
# Chapter 5

# Production Planning & Control Hierarchy

# Objectives

- 1. Outline of Planning Hierarchy
- 2. Forecasting
- 3. Capacity/Facility Planning
- 4. Workforce Planning
- 5. Aggregate Planning
- 6. Quota Setting
- 7. Scheduling
- 8. Shop Floor Control



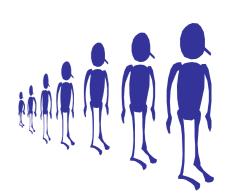
## Aggregating Planning by Time Horizon

| Time Horizon      | Length         | <b>Representative Decisions</b> |
|-------------------|----------------|---------------------------------|
| Long-Term         | year – decades | Financial Decisions             |
| (Strategy)        |                | Marketing Strategies            |
|                   |                | Product Designs                 |
|                   |                | Process Technology Decisions    |
|                   |                | Capacity Decisions              |
|                   |                | Facility Locations              |
|                   |                | Supplier Contracts              |
|                   |                | Personnel Development Programs  |
|                   |                | Plant Control Policies          |
|                   |                | Quality Assurance Policies      |
| Intermediate-Term | week – year    | Work Scheduling                 |
| (Tactics)         |                | Staffing Assignments            |
|                   |                | Preventive Maintenance          |
|                   |                | Sales Promotions                |
|                   |                | Purchasing Decisions            |
| Short-Term        | hour – week    | Material Flow Control           |
| (Control)         |                | Worker Assignments              |
|                   |                | Machine Setup Decisions         |
|                   |                | Process Control                 |
|                   |                | Quality Compliance Decisions    |
|                   |                | Emergency Equipment Repairs     |


#### 2. Forecasting

- Basic Problem: predict demand for planning purposes.
- Laws of Forecasting:
  - 1. Forecasts are always wrong!
  - 2. Forecasts always change!
  - **3.** The further into the future, the less reliable the forecast will be!
- Forecasting Tools:
  - Qualitative:
    - Delphi
    - Analogies
    - Many others
  - Quantitative:
    - Causal models (e.g., regression models)
    - Time series models




## 3. Capacity/Facility Planning

- Basic Problem: how much and what kind of physical equipment is needed to support production goals?
- Issues:
  - Basic Capacity Calculations: stand-alone capacities and congestion effects (e.g., blocking)
  - Capacity Strategy: lead or follow demand
  - Make-or-Buy: vending, long-term identity
  - *Flexibility*: with regard to product, volume, mix
  - *Speed*: scalability, learning curves

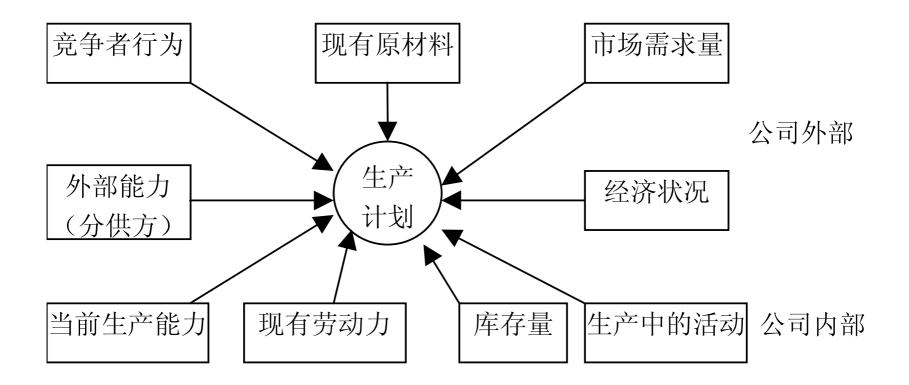


## 4. Workforce Planning

- Basic Problem: how much and what kind of labor is needed to support production goals?
- Issues:
  - Basic Staffing Calculations: standard labor hours adjusted for worker availability.
  - *Working Environment*: stability, morale, learning.
  - *Flexibility/Agility*: ability of workforce to support plant's ability to respond to short and long term shifts.
  - *Quality*: procedures are only as good as the people who carry them out.



#### Workforce Planning


- **Problem:** determine most profitable production and hiring/firing policy over planning horizon.
- Motivation for Study:
  - hiring/firing vs. overtime vs. Inventory Build tradeoff
  - iterative nature of optimization modeling.
- Inputs:
  - demand forecast (assume single product for simplicity)
  - unit hour data
  - labor content data
  - capacity constraints
  - hiring/ firing costs
  - overtime costs
  - holding costs
  - unit profit

#### 5. Aggregate Planning

- Basic Problem: generate a long-term production plan that establishes a rough product mix, anticipates bottlenecks, and is consistent with capacity and workforce plans.
- Issues:
  - Aggregation: product families and time periods must be set appropriately for the environment.
  - *Coordination*: AP is the link between the high level functions of forecasting/capacity planning and intermediate level functions of quota setting and scheduling.
  - Anticipating Execution: AP is virtually always done deterministically, while production is carried out in a stochastic environment.
  - *Linear Programming*: is a powerful tool well-suited to AP and other optimization problems.

#### Aggregate Planning

• 中期生产计划的环境与输入



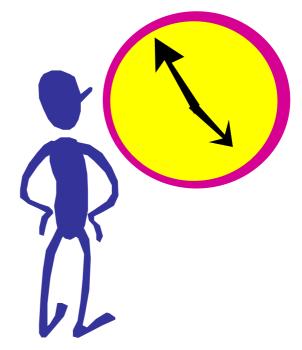
#### Basic Aggregate Planning

- Problem: project production of single product over planning horizon.
- Motivation for Study:
  - mechanics and value of LP as a tool
  - intuition of production smoothing
- Inputs:
  - demand forecast (over planning horizon)
  - capacity constraints
  - unit profit
  - inventory carrying cost rate

#### Product Mix Planning

- Problem: determine most profitable mix over planning horizon
- Motivation for Study:
  - linking marketing/promotion to logistics.
  - Bottleneck identification.
- Inputs:
  - demand forecast by product (family?) -may be ranges
  - unit hour data
  - capacity constraints
  - unit profit by product
  - holding cost

#### Aggregate Planning Conclusions


- No single AP model is right for every situation
- Simplicity promotes understanding
- Linear programming is a useful AP tool
- Robustness matters more than precision
- Formulation and Solution are not separate activities.

## 6. Quota Setting

- Basic Problem: set target production quota for pull system
- Issues: Larger quotas yield Benefits:
  - Increased throughput.
  - Increased utilization.
  - Lower unit labor hour.
  - Lower allocation of overhead.

Costs:

- More overtime.
- Higher WIP levels.
- More expediting.
- Increased difficulties in quality control.



#### 7. Goals of Production Scheduling

- High Customer Service: on-time delivery
- Low Inventory Levels: WIP and FGI
- High Utilization: of machines



#### Meeting Due Dates – Measures

- Service Level:
  - Used typically in *make to order* systems.
  - Fraction of orders
    which are filled on or
    before their due dates.
- Fill Rate:
  - Used typically in *make to stock* systems.
  - Fraction of demands met from stock.

- Lateness (延期):
  - Used in shop floor control.
  - Difference between order due date and completion date.
  - Average lateness has little meaning.
  - Better measure is lateness *variance*.
- Tardiness (延误):
  - Used in shop floor control.
  - Is equal to the lateness of a job if it is late and zero, otherwise.
  - Average tardiness is meaningful but unintuitive.

## **Classic Scheduling**

- MRP/ERP:
  - Benefits Simple paradigm, hierarchical approach.
  - Problems -
    - MRP assumes that lead times are an attribute of the part, independent of the status of the shop.
    - MRP uses pessimistic lead time estimates.
- Classic Scheduling: (only classic in academia)
  - **Benefits** "Optimal" schedules
  - **Problems** Bad assumptions.
    - All jobs available at the start of the problem.
    - Deterministic processing times.
    - No setups.
    - No machine breakdowns.
    - No preemption.
    - No cancellation.

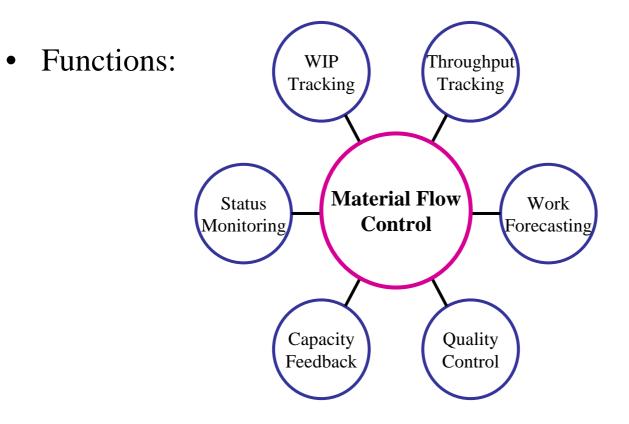
#### **Classic Single Machine Results**

- Minimizing Average Cycle Time:
  - Minimize by performing in "shortest process time" (SPT) order.
  - Makespan is not affected.
- Minimizing Maximum Lateness (or Tardiness):
  - Minimize by performing in "earliest due date" (EDD) order.
  - Makespan is not affected.
  - If there exists a sequence with no tardy jobs, EDD will do it.
- Minimizing Average Tardiness:
  - No simple sequencing rule will work. Problem is *NP Hard*.
  - Makespan is not affected.

## Classic Multi Machine Results

- Minimizing "Makespan" on Two Machines: given a set of jobs that must go through a sequence of two machines, what sequence will yield the minimum makespan?
  - Mapespan is sequence dependent.
  - Simple algorithm (Johnson 1954)
- Optimal Schedules: Impossible to find for most real problems.
- Dispatching (调度) : sorts jobs as they arrive at a machine.
- Dispatching rules:
  - FIFO simplest, seems "fair".
  - SPT Actually works quite well with tight due dates.
  - EDD Works well when jobs are mostly the same size.
  - Many (100?) others.
- Problems with Dispatching:
  - Cannot be optimal (can be bad).
  - Tends to be myopic.

## Implications for Real Problems


- Computation: NP algorithms are slow to use.
- No Technology Fix: Faster computers don't help on NP algorithm.
- Scheduling is Hard: Real scheduling problems tend to be NP Hard.
- Scheduling is Big: Real scheduling problems also tend to be quite large; impossible to solve optimally.
- Robustness? NP hard problems have many solutions, and presumably many "good" ones.
- Role of Heuristics: Polynomial algorithms can be used to obtain "good" solutions. Example heuristics include:
  - Simulated Annealing
  - Tabu Search
  - Genetic Algorithms

## Scheduling Software Approaches

- Fixed leadtime backward scheduling (MRP)
- Rule based forward scheduling (FACTOR)
- AI/Expert System approaches (MIMI)
- Bottleneck scheduling (OPT)
- Heuristics (MADEMA/PROMIS)
- Diagnostic (backward) scheduling (MRP-C)
- Perturbation scheduling (developmental)

#### 8. What is Shop Floor Control?

• Definition: *Shop Floor Control (SFC)* is the process by which decisions directly affecting the flow of material through the factory are made.



#### Planning for SFC

- Gross Capacity Control: Match line to demand via:
  - Varying staffing (no. shifts or no. workers/shift)
  - Varying length of work week (or work day)
  - Using outside vendors to augment capacity
- Bottleneck Planning:
  - Bottlenecks can be designed
  - Cost of capacity is key
  - Stable bottlenecks are easier to manage
- Span of Control:

- Physically or logically decompose system
- Span of labor management (10 subordinates)
- Span of process management (related technology?)

# **Question Bowl**

- 1. 对于采用Make-to-Stock生产方式的企业,反映其服务水平 的适当指标是:
- A. 生产周期小于提前期的概率 B. 需求被立即满足的比率
- C. 定单不被拖延的概率 D. 生产计划不被延误的比率

2.制造型企业的计划层级中,下列哪一种计划是企业制造功能与市场需求的界面(指反映市场需求的最低层次的计划)?
 A.长期资源计划
 B.中期生产计划
 C.主生产进程
 D.物料需求计划