Comparing Equilibria

By PauL MiLGroM AND JouN RoOBERTS*

We develop an ordinal approach to comparing the equilibria of economic
models. Its main advantages over the traditional approach based on signing
derivatives are that (i) it utilizes only a subset of the assumptions, resulting in a
simpler theory that facilitates focusing attention on the economics rather than
the mathematics, (ii) it applies to discrete changes, even when there are multiple
equilibria and when some equilibria do not vary smoothly with the parameters,
and (iii) it incorporates a formal theory of the robustness of conclusions to
assumptions, which helps modelers distinguish which assumptions are “critical”
to their comparative-statics conclusions. (JEL C60, C72)

Predictions about endogenous variables
in formal economic models are frequently
expressed in the form of the solution to an
equation such as f(x;¢)=0 or a fixed-point
equation x = g(x;t), where ¢ represents the
parameters of the model and the function f
or g expresses the underlying economic re-
lations. Analysis of the model then often
consists largely of studying the solutions
x*(t) to determine how they are affected
by exogenous changes in the parameter ¢.
In particular, the problem of monotone
comparative statics—the problem of deter-
mining whether x* is increasing in t—is a
staple of economic analysis. The leading
methods of comparative-statics analysis,
which are based on applying the implicit-
function theorem to these equations, have
been a standard element of the economist’s
tool kit for more than half a century.

There are at least three important ways
in which the traditional approach to
comparative-statics analysis has proved un-
satisfactory in practice. The most obvious of
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these is that it requires such restrictive as-
sumptions. Models of the firm, of oligopoly,
of economic growth, and of international
trade are among the many that now rou-
tinely include nonconvexities as a funda-
mental part of the economic explanations,
and these nonconvexities typically destroy
the continuity and smoothness conditions
that are essential for the traditional ap-
proach. Second is the problem of multiple
equilibrium, which can be a source of trou-
ble even when the equilibrium for each of
the relevant parameter values is unique.
Figure 1 illustrates the problem. In this
figure, there is a unique solution to the
equation f(x)+¢=0 for each of the two
relevant parameter values ¢’ and ¢". A local
analysis of the standard type can be done at
either of the values ¢’ or t”, but to analyze
the effect of a discrete change from the one
to the other necessitates finding a smooth
curve of solutions x*(¢) connecting the two.
This is impossible in the present case, and
so there is no way to apply the implicit-
function theorem to compare the solutions.
The fact that one can almost everywhere
analyze the effects of minute parameter
changes using the implicit-function theorem
in such models is of little intrinsic interest,
because the theory predicts similarly minute
changes in endogenous variables, assuring
that the effects will be hard to detect in
data and of little consequence for welfare.
The ability to sign derivatives locally is valu-
able only when it can be done everywhere in
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FiGure 1. THERE Is No ConTiINUOUS PATH OF
Sorutions To THE EQuaTioN f(x)+t=0
AS ! VARIES FROM t" TO t’

the relevant interval. The problems are still
worse when the equations admit multiple
equilibrium solutions for the relevant pa-
rameter values. Then, the local comparisons
of particular equilibrium points tell little
about the overall changes in the equilibrium
set.

The third inadequacy of the standard
method of analysis is one of omission: it
offers little help in judging the relative im-
portance of the various assumptions of a
model. The role of assumptions in models is
a controversial matter about which leading
economists have differed widely. At one end
of the spectrum, Milton Friedman (1953)
dismissed the role of assumptions entirely,
arguing that one should test a theory using
only “the class of phenomena the hypothe-
sis is designed to explain.” He argued force-
fully that “[tlruly important and significant
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hypotheses will be found to have ‘assump-
tions’ that are wildly inaccurate descriptive
representations of reality, and in general,
the more significant the theory, the more
unrealistic the assumptions” (pp. 13-14). In
a sharp rebuttal, Herbert Simon (1963) ad-
vocated replacing Friedman’s “principle of
unreality” with a “principle of continuity of
approximation” according to which “if the
conditions of the real world approximate
sufficiently well the assumptions of an ideal
type, the derivations from these assump-
tions will be approximately correct... .
Unreality of premises is not a virtue in
scientific theory; it is a necessary evil—a
concession to the finite computing capacity
of the scientist that is made tolerable by the
principle of continuity of approximation”
(pp. 230-31).

Our approach to equilibrium comparisons
rejects both views and is based instead on
the premise that the complexities of the eco-
nomic and social world make it infeasible to
construct even approximately accurate mod-
els of any but the simplest situations. Con-
trary to Simon’s apparent position, this does
not imply that modeling is futile. The pur-
pose of most economic modeling is to demon-
strate that particular qualitative characteris-
tics of an environment imply qualitative
restrictions on the behavior of endogenous
economic variables. On the other hand, in
opposition to Friedman, we argue that some
modeling assumptions are important. Intu-
itively, most models contain both critical as-
sumptions and simplifying assumptions. We
think of the latter as being made to facilitate
characterizations and computations, while
the former describe the essential economic
mechanisms that determine the qualitative
properties of the model. For a model to be
useful in understanding the qualitative fea-
tures of the economic world, the empirical
accuracy of simplifying assumptions is unim-
portant. On the other hand, the critical
assumptions must reflect actual features
of the economic environments in which the
model might be applied, or else the model
fails to distinguish the environments in
which the qualitative properties hold. The
traditional approach provides no formal
means to distinguish critical from sim-
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plifying assumptions, although economists
often try to draw this distinction anyway.

The theory we present in this paper re-
formulates the problem of comparing equi-
libria to rectify these three failings. First,
our analysis eschews the usual assumptions
that are made to employ the implicit-func-
tion theorem and yet are both economically
unwarranted in many situations and largely
orthogonal to the issue of whether the solu-
tion is monotone in the parameters. In-
stead, we focus on the critical assumptions
that actually determine the qualitative
comparative-statics conclusions.

Second, our analysis focuses primarily on
the global structure of the equilibrium set.
As a consequence, the existence of multiple
equilibria for parameter values that are in-
termediate between the relevant values
poses no problem for our methods, al-
though we have seen that such multiplicity
precludes successful analyses based on the
implicit-function theorem. When the rele-
vant parameter values themselves admit the
possibility of multiple equilibria, our analy-
sis offers comparisons of the extreme equi-
libria, showing how the bounds on behavior
predicted by the theory change with chang-
ing parameters. In fact, we will formulate
all our results in terms of the highest and
lowest equilibria. Obviously, if the equilib-
rium is unique then it is both the highest
and the lowest equilibrium.

Third, our analysis introduces formally
the idea of critical assumptions and the
related ideas of robustness and context. A
context is simply a class of models, repre-
senting what the modeler knows about the
economic environment, in the same sense
that an information set represents the
knowledge of a player in a game. An as-
sumption is critical for a particular conclu-
sion in a particular context if its failure
implies that the conclusion fails in at least
one of the models in the context. In princi-
ple, this definition allows that the identifi-
cation of critical assumptions could be highly
sensitive to the context. The power of the
methods we develop derives in part from
the observation that, in fact, one can iden-
tify a priori conditions that are both critical
and sufficient in a wide array of different
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FiGURE 2. THE HiGHEST AND LowEST FIXED
Points oF THE HIGHER FUNcTION ARE GREATER
THAN THOSE OF THE LowER FUNCTION

contexts. Finally, a robust conclusion is one
that holds in a wide context.

To illustrate these ideas, consider the ex-
treme solutions of the fixed-point problem
illustrated in Figure 2. For concreteness,
suppose the situation represented in this
figure is one in which a firm chooses a level
of investment in response to changing tech-
nology. Suppose, however, that the model
omits some effect that is actually present,
such as a special tax treatment of invest-
ments in new technologies or the limited
availability of technicians skilled in the new
technology or even the CEQ’s desire to be
seen as the industry leader in adopting the
most promising new technologies. Are the
comparative-statics conclusions one might
draw from the model robust to the inclusion
of such complications? What assumptions
are not merely sufficient for a comparative-
statics result, but also needed if the result is
to continue to be true in the broader con-
text in which these complications might
arise?

Let the base model’s prediction be ex-
pressed as a fixed point of some continuous
function f(-;¢): [0,1] —[0,1], parameterized
by t. If f is increasing in ¢, then its lowest
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and highest fixed points x;(#) and x4(¢) are
increasing in ¢ as well, as Figure 2 illus-
trates (and as is asserted generally by Corol-
lary 1 below). Suppose, however, that the
actual reality is better represented by the
two-equation model: y = f(x,t) and x=
g(y, x), where g: [0,1]*> —[0,1] is increasing
in its first argument and continuous in both
arguments. The new model includes the
original determinants of the equilibrium
value of x through its first equation, but
there may be additional determinants as
well. The fact that g is increasing in its first
argument means that (substituting for y) it
preserves any monotonicity with respect to ¢
contained in the original model, although
possibly in amplified or attenuated form
and possibly with the addition of new effects
represented by the second argument of the
function g. There is no assumption that the
omitted effects are small relative to the ef-
fects that are included. The fact that ¢ en-
ters the new model only through f means
that the new model, though expanded, does
not introduce any new direct effects from
changes in the parameter.

Observe now that if f is increasing in
t, then for any g in the class described,
the lowest and highest fixed points in the
more realistic model are still increasing
functions of ¢, because the composite func-
tion h(x,t)= g(f(x,t), x) is increasing in t.
We conclude that the omission of these
extra effects is not critical in this context
and that the comparative equilibrium analy-
sis is, to that extent, robust when f is in-
creasing in ¢. Of course, our use of the g
function to widen the context is merely il-
lustrative: the main mathematical point is
that many of the structural details of the
specification are quite irrelevant to the
qualitative comparative-statics conclusion.
Provided only that f is continuous (and
even that condition, as we show, can be
weakened), the assumptions of the model
that imply that f is increasing in ¢ are the
only ones that could be critical for the com-
parative equilibrium conclusion.

Is the assumption that f is increasing in ¢
a critical sufficient condition? It might seem
that it could not be, because there certainly
do exist functions f for which the lowest
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and highest fixed points are increasing in
the parameter ¢ even though f is not in-
creasing in ¢. Indeed, if the context for the
problem consists of only one such function
f, then the assumption that f is increasing
in ¢t is not critical. The new approach is
most powerful in broader contexts in which
one cannot simply compute the equilibrium
to make comparisons, but must rely instead
on qualitative reasoning.

Generally, we represent the context by a
set of functions ¥. We may think of F as
representing the models that the theorist
thinks plausible for the situation at hand.
Actual economic models are only very rough
approximations to reality, and economic
modelers have only general information
about the context ¥, a condition that we
formalize in Section I. In particular, our
formalization allows that the modeler may
know that f is a polynomial of degree at
most n; or that it is convex or concave or
S-shaped or a contraction mapping; or that
it is monotone increasing or decreasing in x
or t; or any of a wide array of similar
conditions; or any consistent combination of
such conditions. We then ask: given only
such general contextual knowledge, must
the modeler also know that f is increasing
in ¢ in order to conclude that the lowest
fixed point x,(¢) or the highest fixed point
xy(2) is increasing in ¢? Our answer is af-
firmative. In any context involving only gen-
eral knowledge in the sense described, the
assumption that f is increasing in ¢ is a
critical sufficient condition. Without this
knowledge, the modeler cannot be certain
that either x(#) or x(¢) is increasing.

A final feature of the approach we ad-
vance here is that, in comparison with the
usual methods, it is remarkably simple. The
mathematics are not especially sophisti-
cated, the logic is transparent, and verifying
whether the conditions of the theorems hold
in applications is typically almost trivial. Our
core arguments, which rely on critical as-
sumptions only and omit inessential details,
are little more than rigorous versions of the
intuitive and graphical arguments on which
economists have long relied.

The papers most closely related to this
one are those that develop general ordinal



VOL. 84 NO. 3

conditions for comparing solutions in vari-
ous kinds of models, because critical condi-
tions for monotone comparative statics are
always ordinal. Among the most important
contributions to date are the following ones:
Milgrom and Christina Shannon (1992a) and
Milgrom (1993), building on earlier work by
Donald Topkis (1978), identify the critical
assumptions for some classes of optimiza-
tion problems; Shannon (1992), extending a
theorem of Milgrom and Roberts (1990b),
gives ordinal sufficient conditions for com-
paring Nash equilibria in a class of nonco-
operative games; Milgrom and Shannon
(1992b), building on Tatsuro Ichiishi (1990),
give ordinal conditions for comparing the
cores of a family of cooperative games. In
addition, J. Miguel Villas-Boas (1992) has
independently addressed the issue of com-
paring fixed points.

Four more sections of the paper follow.
In Section I, we develop the general theory.
After connecting the theory to the tradi-
tional differentiable approach in Section II,
we apply it to the LeChatelier principle in
Section III and conclude in Section IV.

I. Global Comparisons

Because qualitative comparative-statics
conclusions are unaffected by monotone
transformations (changes of variables that
do not alter the ordering of the parameters
or the endogenous variables) a natural place
to begin a general theory of comparative
equilibrium analysis is with conditions that
are similarly invariant. The first result,
Lemma 1, is of this general kind. (In read-
ing the lemma, recall that, by definition,
inf(@) = + o and sup(@) = —x.)

LEMMA 1: Let XCR and let f,g: X - R.
Suppose that for all x € X, f(x)> g(x). Then
inf{x| f(x) < 0} > inf{x|g(x) < 0} and
sup{x| f(x) = 0} > sup{x| g(x) > 0}.

This simple result and its variations lie at
the heart of all robust conclusions about
comparisons of equilibria. The key to its
application is to identify the conditions un-
der which the expressions in the lemma
correspond to the equilibrium of some eco-
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FiGure 3. FuncrioN f, But Nort h, Is
CoNTINUOUS BUT FOR UPWARD JUMPS

nomic model. We employ a sufficient condi-
tion here which is weaker than continuity
and which, unlike continuity, is preserved
under order-preserving transformations of
the function’s domain and range.

Definition: A function ¢: R - R is continu-
ous but for upward jumps if for all ¥ €R,
limsup, , ; $(x) < ¢(X) < liminf, | ; $(x).

The function labeled f in Figure 3 is
continuous but for upward jumps; that
labeled A is not. It should be clear that
functions with this property will continue to
enjoy it after being subjected to monotone
transformations of their domains and
ranges, while continuous functions sub-
jected to such transformations could lose
continuity (but, of course, retain continuity
but for upward jumps). This figure also sug-
gests that functions from [0,1] into itself
which are continuous but for upward jumps
will have fixed points. Such a function must
start on or above the diagonal, and it can
never jump down over the diagonal. Thus,
the function starts on the diagonal [so that
f(0) =0, in which case 0 is a fixed point], or
it stays above the diagonal always [so that
f(1)=1 and 1 is a fixed point], or else its
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graph crosses the diagonal at some point in
(0,1) and this is a fixed point. Similarly, a
function from [0,1] into R that is nonnega-
tive at 0 and nonpositive at 1, if it is also
continuous but for upward jumps, will have
a point x satisfying f(x)= 0. Proofs of both
these results are included in Theorem 1 and
Corollary 1. The first of these gives ordinal
conditions that are sufficient for monotone
comparative statics on the solutions of
f(x,t)=0, where x is a real variable.

THEOREM 1: Let f(x,t): [0,1] X T—>R,
where T is any partially ordered set and
where f(0,t) > 0 and f(1,t) < 0. Suppose that
for all t €T, fis continuous but for upward
jumps in x. Then there exists a solution for
the equation f(x,t)=0. Moreover, x(t)=
inf{x|f(x,t) <0} is the lowest solution of
f(x,1)=0 and xy(t)=sup{x|f(x,t) >0} is
the highest solution. Suppose further that for
all x €[0,1], f is monotone nondecreasing in
t. Then x(t) and xy(t) are monotone non-
decreasing for all t € T. Moreover, if f is
strictly increasing in t, then x(t) and x ()
are strictly increasing.

PROOF:

By the boundary conditions of the theo-
rem, x;(¢) and xy(¢) exist and are finite.
We first need to show that they are actually
solutions. We concentrate first on x;. By
the definition of x;, the limsup of f(x,¢#)
as x T x; is nonnegative. Then, by contin-
uity but for upward jumps, f(x;(¢),#)>0.
If x;(¢t)=1 then, because f(1,t)<0, we
must have f(x (¢),2)=0. If x;(t)<1
and f(x(#),£)>0, then continuity but for
upward jumps implies that there is some
€ > 0 such that f(x,¢)> 0 for all x €[x(2),
x()+ &), which is contrary to the defini-
tion of x,(#). We conclude that f(x(¢),¢)
= 0. By the condition that f is monotone in
t and Lemma 1, for any ¢ > ¢/, x;(£) > x(¢)).
If f is strictly increasing in ¢, then there is
no x such that f(x,#)=f(x,t)=0, so
xp(8)> x ().

The case of xy is an order dual; that is, it
is the same statement as the one for x;(+),
but using the reverse orders on the domain
and range of f. Order-duality arises repeat-
edly in this theory, and the following argu-
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ment is typical. Let g(z,t)=— f(1—z,1)
and define x;(¢)=inf{x|g(x,?)<0}. Then
xy(t)=1—x,(¢) for all z. By the argument
of the last paragraph, g(x,(¢),#)=0 and
%;(+) is monotone nonincreasing in ¢ and
strictly decreasing if f is strictly increasing
in ¢. This establishes the claimed properties
of xy(+).

The following corollary makes the corre-
sponding statement for fixed-point models.

COROLLARY 1: Let g(x,t): [0,11XT —
[0,1], where T is any partially ordered set.
Suppose that for all t € T, g is continuous but
for upward jumps in x. Then x;(t)=
inf{x|g(x,t) < x} and x,(t)=sup{x|g(x,?)
> x} are the extreme fixed points of g, that is,
the lowest and highest solutions of the equa-
tion g(x,t)=x. If, in addition, g is mono-
tone nondecreasing in t for all x €[0,1], then
the functions x;(+) and x () are monotone
nondecreasing, and if g is strictly increasing
in t, then these functions are strictly increas-
ing.

PROOF:
Apply Theorem 1 with

f(x,t)=g(x,t)—x.

Given the possibility of using the map in
the preceding proof to go back and forth
between model formulations where the so-
lution solves f(x,#)= 0 and ones where the
solution is a fixed point, we will henceforth
state results only for the latter.

Note that without the condition of conti-
nuity but for upward jumps, the monotonic-
ity results in the corollary need not hold,
even when there is a unique fixed point.
This is illustrated by Figure 4, where an
upward shift in the function f leads to a fall
in its unique fixed point.

Example 1: To illustrate Corollary 1, con-
sider the treatment of Cournot duopoly of-
fered by Roberts and Hugo Sonnenschein
(1976). That paper emphasized that the
standard assumption that the best-reply cor-
respondences are continuous in Cournot
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FIGURE 4. SHIFTING THE FuncTiON f Up LEADS
Its UNIQUE FiXED POINT To SLIDE BACKWARDS
Down THE 45° LINE

models imposes unjustifiably strong restric-
tions on demand, requiring that the firm’s
total revenue function be strictly concave.
Roberts and Sonnenschein formulated an
alternative symmetric Cournot model in
which the firms all have a constant marginal
cost ¢ and a finite bound b on their capac-
ity, but in which the usual restrictions on
demand are relaxed. Industry demand in
that model is represented by an arbitrary
upper semicontinuous function from quanti-
ties into prices. Assuming that the firm pro-
duces the largest quantity consistent with
profit maximization given the competitors’
choices, Roberts and Sonnenschein showed
that the symmetric best-reply function, while
not continuous, is nevertheless a function
from [0, ] into itself that is continuous but
for upward jumps. The paper concluded
that an equilibrium exists.! Corollary 1 re-
peats the existence conclusion and, in addi-

'Maurice McManus (1962) had earlier arrived at a
similar conclusion by somewhat less formal arguments,
and very recently Nikolai Kukushkin (1992) has ex-
tended the result to situations in which all the firms
have a common convex cost function and possibly
differing upper bounds on their output levels.

FIGURE 5. SHIFTING THis CORRESPONDENCE
UpwARD RAISEs ITs UNIQUE FIXED POINT

tion, enables one to make equilibrium com-
parisons. For example, a decrease in ¢ (or
an increase in —c) increases the extreme
equilibrium quantities. One can also use the
theorem to analyze the effects of changes in
demand in the model.

The weak-monotonicity results of Corol-
lary 1 can also be extended to the fixed
points of certain correspondences using a
weaker notion of continuity but for upward
jumps. Figure 5 illustrates the kind of result
that can be obtained when any vertical gaps
caused by downward jumps are ‘“filled in”
to ensure that no fixed point is missed. The
formal analysis begins with another defini-
tion.

Definition: Given two functions ¢, ¢y:
[0,1] = [0,1] with ¢(x) < py(x) for all x €
[0,1], the correspondence ¢ defined by
d(x)=[¢(x),p(x)] is continuous but for
upward jumps if for all x €0, 1],
lim sup, , ; ¢u(x) < (%) and ¢ (¥) <
liminf, | ; ¢, (x).

COROLLARY 2: Let ¢(x,t)=[¢(x,?),
du(x,0]: [0,1]1XT —[0,1], where T is any
partially ordered set. Suppose that, for all
t €T, ¢ is continuous but for upward jumps
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in x and that, for all x €[0,1], ¢ and ¢y
are monotone nondecreasing in t. Then for all
t the points x(t)=inf{x|¢,(x,t) < x} and
xy(t) = sup{x|py(x,t) > x} are the extreme
fixed points of ¢, that is, lowest and highest
solutions of x € ¢(x,t). Both x(+) and x 4(+)
are monotone nondecreasing.

PROOF:

In view of Lemma 1, one only needs to
show that x, and xy are fixed points, and
the proof of that fact mimics the corre-
sponding part of the proof for Theorem 1.

The preceding results entailed showing
the sufficiency of the assumption that f(x,?)
is increasing in ¢ provided the boundary
conditions are satisfied (as in Theorem 1).
Our next theorem establishes the criticality
of this assumption in “general” contexts.
The issue is how to formulate the notion of
a general context, and we do not claim to
have settled this with finality. The next the-
orem does give one formulation that is both
tractable for analysis and useful for lending
insight.

THEOREM 2: Let F be a context whose
elements f(x,t): [0,1]XT —[0,1] are con-
tinuous in x for each t.* Suppose that for
all feF and all a,B with 0<a<pB<1
there exists a monotone increasing function g:
[0,1]1 > [a, B] such that h=go f € F. Then
the lowest fixed point x,(t|f) [alternatively,
the highest fixed point x (t|f)] is monotone
nondecreasing in t for all f € F if and only if
every function in the context is nondecreasing
in t. That is, a critical sufficient condition for
x,(t|f) to be nondecreasing is that f is non-
decreasing in t.

PROOF:

The sufficiency part is a special case of
Corollary 1. For necessity, suppose that
there are values ¢' < t"” and x' < x” such that

2This theorem can be extended to accommodate
functions that are continuous but for upward jumps.
The critical sufficient condition is then that f be
increasing in ¢ at every “point of continuity” x of

f(x,t).
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for all xe[x,x"], f(x,t")> f(x,t"). (Since
the functions are continuous, if there is any
x at which f decreases in ¢, then there will
be an interval over which this holds.) Take
a=x"and B=x" and let h be as specified.
Then the range and hence the fixed points
of h(-,t) all lie in the interval [x’, x"] for
both ¢’ and ¢". Regarding h as a parameter-
ized function from [x’, x"] into itself and
applying Lemma 1 yields the desired
conclusion that x;(¢'|h) > x;(¢"|h) and
xyq(#'|h) > x (2" h).

The idea formalized in the theorem is
that a modeler with only general knowledge
of the context cannot know at which point x
the minimum (or maximum) fixed point
might occur. If there is any x at which
f(x,t) is decreasing in ¢, then there will
exist some f in the context such that the
minimum (maximum) fixed point is decreas-
ing in ¢. The proof actually shows some-
what more, namely, that under these condi-
tions there is some f such that both the
maximum and minimum fixed points are
decreasing in ¢. Note that we could have
obtained a marginally weaker critical condi-
tion by allowing for a different g function
for each pair of values of ¢ and then requir-
ing that the composition g ° f belong to the
context and that its range lie in [, 8] for
the corresponding values of ¢. The condi-
tion actually stated is obviously simpler.
Note too that the theorem allows restricting
g to be a linear function: g(z)=a+
(B — a)z. In this case, the various proper-
ties mentioned in the discussion of contexts
in the Introduction would all be maintained.

Example 2: Among the most elementary and
best known examples of comparative statics
is the fact that a competitive firm will opti-
mally increase its output when the price
offered for its product is increased. In keep-
ing with our theme of robustness, our first
question is whether an adaptively rational
firm would always respond in the same way,
increasing its output in response to an in-
crease in the output price.> Robustness re-

3An important precedent for this lies in the work of
Richard Nelson and Sydney Winter (1982, Ch. 7), who
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quires that we not be too extreme in limit-
ing the set of adaptive rules, so we proceed
by supposing that the firm’s output choice
at any given time depends on those things
that the firm may know in the model: the
current price and its past output choices.*
These past choices may reflect either a his-
tory of actual outputs over time or a se-
quence of steps in a (possibly imperfect)
planning process or optimization algorithm,
where the starting point of the algorithm is
the initial output level of the firm. Letting
x, denote the output at time ¢, we suppose
that x,=g(p,x,_4,...,%,_n). An equilib-
rium of the firm for price p is any output x
satisfying x = f(x,p)=g(p, x,..., x). Sup-
pose that the firm’s output potential is
bounded, so that the range of f is an inter-
val [0, X], and that f is continuous but for
upward jumps in x. A sufficient condition
for this is that g is continuous but for
upward jumps in its N quantity arguments.
According to Theorem 1, if f is increasing
in p, then the extreme equilibrium output
levels x;(p) and x4(p) are increasing as
well. Moreover, although the condition that
f be increasing in ¢ is not necessary for this
conclusion, it is critical in the context of
Theorem 2. Thus, we have a characteriza-
tion of the kinds of adaptive rules that du-
plicate this traditional comparative static of
the optimizing firm: if the adaptive dynamic
process of the firm is such that its direct
response to a higher price is to produce
more output, which is an elementary prop-
erty of even boundedly rational self-inter-
ested behavior, then the extreme long-run
equilibrium output levels shift upward when
prices shift upward.

The next result extends the theory by
showing that the possibility of new endoge-
nous variables leaves the robustness result
for the original variable unaffected if the

explore the comparative statics of a firm under an
adaptive process they call “search.”

“The firm may also know past prices and, in general,
these could have real effects on current choices even
after controlling for past output choices. We rule out
that dependence here in the interests of simplicity and
brevity. .
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new variables are continuously determined
by the variable on which we are focused,
with no direct feedbacks other than through
the determination of equilibrium.

COROLLARY 3: Let Y be a topological
space, T a partially ordered set, and f(x,y,t):
[0,1]XYXT —[0,1]). Suppose that (i) for all
(y,t) € YXT, fis continuous but for upward
jumps in x, (i) for all (x,t)e XXT, f is
continuous iny, and (iii) for all (x, y) € X XY,
f is nondecreasing in t. Then for any continu-
ous function h: [0,1] > Y, the functions x(-)
and xy(+) described by

x(t) =inf{x|x > f(x,y,t) andy = h(x)}
xy(t) =sup{x|x < f(x,y,t) andy = h(x)}

are the extreme solutions to x = f(x, h(x),t).
Both x(+) and xy(+) are monotone nonde-
creasing, and if f is increasing in t, then x (+)
and x () are increasing.

PROOF:
Define f(x,t)= f(x,h(x),t) and verify
the conditions of Corollary 1.

There is also a version of the preceding
result for correspondences.

COROLLARY 4: Let
o(x,y,t)=[d(x,y,1),du(x,y,D)]:
[0,11XRN XT = [0,1]

where T is any partially ordered set. Suppose
that, for each (y,t), ¢ is continuous but for
upward jumps in x and that, for each x, ¢
and ¢ are monotone nondecreasing in t and
continuous in y. Let ¢(x): [0,11-> R be a
correspondence with a closed graph and such
that for each x €[0,1], ¢(x) is path-
connected.’ Then for all t the points x(t) =
inf(x|3y)p;(x,y, 1) < x,y € ¢y(x)} and
xy(0) = sup{x| @) y(x,y,1) > x,y € Y(x)}
are the lowest and the highest elements of

SIf N=1, this becomes the condition that ¢ is
convex-valued.
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{x|@y)x e d(x,y,t) and y €y(x)}). Both
x1(+) and xy(-) are monotone nondecreas-
ing.

PROOF:
Define

é1(x,t) =inf{z|(Fy)z = ¢, (x,y,t) and
yEy(x))

and

bu(x,t) =sup{z|(Ay)z = py(x,y,t) and
y €¢(x)}

and verify the conditions of Corollary 2.

Example 3: To illustrate the use of Corol-
laries 3 and 4, consider a monopolist faced
by a competitive fringe. The market de-
mand is D(p,t), the output of the fringe is
y=h(p), and the cost function of the
monopolist is C(z)= F + cz. The assumed
behavior is that the monopolist sets a price
p (corresponding to x in the statement of
Corollary 3), the fringe places an amount y
on the market that is determined by the
fringe’s supply function, and then the
monopolist satisfies any residual demand.
Assume that D(-,t) is continuously differ-
entiable for each ¢ and that increases in ¢
raise D(p,t)+(p—c)dD(p,t)/dp for p>
c. Then for any continuous supply function
from the fringe, the lowest and highest
prices greater than c¢ that satisfy the first-
order condition for the monopolist’s choice
of p are increasing in ¢.

We would like to be able to analyze the
fixed points of systems of several equations
that are more general than those treated in
Corollary 3 and, in particular, in which the
vector of additional endogenous variables y
is determined as the solution to an equation
of the form y = h(x, y), so that the x and y
variables each influence one another. Corol-
lary 3 covers this. formulation only for the
case where the solution y can be written as
y = h(x) where h is continuous. At a mini-
mum this requires that there be a unique
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FiGURE 6. THE UNIQUE FIXED POINT OF THE
HiGHER CURVE Is LOWER THAN THAT OF THE
Lowger CURVE

solution y for each value of x. The diffi-
culty with the more general case is illus-
trated by Figure 6, in which we have graphed
{(x, f(x,y)+ |y = h(x,y)} for two differ-
ent values of ¢. The illustrated case is one in
which the equation y = A(x, y) has as many
as three solutions for values of x near the
middle of their domain. As this figure illus-
trates, the unique fixed point x*(¢) may be
decreasing in ¢ over some range, despite the
upward shift.

The next result deals with a case of multi-
variate fixed points in which the direction of
equilibrium changes is determinate even
though y* may not be a smooth function
of x.

COROLLARY 5: Let Y and T be partially
ordered sets and f(x,y,t): [0,1] XY X T —
[0,1]. Suppose that (i) for all (y,t)€Y X T,
f is continuous but for upward jumps in x, (ii)
for all (x,t)e X X T, f is monotone nonde-
creasing in y, and (iii) for all (x,y) € X X Y,
f is nondecreasing in t. Then for any mono-
tone nondecreasing function h: [0,1] - Y, the
functions x(+) and xy(-) described by

x(t,h)=min{x|x = f(x,y,t) andy = h(x)}
xy(t,h) =max{x|x = f(x,y,t) andy = h(x)}
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are well-defined and monotone nondecreas-
ing. If f is increasing in t, then x(-,h) and
xy(+,h) are increasing.

PROOF:

Proceed as in the proof of Corollary 3.
Define f(x,t)= f(x,h(x),t) and verify the
conditions of Corollary 1.

Our results so far deal only with compar-
ing equilibrium points involving a single real
variable. The next results deal with general
partially ordered sets in which the concepts
of infimum and supremum are well defined.
In the analysis to follow, one problem is to
identify conditions under which a multivari-
ate function has extreme fixed points similar
to those of univariate functions. A second
problem is to identify conditions under
which the extreme fixed points vary mono-
tonically.

Definition: A complete lattice (X,>) is a
partially ordered set with the property that
every nonempty subset S has a greatest
lower bound inf(S)€ X and a least upper
bound sup(S) € X. (For example, any inter-
val [a,b]CRY is a complete lattice, where
() 1< N <o, (ii) x>y means that x,> y,
for 1 <i< N, and (iii) [a,b]={x|a < x < b}.)

Definition: The highest fixed point of a func-
tion f: X—>X is a point xy satisfying
f(xy) = x4 and for all x such that f(x)= x,
X < xy, if such a point exists. The lowest
fixed point, x., is defined symmetrically.
Together, xy; and x| are called the extreme
fixed points.

THEOREM 3:° Let X be a complete lat-
tice, T a partially ordered set, and f: X XT
— X. Suppose f is monotone nondecreas-
ing. Let x(¢) = inf{x| f(x,t) < x} and x4(t)
=sup{x|f(x,t)>x}). Then (i) x,(t) and
xy(t) are extreme fixed points of f(-,t), (ii)
x,(+) and x(+) are monotone nondecreas-

The existence part of the theorem is a well known
theorem of Alfred Tarski (1955). The monotonicity
portion was reported in Milgrom and Roberts (1990b).
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ing, and (iii) if for all x € X, f is increasing in
t then x () and x(+) are increasing.

PROOF:

Define S(¢) ={x|f(x,¢) < x} so that x;(¢)
= infS(¢). Since f is monotone nondecreas-
ing, for all x € S(¢), f(x;(¢),8) < f(x,t) < x.
This proves that f(x;(¢),¢) is a lower bound
for S(¢) and hence that (i) f(x (¢),t)<
x1(2), since x,(¢) is the greatest lower bound
of S(¢). Applying the monotone nondecreas-
ing function f(-,¢) to both sides of this last
inequality leads to f(f(x (¢),1),¢) <
f(x(2),¢), which establishes that f(x(¢),¢)
€ S(t). Since x(¢) is a lower bound of S(¢),
(i) x(¢) < f(x.(¢),t). Combining (i) and
(i), x ()= f(x(2),2): x,(¢) is a fixed point
of f(-,t). By its definition, x,(¢) is a lower
bound for all fixed points.

Since f is monotone nondecreasing in ¢,
the set S(¢) becomes more exclusive as ¢
increases. Hence, x(¢)=infS(¢) is a non-
decreasing function of ¢. If f is increasing
in ¢, then no x can satisfy the equation
x = f(x,t) for two different values of ¢, so
x;(+) must be increasing as well.

The case of x,(¢) is symmetric.

Example 4: This example applies Theorem
3 to a fixed-point problem with an infinite
number of variables. Consider the following
variant of the arms-race game. In this two-
player game, each player in each period 7
decides on its current stock of armaments
x;,. Player 1’s payoff from the game is

L 87 [My(x1, = x5,) = Col(X1, =YXy, 18]
=1

and symmetrically for player 2, where the
military advantage functions M; and M,
are concave and where cost-of-armament
functions C, and C, are convex. A strategy
for a player is a sequence {x;,} specifying a
level of armaments for each period. One
can verify (see Milgrom and Roberts, 1990b)
that the best-reply functions B; and B, are
monotone nondecreasing in the x’s and that
the Nash equilibrium is unique. Conse-
quently, Theorem 3 applies to this game.
Thus, if an increase in ¢, reduces the
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marginal cost of armaments, then B, is
shifted upward by the change, and Theorem
3 implies that the equilibrium levels of
armaments for both players are weakly
higher in every period.

The following theorem modifies Theorem
3 in a way that is especially useful for eco-
nomic applications.

THEOREM 4: Let 1< N <, For each 1
<i<N, let f(x;,x_;t): [0,1]Y X T; —[0,1]
be continuous but for upward jumps in x; and
nondecreasing in x_; and t;, where 'T; is any
partially ordered set. For 1<i< N, define
the functions

g:(x,t) =inf{y,| fi(yi,x_;»t) < ¥;}
hi(x,t) = sup{y;l fi(yi-x_i1) 2 i}
Then the points
x;(t) =inf{x|g(x,t) < x}
x(t) =sup{x|h(x,t) > x}

are the lowest and highest fixed points of the
function f(-,t). Moreover, the functions
x;(+) and xy(+) are monotone nondecreas-
ing.

PROOF:

By Corollary 1, the function g(-,¢) is
monotone nondecreasing. Hence, by Theo-
rem 3, x.(¢) is its lowest fixed point. For
each i, by Corollary 1 and the definition of
8i> XL,-([)= gi(x:t)=f,'(stt)a SO xL(t) is a
fixed point of f(-,¢). Let y be any other
fixed point of f(-,t) and let y A x(¢) de-
note the component-wise minimum of y
and x;(¢). Since g is monotone nondecreas-
ing, g(y A x;(¢),t)<y and g(y A x(2),t)
<x(8), so gly A x (1), 1) <y A x(8)
Hence, by the definition of x, x () <y A
x,(¢), which implies that x,(t)<y, as re-
quired. The other properties of x follow
from Theorem 3 and the observation that
this is the lowest fixed point of the mono-
tone nondecreasing function g. The case for
xg(¢) is symmetric.

Example 5: For one illustration of Theorem
4, we will employ a standard example in
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general-equilibrium modeling: the case of a
pure exchange economy with gross substi-
tutes.” Let the goods be indexed from O to
N (1< N <») with good 0 as numeraire.’
Let d j(p,t) denote the demand for good j
when the vector of prices is p. We specify
an equilibrium in the usual way as a vector
of prices such that either the excess demand
for commodity j is zero or else its price is
zero and excess demand is negative. Thus,
an equilibrium is a fixed point of the func-
tion f defined by f(p, t) = max(0, p; +
d;(p,t)). Notice that the gross-substitutes
assumption means that f;(p;,p_;t) is non-
decreasing in p_;, as required by Theorem
4. Since f; is generally decreasing in pj,
Theorem 3 does not apply. However, if
preferences are strictly convex, then f; is
continuous in p;, so Theorem 4 does apply.
There are two immediate consequences.

First, equilibrium must be unique. The
argument is standard. Suppose that there
exist multiple equilibria. Then there is a
highest equilibrium—one with the highest
equilibrium prices for all goods (except, of
course, the numeraire)—and a lowest equi-
librium. By gross substitutes, the excess de-
mand for the numeraire must be greater in
the first equilibrium than in the second, so
the market for the numeraire cannot clear
in both cases. Thus, the equilibrium must be
unique.

Second, any shift in ¢ that raises demand
leads to higher equilibrium prices. For ex-
ample, suppose ¢ indexes the endowment of
the numeraire good for several consumers,
with higher values of ¢ corresponding to
larger endowments. If the good indexed by j
is a normal good, then d; is increasing in ¢
in that case. So, an increase in the endow-
ment of the numeraire good leads to higher
prices for all other goods, that is, a lower

A beautiful formal analysis of this case using meth-
ods similar to ours is given by Michio Morishima
(1964). See also Kenneth Arrow and Frank Hahn
(1971).

We assume that the marginal rate of substitution
MRS,; is never zero, so that the numeraire good’s
relative price is always strictly positive.
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relative price of the numeraire. Of course,
the same holds for each other good because
the choice of numeraire is arbitrary.

The ordinal approach also makes it possi-
ble to study the dynamics of equilibrium
using much more general models of price-
setting than the traditional titonnement
model, but this stability analysis takes us
beyond the simple comparisons of fixed
points. See Milgrom and Roberts (1991) for
details.

Example 6: A second example of the use of
Theorem 4 is based on a model developed
by Oliver Hart and John Moore (1990) to
study the optimal allocation of ownership
rights in physical assets from the point of
view of encouraging complementary individ-
ual investments in human capital. Our anal-
ysis combines the fixed-point techniques in-
troduced here and the comparative-statics
techniques for optimization problems of
Topkis (1978).°

Hart and Moore (1990) consider a set S
of N agents, each of whom makes some
investment x; in human capital at cost
C/(x,). There is also a set of physical assets
A in which ownership may be assigned in
various ways. An ownership assignment is
indicated by a function a that associates
with any possible coalition S of agents the
set a(S) of assets that the coalition controls.
It is assumed that S cS* implies a(S)C
a(S*). Hart and Moore model the eventual
bargaining among the parties as a coopera-
tive game with transferable utility and rep-
resent its solution using the concept of the
Shapley value. For this to make sense, it
should be efficient for the coalition-of-the-
whole to form, and we will assume this. The
value of a coalition S controlling a set of
assets A when investments x = (x,...,x,)
have been made is v(S,A,x). The Shapley

This example also fits the framework of supermod-
ular games. The conclusions derived here can alterna-
tively be derived using the theorems about supermodu-
lar games of Milgrom and Roberts (1990b).
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value for individual i is then
Bi(a,x)= L p(S)[v(S, a(8),x)
—v(S\{i},a(S\{i}),%)]
where the sum is over those S with i€ S
and p(S) = (#S— DI(N — #8)!/N!. The
idea is to investigate how alternative assign-
ments of the ownership rights affect individ-
ual investments in human capital when those
investments cannot be enforced by contract.
Any agreement that the agents reach con-
cerning their investment must be self-
enforcing, that is, a Nash equilibrium of the
investment game.

Following Hart and Moore, we assume (i)
that investments of different agents in a
coalition are complementary and that an
agent’s investments benefit only coalitions
of which he is a member. Formally, this
means that 9%v/dx;dx;>0 for i#j and
dv(S,A,x)/dx; =0 for i €S. Assumption (i)
implies that 92B; /dx;dx; > 0 for i # j, which
implies (by a theorem of Topkis), that i’s
maximum best-reply function is nondecreas-
ing in the other agents’ investment levels.
Then, according to Theorem 4, there exists
a largest equilibrium, that is, one with the
highest level of human-capital investment
by every agent.

Next, we assume in addition (ii) that the
marginal products of investment dv /dx; are
monotone nondecreasing functions of the
inclusiveness of the coalition and its set of
assets. By inspection of the formula defining
B/(a,x), this implies that each B; is mono-
tone nondecreasing in x; for all j # i: there
are “positive externalities.” Since each
agent’s payoff is a nondecreasing function
of the other agents’ investments, each agent
prefers the equilibrium with the highest in-
vestment by other agents. Hence, the maxi-
mum investment equilibrium is Pareto-pre-
ferred to all other equilibria. We assume
that this Pareto-preferred equilibrium is the
self-enforcing agreement that the agents
would select.

According to Theorem 4,'° any change in
the ownership allocation a that increases

10This result also follows from Theorem 3.
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dB; /dx; for every agent i leads to a higher
level of investment at the selected equilib-
rium. This is one of Hart and Moore’s (1990)
central conclusions, obtained here using only
assumptions (i) and (ii).

A second key conclusion of their analysis
is that the equilibrium levels of investment
are less than the first-best levels. By the
assumptions already made, duv(S,A,x)/dx;
>0B; /dx;, and the first-best investment
levels are those arising at the Pareto-best
Nash equilibrium of the (team) game in
which each agent i chooses x; to maximize
the social objective v(S,A,x)— C/(x;). Ap-
plying Topkis’s theorem, the maximum
best-reply function in this game lies above
that for the actual game. Hence, by Theo-
rem 4, the first-best investment levels ex-
ceed the investment levels of the Pareto-best
equilibrium of the initial game.

The original analysis by Hart and Moore
employed a large number of simplifying as-
sumptions to reach these same conclusions.
Our analysis shows that none of these addi-
tional assumptions is critical for these cen-
tral conclusions in the context of their
model.

We have already seen that in one-dimen-
sional fixed-point problems, monotonicity of
the fixed-point function in the parameter is
a critical sufficient condition for robust
comparisons. The logic of Corollaries 3 and
5 makes it clear that the same is true in
multivariate problems. The next theorem
indicates that, in a different context, mono-
tone cross effects among variables are criti-
cal for multivariate equilibrium compar-
isons.

THEOREM 5: Let 1< N <, For each 1
<i<N, let f(x;,x_;,t): [0,1]¥ X T, > [0,1]
be continuous but for upward jumps in x; and
nondecreasing in t;, where T, is any partially
ordered set. Suppose there exists some i, j,
Xj> X, X_;;, t;, and an interval [x}, x}] such
that for all x, €[x!, x],

fi(xi xj,x_i0t) < fi( x5,

"
X7, X_jjst;)e

Then there exist numbers a; and monotone
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nondecreasing functions B,(t;) such that the
extreme fixed points of the function g, where
g(x,t)=a;f(x,t)+ B{t;), are decreasing
functions of t;.

PROOF:

Let a;=0, Bi(t)) = x, and B;(t))=xJ,
a;=x;—x}, and B;=x}, and for k &{i, ]}
let a,=0 and By = x}. By Theorem 4, the
extreme fixed points of this map are de-
creasing functions of ¢;.

Because the f; correspondences will, in
many economic applications, be defined by
a first-order condition, this result points to
the significance of supermodularity (Topkis,
1978; Milgrom and Roberts, 1990a,b) in ob-
taining monotone comparative statics.

Our final theorem is a variation of
LeChatelier’s principle for application to
fixed points. The theorem formalizes the
idea that when there are more positive
feedbacks at work in a monotonic equilib-
rium system, the system adjusts more to an
exogenous change in a parameter. Here, we
formulate the principle for fixed points on
[0,1]° in the style of Theorem 4. A corre-
sponding statement can be made in the style
of Theorem 3, as well.

THEOREM 6: Let 1< N <x. For each 1
<i<N, let f(x;,x_;,1): [0,1]¥ X T —[0,1]
be continuous but for upward jumps in x; and
nondecreasing in Xx_; and t;, where T is any
partially ordered set. Suppose that X satisfies
X = f(%,1). Given a set Sc{l,..., N}, define
F£:00,11Y X T - [0,1]" by f(x, = X; forie
S and f(x,t)= f(x,t) for i &S. Let x.(8)
and xH(t) be the extreme fixed points of f
and let X,(t) and X (t) be those of f. (The
existence of these is guaranteed by Theorem
4.) Then for t >t x,(t)>%,(t); and for
t <t x (1) <x (o).

PROOF:
As in Theorem 4, define

gi(x,t) = inf{y,| f;,(y;,x_;,t) <y}

and note that x,(¢) = inf{x|g(x, t) < x}. Sim-
ilarly, for i €S define g;(x,t)=X; and, for
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L
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FiGURE 7. THE GLOBAL IDEAS ALsO APPLY
LocaLry UsiNnG THE FuncrioN f(Box 1)
or f~1(Box 2)

[ €S, é,-(x, t)= inf{y,-lf,-(y,-,xs_,-,is, 1)< y,-}.
Notice that the functions g and g are
monotone nondecreasing, and hence, for ¢
<, by the definition of X, both map the set
[0,x] into itself. Also, for all x €[0,%] and
t<tg(x,t)<g(xt), and the lowest fixed
points are given by x,;(¢) and X,(¢). Hence,
by Theorem 3, x,(¢) < X,(¢). The conclusion
about xy; is an order dual to the conclusion
about x; .

We shall return to the LeChatelier princi-
ple in Section III.

II. Local Comparisons

The results reported in the previous sec-
tion entail global comparisons of extreme
fixed points or extreme solutions to a set of
equations. In this section, we show how the
local results of the traditional approach
based on the implicit-function theorem can
be derived using the global approach. Fig-
ure 7 illustrates the main idea at a glance:
the global ideas apply separately to each
locale.

More precisely, suppose that the equilib-
rium value of the single endogenous vari-
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able in some model is characterized as any
solution of an equation x = f(x,¢).If fisa
smooth function and (x(%),#) is a regular
point and a zero of f(x,t)— x, then by the
implicit-function theorem there is a neigh-
borhood of f on which there is a unlque
local solution x(t) satisfying

x'(t)=f/(1=f,).

So, if f, <1, then x(-) is increasing in ¢ in
this neighborhood if and only if f is. Apply-
ing Corollary 1 to a neighborhood of (%, x(7))
produces the same conclusion. The conclu-
sion for the case where f, > 1 follows from
(the order dual of) Theorem 1. In both
cases, our results continue to apply even
when f is not smooth or the equilibrium
point is not a regular point, provided a
unique equilibrium continues to exist in the
relevant discrete neighborhood. In addition,
as already noted, our results apply globally
to the extreme equilibria.!!

In multivariate equilibrium models, it is
frequently possible to employ ideas from
the implicit-function-theorem approach use-
fully to check the conditions of the ordinal
approach. For example, consider a model
with endogenous variables, x €R and y €
RY, where the solution is given by x =
f(x,y,t) and y = g(x,y, t), where the latter
equation has a unique solution y*(x, ¢) that
is amenable to analysis by the implicit-func-
tion theorem, while the first equation may
entail multiple equilibria and discontinu-
ities. The way the extreme equilibrium val-
ues of x vary with ¢ depends on the proper-
ties of h(x,t)= f(x,y*(x,t),t). In case the
composite function 4 is smooth, Theorem 1
suggests that a sufficient condition for x*(¢)
to be increasing is that 4, /(1— h,) be posi-
tive, which coincides with the Jacobian
condition of the traditional analysis. This
establishes that our results subsume the tra-

ot course, the implicit-function-theorem approach
does yield an explicit formula for the derivative x'(¢),
and our approach does not. Note, however, that many
of the conclusions that the formula might be used to
derive (for example, a result that x'> « # 0) are not
robust: they rely on taking the specific model very
seriously.
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ditional ones. However, our results also
cover other cases. For example, if f is
monotone nondecreasing in its second argu-
ment and y* is monotone nondecreasing in
t, then Theorems 3 and 4 may apply. As
discussed in connection with Figure 6, if f
is not monotone in y or g is not monotone
in x and if the equation y = g(x,y, ¢) may
have multiple solutions y for fixed (x,¢),
then the problem of comparing equilibria
becomes more difficult.

III. The LeChatelier Principle

The Samuelson-LeChatelier principle
represents one of the most celebrated com-
parative-statics conclusions in economics. In
fact, Paul Samuelson proved what he con-
sidered to be two distinct versions of the
principle. The more familiar is that from
The Foundations of Economic Analysis
(Samuelson, 1947), which focuses on situa-
tions modeled as optimization problems. For
example, in the context of the theory of the
profit-maximizing competitive firm, the
usual statement of this version of the princi-
ple asserts that, starting from a point at
which the firm has fully optimized relative
to some specific set of limitations on its
input choices, adding more such restrictions
reduces the magnitude by which the firm’s
demand for an input falls in response to a
small increase in the input’s price. In partic-
ular, starting from a point on the long-run
input demand curve, the demand for an
input given an increase of its price is less if
the usage of all inputs is free to vary (the
long run) than if the amounts used are fixed
for some goods (the short run), provided
that the price increase is small. More for-
mally, let good 1 be the input whose price is
changing and let good 2 be fixed in the
short run. Let D(p, x,) denote the demand
for good 1 at price p when the quantity of
good 2 is fixed at x, and let x5(p) be the
long-run demand for good 2 given the vary-
ing price of good 1. Given an initial price p
for good 1, the short-run demand for good 1
when the current price shifts to p is
D(p, x¥(p)). The corresponding long-run
demand is L(p)= D(p,x%(p)). Using sub-
scripts for partial derivatives, the differen-
tial statement of LeChatelier’s principle is
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that L'(p) < D,(p, x3(p)). The same state-
ment holds when the demand relations are
reinterpreted as compensated consumer de-
mands.

Samuelson’s proof of this result used the
definiteness of the Hessian matrix corre-
sponding to the second-order conditions of
the optimization problem. More recently, a
proof due to Eugene Silberberg (1974) that
uses duality theory has become standard:
see, for example, Hal Varian (1992). Both
arguments are local: they compare deriva-
tives at a point and so at most say some-
thing about the functions themselves on a
neighborhood of the original price p.

The formal result embodied in the
Samuelson (1947) and Silberberg (1974)
proofs is much weaker than what is often
taught in elementary economics courses,
where one describes, for example, how an
increase in the price of oil leads in the long
run to reduced purchases of complementary
products (e.g., automobiles) and the in-
creased purchase of substitutes (insulation,
public transportation), which cause the
long-run response to the price increase to
exceed the short-run response.

Strikingly, the verbal argument does not
seem to impose any condition that the price
change. be small. Moreover, it suggests that
the result should be that for p > p, L(p) <
D(p, x3(p)). Analysis based on simple
monotonicity arguments confirms the usual
classroom arguments, given certain condi-
tions that classroom treatments usually omit.
Indeed, if good 2 is a complement for good
1, then x¥(-) is decreasing and D(p, ) is
increasing for each p, so for p> p, L(p) =
D(p,x¥(p)) < D(p, x3(p). If good 2 is a
substitute for good 1, the order-dual argu-
ment applies: x% is increasing and D(p, *)
is decreasing, so again L(p)= D(p, x¥(p))
< D(p, x3(p).”?

Note that the monotonicity argument that
long-run demand varies more than short-run
demand employs an extra explicit assump-
tion: good 2 in the analysis is either a substi-

2Morishima (1964) makes a related argument using
the assumptions that consumers are rational (demand
functions are homogeneous and symmetric) and that
all goods are gross substitutes.
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tute or a complement for good 1 over the
entire domain in question. The conclusion
of LeChatelier’s principle does not apply if
the two goods are substitutes over some
ranges and complements over others. This
is easily seen in a simple example.

Suppose a firm can produce either zero
or one unit of output using oil and capital
as inputs (we could allow for divisible inputs
and impose the usual sort of Inada bound-
ary conditions in this example without dif-
ficulty). Capital is fixed in the short run, but
in the long run it can be increased by a unit,
which costs $24. Oil usage is variable, and
zero output requires zero oil use. With the
original level of capital, producing a unit of
output requires two units of oil. If a unit of
new capital is purchased, then producing a
unit of output requires only one unit of oil.
The price of the output is fixed at $56 (see
Fig. 8)

Let the price of oil initially be p = $20.
Then the long-run optimal plan is to pro-
duce a unit of output using only the original
capital and two units of oil, earning a profit
of $56 —2p = $16. Purchasing a unit of new
capital, the maximum profit would be only
$12. If the price of oil rises to $30, the
optimal short-run response is to cease pro-
duction, netting zero, rather than to con-
tinue producing with the original capital
and lose $4. However, once capital is free to
adjust, the optimal plan is to increase capi-
tal and use one unit of oil to produce a unit
of output, netting $32— p = $2 (see Fig. 8).
Thus, in response to the oil price increase,
oil consumption falls more in the short run
(from two units to zero) than in the long run
(where usage is one unit).
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Samuelson (1960) noted that the version
of LeChatelier’s principle that he had ini-
tially derived from the properties of the
Hessian matrices applied only locally and
that an example like the one above could be
constructed. In this same paper he estab-
lished what he regarded as a second, dis-
tinct version of the principle for systems
characterized by Minkowski matrices, in-
cluding Leontief input—output systems and
systems with gross substitutes. This version
was, in fact, global, because these systems
do not permit goods to switch between be-
ing substitutes and complements.

The critical sufficient condition in our
approach—that goods are either substitutes
or complements on the range where the
conclusion holds—is in fact also critical for
the first version of LeChatelier’s principle,
but it appears there in the form of the
obscure and innocent-looking assumption
that demand functions are differentiable.!3
To highlight this assumption, let us focus on
regular points of demand, that is, prices
around which demand is a single-valued,
continuously differentiable function of the
prices, with finite, nonzero derivatives.
There is always some neighborhood around
such price vectors in which the two goods in
the analysis are either (compensated-
demand) complements (3D /dx >0 and
dx% /dp < 0) or substitutes (0D /dx <0 and
dx3 /dp > 0). Thus, the apparently unim-
portant differentiability assumptions used in
proving the original version of LeChatelier’s
principle in fact are the key to the result,
because they imply that the critical suffi-
cient condition for the monotonicity argu-
ment holds in some neighborhood of the
initial price. In contrast to Samuelson’s
(1947) original analysis and the one still
cited in the textbooks, our analysis is not
limited to small neighborhoods: the long-run
response to a price increase exceeds the
short-run response for price changes of any
size on any domain where the two goods are

3The condition is obviously critical in any of the
many contexts where the preceding linear example can
arise or be closely approximated.
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always substitutes or always complements.
Meanwhile, the properties of the Hessians
or the dual functions used in the standard
proofs—and even maximization itself—are
irrelevant for the analysis.

Once the critical monotonicity assump-
tions have been identified, it becomes clear
that one can eschew maximization alto-
gether and still derive a version of LeChate-
lier’s principle in behavioral models of
adaptively rational decision-making. For ex-
ample, suppose a firm produces output
using two inputs (capital and labor), subject
to the production constraint that x =
F(k,l). Suppose further that the current
output decision is made by a marketing
manager and the current capital decision is
made independently by a factory manager,
with labor use varying as necessary to make
the two choices consistent. Finally, suppose
that the marketing manager’s current out-
put choice is a continuous-but-for-upward-
jumps function of the immediate past out-
put choice and a monotone nondecreasing
function of the current price of output and
the immediate past capital stock, while the
factory manager’s current capital choice is a
continuous-but-for-upward-jumps function
of the immediate past level of capital and a
nondecreasing function of output (“capital
is a normal input”). Suppose the price of
output increases. In that case, by Theorem
4, the extreme equilibrium output and capi-
tal levels will rise. Moreover, if capital is
held fixed at any equilibrium level for the
" old price, then the maximal equilibrium out-
put is less than if capital is free to vary
(Theorem 6).

Bounded rationality provides many mod-
eling options, and it would be disingenuous
not to point out that alternative assump-
tions about the organization of decision-
making can yield different conclusions. One
specific alternative in this example has the
two managers choosing capital and labor,
rather than capital and output. In that case,
it is at least plausible that current input
choices might be decreasing functions of the
past levels of the other input (due to input
substitution) and that the supply of both
inputs may be increasing functions of the
current price of output and a decreasing
function of the price of that input. In that
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case, the extreme equilibrium responses of
a firm to an input price change is easy to
verify: the firm substitutes in favor of the
input whose price has fallen. Again,
LeChatelier’s principle applies if one input
is assumed to be fixed. However, with this
organization of decisions, the response of
the firm to an output price increase de-
pends on the details of the adjustment pro-
cess (Theorem 4). Thus, the organization of
decision-making in an adaptively rational
firm can have profound implications for the
way it responds to exogenous shocks.

IV. Conclusion

The theory presented in this paper is part
of an emerging new conception of compara-
tive statics in which the robustness of results
—that is, the breadth of the contexts in
which they apply—is a central concern. The
emerging theory emphasizes global conclu-
sions, rather than conclusions that apply
only when parameter changes are suffi-
ciently small. It emphasizes ordinal condi-
tions—ones that are invariant to order-pre-
serving transformations—and suppresses
conditions like convexity that are not invari-
ant and therefore not helpful for discerning
the full scope of any comparative-statics
analysis.

The focus on critical assumptions has sev-
eral immediate and important payoffs. First,
it may often lead to unifications of diverse
but related theories and to extensions of
each. For example, one of our analyses uni-
fies Samuelson’s two versions of LeChate-
lier’s principle. Another extends the Hart-
Moore asset analysis by omitting most of
the restrictive assumptions of the original
treatment. Second, our approach can help
to make intuitive analyses rigorous. For ex-
ample, we justified the general intuitive
principle that long-run demand is more re-
sponsive to a price change than short-run
demand, while exposing the critical assump-
tion on which the intuitive argument relies
and avoiding unnecessary technicalities.
Third, by establishing the full scope of a
result, this focus can lead to unanticipated
extensions, such as our extension of the
analysis of long- and short-run demand to
behavioral models of boundedly rational
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decision-makers. Finally, the new methods
based on critical assumptions are simpler
than analyses which require “simplifying as-
sumptions,” if only because fewer assump-
tions are required. This simplicity makes
the formal logic easier to explain to non-
mathematical social scientists. This last pay-
off might be the most important of all.
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