mass balance for one of the tanks is:
dh
A dt
where A denotes the cross section of the tank, A, ¢;, and
Qout denote the water level, the inflow and outflow of
the tank, respectively. In order to establish a relationship
between output and height Bernoulli law is used. It states
that

(44)

4in — Gout

Gout = A/ 29h

where a is the cross section of the outlet hole (cm?) and g
is the acceleration due to gravity. A common multiplying
factor for an orifice of the type being used in this system
is coefficient of discharge k. We can therefore rewrite
Bernoulli equation as:

Gout = ak V 29h

The flow through each pump is split so that a proportion
of the total flow travels to each corresponding tank. This
can be adjusted via one of the two valves shown in Fig. 4.
Assuming that the flow generated is proportional to the
voltage applied to each pump, (change) v, and that gr
and gp are the flows going to the top and bottom tanks,
respectively, we are able to come up with the following
relationships.  gp=vkv, qr=(1 —v)kv where v €
[0, 1].

(45)

(46)

V.A.I. Fault model of QTS

Combining all the equations for the interconnected four-
tank system we obtain the physical system. A fault model
can then be constructed by adding extra holes to each
tank. The mathematical model of the faulty quadruple
tank system can be given as:

dhy aq as Y1k1 d
0 e+ % agh @
dt A, VAt g Veghs Tt o
e
1
dhs as ayq Yoka d
Pa 2 o, + 24 fagh -4
dt A, V29 eV Rgha T = op
. aleak:2\/297h2
Ay
dhs a3 (1 —2)ka
ahs 9 oo LT 2)R2
dt A, Vst T
_ aleak3\/297h3
As
dhy a4 (1 —71)ks
b AN D) A AR
dt A, V2ha T
- aleak4\/297h4
4
dVl - 1241 1
R
d 2
2o B2, 47)
dt T2 T2

Two fault scenarios are created by using the QTS in the
simulation program. In these scenarios incipient single
and multiple tank faults (i.e., leakages) are created by
changing some system parameters manually during the
simulation at certain times. The system inputs, outputs
and/or some states are corrupted by Gaussian noise with
zero mean and standard deviation of 0.1.

a) Scenario I: Leakage fault in tank 1: In this scenario,
while the system is working in real time, single incipient
fault (i.e., tank 1 leakage percentage), is created by
changing the parameter a;cq1 to 0.81 em? (i.e., the value
0.81 is 30 percent of the cross-section of the outlet hole
of the tank 1) in the QTS at 350 seconds.

b) Scenario II: Leakage fault in tank 2 and 3: In this
scenario, while the system is working in real time, multi-
ple incipient faults (i.e., tank 2 and 3 leakage percentages)
are created by changing the parameter a;cq2 to 1.62 cm?,
Qlears to 0.54 ¢m? (i.e., the value 1.62 is 60 percent of
the cross-section of the outlet holes of the tank 2, and
0.54 is 20 percent of the cross-section of the outlet holes
of the tank 3) in the QTS at 350 seconds.

V.A.Il. Implementation Structure of UKF

The general elementary implementation structure of UKF
on one of the states of the QTS can be described in Table
II where the first step is involved towards initializing the
parameters and then defining the conditions, the second
step defines the states and measurement equations of the
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TABLE II

EQUATIONS OF THE GENERAL STRUCTURE IMPLEMENTATION OF UKF

Step 1: Initializing the parameters

n = 6;
qg=0;
r =1.9;

Q=q* x eye (n); R =12

Step 2: Defining the states and measurement equation of the system
= Q@)z(1); 2(2); 2(3); x(4); (5); z(6)];

h =@ (z)z(1);

s =1[0;0;1;0;1;1];

T = s+q X randn(6,1); P = eye(n);

N

Step 3: Upgrading the estimated parameter under observation
FoRk=1:N

z1(1); z2(1); z3(1); 2a(1); 25(1); 2G(1)3

H= [z21(k); z2(k); z3(K); z4(k); 25(K); z6(K)]

z = h(s) + r X randn;

sV (G, k)y=s2V (k) =z

Then injecting the things in the following equation (function)
[z,P] = ukf (x,P, hmeas, z, Q, R, h)

Function 1: The UKF

[z, P] =ukf (z, P, hmeas, z, Q, R, h)

NOTE: For nonlinear dynamic system

Tp+1 = f (TRt wi

zr = h (xg) + Vg

INPUTS:

f: function handle for f(x), x: ‘a-priori’ state estimate

P: ‘a-priori’ estimated state covariance, h: function handle for h (x)
z: current measurement, (Q: process noise covariance

R: measurement noise covariance

OUTPUTS:

x: * a-posteriori ’ state estimate, P: ‘ a-posteriori ’ state covariance
L = numel (z);

m = numel (z);

a=1le 3k =3-L;3=2

A=a? x (L+k;-Lyc=L+\

Wm = (2 + %2 + zeros (1,2 x L))

We = Wins We(l) = We(D) + (1 - alpha® + B);

c=+/c; PL = P+ Q; X =sigmas (z, P, c);

[z1, X1, P1, X2 ] = ut ( fstate, X, Wm, We, L, Q );
Xo=X-z(:ones (1,2 x L+l ) );

[ z1, Z1, P2, Z2 | = ut ( hmeas, X, Wy, We, m, R, b );
Py = Xy x diag (W, ) x ZT};

R = chol ( P2 );

K= (5% )

K:P12 Xinv(Pg );
a::z+K><(z-z1);P:P1-K><P17;;

Function 2: UT

function [y, Y, P, Y1 | =ut ( F, X, Wi, We, n, R, h)

INPUTS:

f: nonlinear map; X: sigma points; Wp,: weights for mean

We: weights for covariance; n: number of outputs of f; R: additive covariance
OUTPUTS:

y: transformed mean; Y: transformed sampling points; P: transformed covariance
Y7 : transformed deviations

L=size( X, 2); y=zeros( n, 1); Y=zeros ( n, L ); z=[h];

FOR k=1: L

Yk =z (h);

y =y +Wn(k) x Y(k);

END

Y1 =Y-y; P=Y1 x diagWe) x YT +R;

Function 3: Sigma Points

function X = sigmas (z, P, ¢)

INPUTS:

x: reference point; P: covariance; c: coefficient

OUTPUTS:

X Sigma points; A = ¢ x chol ( PT ),

Y =z (, ones(1l, numel (z))); X = [z Y + AY - A];

n: number of states

q: standard deviation of process

r: standard deviation of measurement

Q: covariance of process, R: covariance of measurement

f: nonlinear state equations

h: measurement equation

s: defines the initial state

x: initial state with noise, P: initial state covariance
N presents the total dynamic steps

Initializing,

(measurements)
s: save actual state, z: save measurement

where three functions completing the process of UKF

returns state estimate, x and state covariance, P)
(for simplicity, noises are assumed as additive)
(where w ~ N(0, @) meaning w is Gaussian noise
with covariance Q)

(where v ~ N(0, R) meaning v is Gaussian noise
with covariance R)

(where L presents the number of states)

(where m presents the number of measurements)
(default, tunable)

(scaling factor)

(weights for means)

weights for covariance

(sigma points around x)

(UT of process)

(UT of measurements)
(transformed cross-covariance)
(where chol presents the Cholesky factorization)

(Filter gain)

(state & covariance update respectively)

Unscented Transformation

Sigma points around reference point
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Fig. 5. Schematic Diagram of an Industrial Utility Boiler [50]

system. The third step shows the estimated parameter up-
grade, which is followed by three functions completing
the process of UKF.

V.B. Utility boiler

The utility boilers in Syncrude Canada are water tube
drum boilers. Since, steam is used for generating electric-
ity and process applications, demand for steam is variable.
The control objective of the co-generation system is to
track steam demand while maintaining steam pressure
and steam temperature of the header at their respective
set-points. In the system, the principal input variables are
u1, feed water flow rate (kg/s); uq, fuel flow rate (kg/s);
and ug, attemperator spray flow rate (kg/s), the states are
x1, fluid density, xo, drum pressure, x3, water flow input,
x4, fuel flow input, x5, spray flow input. The principal
output variables are y, drum level (m); y2, drum pressure
kPa; and ys, steam temperature C° [49]. The schematic
diagram of the utility boiler can be seen in Fig. 5.

V.B.I. Steam flow dynamics

Steam flow plays an important role in the drum-boiler
dynamics. Steam flow from the drum to the header,
through the super heaters, is assumed to be a function
of the pressure drop from the drum to the header. We
use a modified form of the Bernoullis law to represent
flow versus pressure, with friction [51]. This expression

is written as:
_ /.2 2
qs = K Ty — Pheader

where ¢, is the steam mass flow rate, K is a constant,
and xo and Ppeqqer are the upstream and downstream
pressures, respectively. The constant K is chosen to
produce agreement between measured flow and pressure

(48)

drop at a reference condition. Because, for the real system
Preader= 6306(kPa), by measuring the steam flow and
drum pressure in the real system, the value of K is
identified and the steam flow in the system can be

modeled as:
qs = 0.034/ 23 — 63062

V.B.Il. Drum pressure dynamics

(49)

To model the pressure dynamics, first step identification
is done to observe the behavior of the system. By apply-
ing step inputs to the three different inputs at different
operating points, we observe for a step increase in the
feedwater and fuel flow, the system behaves like a first
order system with the same time constant. By applying a
step to spray flow input, the system behaves like a first
order system with different time constant. The dynamics
for the drum pressure is chosen as follows:

Zo = (c172 + ¢2)qs + c3ul + cqun (50)

Y2 = X2 (5D

Finally, the dynamics of the drum pressure can be mod-
eled as:

iy = (—1.8506 x 10~ "xy — 0.0024)4/x3 — (6306)2
—0.0404w; + 3.025uz (52)
y2(t) = w2(t) + po (53)

where py=8.0715, pp=-0.6449 and py=-6.8555 for low,
normal and high load, respectively. At the three oper-
ating points, the initial conditions are xg, =6523.6, x4,
=6711.5 and z, =6887.9 for low, normal and high load,
respectively.

V.B.IIl. Drum level dynamics

Identification of the water level dynamics is a difficult
task. Applying step inputs to the inputs separately, show
that the level dynamics is unstable. By increasing the
water flow rate, the level increases and by increasing the
fuel flow, the level decreases. Three inputs, water flow,
fuel flow and steam flow affect on the drum water level.
Let =1, and V7 denote the fluid density and total volume
of the system, then we have

Ul — (s

Vr

where Vp = 155.1411. By doing several experiments, it
was observed that the dynamics of the drum level can be
given by:

(54)

Ty =

Y1 = ¢5x1 + Cceqs + Crus + cguz + cg (55)

The constants c¢;,i= 5, ...,9 should be identified from the
plant data. The initial values of z; at the three operating
points are given by z;,= 678.15, x1,= 667.1, and z;,=
654.628 for low, normal and high load, respectively.



SUBMITTED

V.B.IV. Steam temperature

In the utility boiler, the steam temperature must be kept at
a certain level to avoid overheating of the super-heaters.
To identify a model for steam temperature, first step
identification is used. By applying a step to the water
flow input, steam temperature increases and the steam
temperature dynamics behaves like a fist order system.
Applying a step to the fuel flow input, the steam tem-
perature increases and the system behaves like a second
order system. Applying a step to the spray flow input,
steam temperature decreases and the system behaves like
a first order system. Then, a third order system is selected
for the steam temperature model. This step identification
gives an initial guess for local time constants and gains.
By considering steam flow as input and applying input
PRBS at the three operating points, local linear models for
the steam temperature dynamics are defined. Combining
the local linear models, the following nonlinear model
is identified for all three operating points with a good

fitness.
z3(t) = (—0.02111/95% — (6306)2 + x4 — 0.0010967u4
+0.0475u9 + 3.1846us (56)
4(t) = 0.0015\/“@% — (6306)2 + x5 + 0.001u
+0.32us — 2.9461ug 67
T5(t) = —1.278 x 10_3\/333 — (6306)2 — 0.00025831

x3 — 0.29747 x4 — 0.8787621548 x5
0.00082u1 — 0.2652778 ug + 2.491 ug  (58)
ys = z3+71p (59

where T(=443.3579, Tp=446.4321, and Ty=441.9055
for low load, normal load and high load, respectively.
At three operating points, we have x3,=42.2529,
24,=3.454, x5,=3.45082, for low load, z3,=49.0917,
24,=2.9012, 25,=2.9862, for normal load, and
23,=43.3588, x4,=—0.1347 and x5,=—0.2509 for
high load. Combining the so far achieved results, the
identified model for the utility boiler can be obtained.
In addition, the following limit constraints exist for the
three control variables:

0§u1
0

120, 0<up <7
U3§10

(60)

<
< (61)

V.B.V. Fault model for IUB

Fault model for the IUB is being developed. To construct
this model extra holes are added to each tank.The mathe-
matical model of the faulty utility boiler can be given as
follows where fault of steam pressure are there in state 4

and 5:
uy — 0.03y/x% — (6306)2

r1(t
Q) 155.1411

(62)

io(t) = (—1.8506 x 10~ 7z — 0.0024)4/22 — (6306)2
—0.0404u; + 3.025uy (63)
i3(t) = —0.0211y/23 — (6306)2 + 24 — 0.0010967u,
+0.0475uz + 3.1846u; (64)
iy(t) = 0.0015y/23 — (6306)2 + x5 — 0.001u,
+0.32uy — 2.9461us
+(ast pr)\/ 23 — (6306)2 (65)
i5(t) = —1.278 x 1073/a3 — (6306)2

—0.00025831 z3 — 0.29747 x4
—0.8787621548 x5 — 0.00082 u; — 0.2652778

+(ast pr) J?% - (6306)2

Two fault scenarios are created by using utility boiler in
the simulation program. In these scenarios steam pressure
are is added there in state 4 and 5 resulting in a more
uncontrolled non-linear system as can be seen Eqn. (65)
and Eqn. (66) respectively.

(66)

VI. SIMULATION RESULTS

What follows, we present simulation results for UKF with
centralized and decentralized multi-sensor data fusion
methods on two dynamical systems:

e QTS and

e IUB

VIA. QTS

A series of simulation runs was conducted on the
QTS to evaluate and compare the effectiveness of the
multi-sensor decentralized and centralized integration ap-
proaches based on the UKF data fusion algorithm. To
perform different set of experiment same fault scenarios
have been used as defined.

VI.A.I. QTS: UKF with centralized MSDF

The simulation results of the UKF embedded in the
centralized structure of multi-sensor data fusion technique
are depicted in Fig. 6, from which it is evident that the
centralized structure was able to estimate the fault but
there was a considerable offset in the estimation.

VIA.Il. QTS: UKF with decentralized MSDF

The simulation results of the UKF embedded in the
decentralized structure of MSDF are depicted in Fig. 7
and Fig. 8, from which it is shown that with an increasing
precision accompanied with a more detailed fault picture,
decentralized structure was able to estimate the fault in a
much better way as compared to centralized architecture.
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Fig. 10. Quadruple tank system: drift detection for the leak in tank 1

VIA.IIl. QTS: Drift detection

A fault may occur in any phase and in any part of the
plant. Critical faults not detected on time, can lead to
adverse effects. In the sequel, the drift detection of the
faults using UKEF is clarified. It is seen from Fig. 9 that
the fault is so incipient that apart from in the beginning,
the level of water is achieving the same height. Thus, drift
detection can give us a better picture for the fault scenario
as shown in Fig. 10. The kinks showing the middle of the
height achievement can alarm the engineer about some
unusual practice going on in the process.

VIL.B. IUB

For assuring the gist of UKF-based fault estimation and
monitoring, a series of experiments was also performed on
the industrial utility boiler system to evaluate and compare
the effectiveness of the multi-sensor decentralized and
centralized integration approaches based on the UKF
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data fusion algorithm. A series of simulation runs was
performed with a fault in state 4 and state 5 of the boiler
in form of the increased steam temperature.

VI.B.I. IUB: UKF-based centralized MSDF

The simulation results of the UKF embedded in the
centralized structure of MSDF technique are depicted in
Fig. 11, from which there is a considerable offset in the
estimation.

VI.B.II. IUB: UKF-based decentralized MSDF

The results of the UKF embedded in the decentralized
structure of MSDF technique can be seen in Fig. 12. The
comparison of both centralized and decentralized schemes
with the fault estimation is depicted in Fig. 13.

VIL.B.IIl. IUB: UKF-based Drift detection

In TUB, several faults may occur in any part of the boiler.
Critical faults not detected on time, can lead to adverse
effects. This section shows the drift detection of the faults
using UKF. In Fig. 14, the estimated parameter and the
fault parameter are shown from which it is seen that there
is difference between them despite of the same pattern
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turing the posterior mean and covariance accurately com-

plete the overall diagnostic picture. It has been demon-

strated that this approach can be used for a reliable detec-

tion of incipient faults, which in turn leads to an efficient

and cost-effective preventive maintenance scheme. The

major contributions of the paper is the implementation of

the integrated centralized and decentralized architectures

of multi-sensor data fusion and implemented thoroughly

on QTS and IUB to achieve both accuracy and reliability

of the fault monitoring schemes. The major contribution

of the paper is the use of UKF in the integrated design

framework of multi-sensor data fusion using centralized

and decentralized structures respectively, and comparison

M
N
251 VY ]
\Y ~’~,
N \\ 1= = centralized
. ,
. \\ = = = decentralized
oL , :
s b
~,
. s
1} RS
S~
w ool \ Sy ]
‘ ‘- -~ -
. -
.
1r “ ~ |
L
~ -~
~
~§
0.5f vs |
~N
- -~
~a
0 i i ; i i . : =
1 15 2 25 3 35 4 4.5 5

Number of Observations
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methods

they are following. By drift detection as shown in Fig.
15, we can see the prominent kinks in the profile of the
faulty parameter estimation, thus giving sufficient signs
for a necessary action.

VI.C. Mean Square error comparison

A mean square error comparison has been made for
the centralized and decentralized integration architectures
respectively for the particular tank fault estimate. It can
be seen from Fig. 16 that mean square error is reduced
in less number of iterations for the decentralized integra-
tion method as compared to the centralized integration
method.

Remark 6.1: In the simulation section, MSDF technique
with centralized and decentralized structures of UKF
is implemented on the QTS under different leakage
fault scenarios and on the IUB with uncontrolled
steam pressure fault scenario. It has been shown that
in case of both physical systems i.e. QTS and IUB,
decentralized structure showing better results than
centralized structure, followed by the drift detection
which has been made effectively showing prominent
kinks of fault. The effectiveness of the decentralized
structure in case of IUB was less as compared to QTS,
because of large fault of steam pressure introduced in
state 4 and state 5 respectively and more nonlinear
nature of the model.

VII. CONCLUSION

In this paper, a complete fault estimation and monitoring
scheme has been developed by integrating the techniques
of MSDF and centralized and decentralized architectures
for providing quality reports and ensuring reliable fault
detection and it has been made effective by using a de-
terministic sampling approach known as UKF, thus cap-

of these structures by implementing them on two physical

systems.

ACKNOWLEDGMENTS

The authors would like to thank the deanship for scientific
research (DSR) at KFUPM for research support through
project IN100018.

APPENDIX
REFERENCES

[1] Doguc, O., and Marquez, J. E., ‘An efficient fault diagnosis method
for complex system reliability’, Proc. 7th Annual Conference on
Systems Engineering Research (CSER 2009), 2009.

[2] Brambilla, D., Capisani, L. M., Ferrara, A., and Pisu, P., ‘Fault
detection for robot manipulators via second-order sliding modes’,
IEEE Trans. Ind. Electron., vol. 55(11), pp. 3954-3963, 2008.

[3] Cusido, J., Romeral, L., Ortega, J. A., Rosero, J. A., Espinosa,
A., ‘Fault detection in induction machines using power spectral
density in wavelet decomposition’, IEEE Trans. Ind. Electron.,
vol. 55(2), pp. 633-643, 2008.

[4] Arogeti, S. A., Wang, D., Low, C. B., ‘Mode identification
of hybrid systems in the presence of fault’, JEEE Trans. Ind.
Electron., vol. 57(4), pp. 1452-1467, 2010.

[5] Lezana, P., Pou, J., Meynard, T. A., Rodriguez, J., Ceballos, S., and
Richardeau, F., ‘Survey on fault operation on multi-level inverters’,
IEEE Trans. Ind. Electron., vol. 57(7), pp.2207-2218, 2010.

[6] Morgan, 1., Liu, H., Tormos, B., and Sala, A., ‘Detection and
diagnosis of incipient faults in heavy-duty diesel engines’, IEEE
Trans. Ind. Electron., vol. 57(10), pp. 3522-3532, 2010.

[7] Poncelas, O., Rosero, J. A., Cusido, J., Ortega, J. A., and Romeral,
L., ‘Motor fault detection using a rogowski sensor without an
integrator’, IEEE Trans. Ind. Electron., vol. 56(10), pp. 4062—
4070, 2009.

[8] Rothenhagen, K., and Fuchs, F. W., ‘Current sensor fault detection,
isolation, and reconfiguration for doubly fed induction generator’,
IEEE Trans. on Ind. Electron., vol. 56(10), pp. 42394245, 2009.

[9] Hameed, 1. A., ‘Using the extended Kalman filter to improve
the efficiency of greenhouse climate control’, Int. J. Innovative
Computing, Information and Control, vol. 6(6), pp. 2671-2680,
2010.

[10] Palangi, H., and Refan, M. H., ‘Error reduction of a low cost
GPS receiver for kinematic applications based on a new Kalman
filtering algorithm’, Int. J. Innovative Computing, Information and
Control, vol. 6(8), pp. 3775-3786, 2010.
Ohsumi, A., Kimura, T., and Kono, M., ‘Kalman filter-based
identification of unknown exogenous input of stochastic linear
systems via pseudo measurement approach’, Int J. Innovative
Computing, Information and Control, vol. 5(1), pp. 1-16, 2009.
[12] Jun, S., Yang, M., Yao, X., and Zhong, R., ‘A new two-stage
Kalman filter method for chaos system’, ICIC Express Letters,
vol. 4(2), pp. 539-546, 2010.
[13] Lu, C. L., Chung, N. Y., Lin, C. M., Yu, C. C,, and Chen, T.
R., ‘Applying Kalman filter-based fusion algorithm to estimation
problems’, ICIC Express Letters, vol. 4(6-A), pp.2109-2114, 2010.

[11]



SUBMITTED

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Sanchez, M. P., Guasp, M. R., Folch, J. R., Daviu, J. A. A., Cruz, J.
P., Panadero, R. P., ‘Diagnosis of induction motor faults in time-
varying conditions using the polynomial-phase transform of the
current’, I[EEE Trans. Ind. Electron., vol. 58(4), pp. 1428-1439,
April 2011.

Wolbank, T. M., Nussbaumer, P., Chen, H., Macheiner, P. E.,
‘Monitoring of rotor-bar defects in inverter-fed induction machines
at zero load and speed’, IEEE Trans. on Ind. Electron., vol. 58(5),
pp. 1468-1478, May 2011.

Bianchini, C., Immovilli, F., Cocconcelli, M., Rubini, R., Bellini,
A., ‘Fault detection of linear bearings in brushless AC linear
motors by vibration analysis’, IEEE Trans. Ind. Electron., vol.
58(5), pp. 1684-1694 , May 2011.

Henao, H., Fatemi, S. M J. R., Capolino, G. A., Sieg-Zieba, S.,
‘Wire rope fault detection in a hoisting winch system by motor
torque and current signature analysis’, IEEE Trans. Ind. Electron.,
vol. 58(5), pp. 1707-1717 , May 2011.

Salahshoor, K., Mosallei, M., and Bayat, M. R., ‘Centralized
and decentralized process and sensor fault monitoring using data
fusion based on adaptive extended Kalman filter algorithm’, J.
Measurement, vol. 41, pp. 1059-1076, 2008.

Isermann, R., ‘Model-based fault-detection and diagnosis-status
and applications’, Annual Reviews in Control, vol. 29, pp. 71-85,
2005.

Chow, E. Y., Willsky, A. S., ‘Analytical redundancy and the
design of robust failure detection systems’, IEEE Trans. Automat.
Control., vol. 29(7), pp. 603-614, 1984.

Gertler, J. J., Fault detection and diagnosis in engineering systems,
CRC Press, New York, 484 pages, 1998.

Frank, P. M., Ding, S. X., and Seliger, B. K., ‘Current de-
velopments in the theory of FDI', Proc. IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Processes,
Budapest, Hungary, vol. 1, pp. 16-27, 2000.

Rahim, M. A., Khalid, H. M., Akram, M., Khoukhi, A., Cheded,
L., and Doraiswami, R., ‘Quality monitoring and fault detection
of a closed-loop system with parametric uncertainties and external
disturbances’, Int. J. Advance Manufacturing and Technology, vol.
55(1-4), pp. 293-306, 2011.

Simani, S., Fantuzzi, C., and Patton, R., ‘Model-based fault
diagnosis in dynamic systems using identification techniques’,
Advances in Industrial Control, Springer, 2003.

Zhang, G. Q. P, ‘Neural networks for classification: a survey’,
IEEE Trans. Systems, Man and Cybernetics: Part C-Applications
and Reviews, vol. 30(4), pp. 451-462, 2000.

Wang, Y., Chan, C. W., and Cheung, K. C., ‘Intelligent fault
diagnosis based on neuro-fuzzy networks for nonlinear dynamic
systems’, Proc. IFAC Conference on New Technologies for Com-
puter Control, Hong Kong, China, pp. 101-104, 2001.
Watanabe, K., Matsura, 1., Abe, M., Kubota, M., and Himmelblau,
D. M., ‘Incipient fault diagnosis of chemical processes via artificial
neural networks’, AICHE J., vol. 35(11), pp. 1803-1812, 1989.
Venkatasubramanian, V., and Chan, K., ‘A neural network method-
ology for process fault diagnosis’, AICHE J., vol. 35(12), pp.
1993-2002, 1989.

Ungar, L. H., Powell, B. A., and Kamens, S. N., ‘Adaptive
networks for fault diagnosis and process control’, Computers and
Chem. Eng., vol. 14(4-5), pp. 561-572, 1990.
Venkatasubramanian, V., Vaidyanathan, R., and Yamamoto, Y.,
‘Process fault detection and diagnosis using neural networks:
Steady state processes’, Computers and Chem. Eng., vol. 14(7),
pp. 699-712, 1990.

Miguel, L. J., and Blazquez, L. F., ‘Fuzzy logic-based decision-
making for fault diagnosis in a DC motor’, Engineering Applica-
tions of Artificial Intelligence, vol. 18(4), pp. 423-450, 2005.
‘Special section on motor fault detection and diagnosis, IEEE
Trans. Ind. Electron., vol. 47(5), pp. 982-1107, 2000.

Ramesh, T. S., Davis, J. F, and Schwenzer, G. M., ‘Knowledge-
based diagnostic systems for continuous process operations based
upon the task framework’, Computers and Chem. Eng., vol. 16(2),
pp- 109-127, 1992.

Venkatasubramanian, V., ‘CATDEX, knowledge-based systems
in process engineering: Case studies in heuristic classification’,
Technical Report, The CACHE Corporation, Austin, TX, 1989.
Mehranbod, N., ‘A probabilistic approach for sensor fault detection

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

and identification’, Ph.D Dissertation, Faculty of Drexel Univer-
sity, November 2002.

Kirch, H., Kroschel, K., ‘Applying Bayesian networks to fault
diagnosis’, Proc. IEEE Conference on Control Applications, 895,
1994.

Guzman, C. R., Kramer, M., ‘GALGO: A genetic algorithm
decision support tool for complex uncertain systems modeled with
Bayesian belief networks’, Proc. 9th Conf. on Uncertainty in Artif.
Intell. (UAI-93), San Francisco, pp. 368-375, 1993.

Santoso, N., Darken, C., and Povh, G., ‘Nuclear plant fault di-
agnosis using probabilistic reasoning’, Power Engineering Society
Summer Meeting, IEEE, vol. 2, pp. 714-719, 1999.

Nicholson, A., Brady, J., ‘Dynamic belief networks for discrete
monitoring’, IEEE Trans. Systems, Man, and Cybernetics, vol.
24(11), pp. 1593-1610, 1994.

Nicholson, A., ‘Fall diagnosis using dynamic belief networks’,
Proceedings of the 4th Pacific Rim International Conference on
Artificial Intelligence (PRICAI-96), vol. 1114 of Lecture Notes in
Computer Science, Springer, pp. 206-217, 1996.

Bin Zhang, C., Sconyers, C., Byington, R., Patrick, M. E., Or-
chard, G., Vachtsevanos, ‘A probabilistic fault detection approach:
Application to bearing fault detection’, I[EEE Trans. Ind. Electron.,
vol. 58(5), pp. 2011-2018, May 2011.

Wan, E. A., Merwe, R. V., and Nelson, A. T., ‘Dual estimation and
the unscented transformation’, in Advances in Neural Information
Processing Systems, Solla, S. A., Leen, T. K., and Miller, K. R.,
Eds., Cambridge, MA: MIT Press, pp. 666—672, 2000.

Julier, S. J., J. K. Uhlmann, and H. Durrant-Whyte, ‘A new
approach for filtering nonlinear systems’, Proc. American Control
Conference, pp. 1628-1632, 1995.

Julier, S. J., and Uhlmann, J. K., ‘A new extension of the
Kalman filter to nonlinear systems’, Proc. Aero Sense: The 11th
Int. Symposium on AeroSpace/Defense Sensing, Simulation and
Controls, vol. 3068, pp. 182-193, 1997.

Van der Merwe, R., ‘Sigma-point Kalman filters for probability
inference in dynamic state-space models’, PhD Thesis, Oregon
Health and Science University, 2004.

Gan, Q., and Harris, C. J., ‘Comparison of two measurement fusion
methods for Kalman filter-based multi-sensor data fusion’, IEEE
Trans. Aerospace Electr. Systems, vol. 37(1), pp. 273-280, 2001.
Harris, C., Hong, X., and Gan, Q., ‘Adaptive modeling, estimation
and fusion from data: A neurofuzzy approach’, Springer, 339
pages, 2002.

Dai, L., Astrom, K., ‘Dynamic matrix control of a quadruple tank
process’, Proceedings of the 14th IFAC, 1999, pp. 295-300.

Tan, W., Marquez, H. J., Chen, T., ‘Multivariable robust controller
design for a boiler system’, IEEE Trans. Control Systems Technol-
ogy vol. 10(5), 2002, pp. 735-742.

Marquez, H., Riaz, M., ‘Robust state observer design with applica-
tion to an industrial boiler system’, Control Engineering Practice,
vol. 13, 2005, pp. 713-728.

Perry, R. H., Green, D. W., ‘Perrys chemical engineers handbook’,
seventh ed., McGraw-Hill, 1997.



