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This paper studies the properties of the solution to the heterogeneous agents model in

Den Haan et al. [2009. Computational suite of models with heterogeneous agents:

incomplete markets and aggregate uncertainty. Journal of Economic Dynamics and

Control, this issue]. To solve for the individual policy rules, we use an Euler-equation

method iterating on a grid of pre-specified points. To compute the aggregate law of

motion, we use the stochastic-simulation approach of Krusell and Smith [1998. Income

and wealth heterogeneity in the macroeconomy. Journal of Political Economy 106,

868–896]. We also compare the stochastic- and non-stochastic-simulation versions of

the Krusell–Smith algorithm, and we find that the two versions are similar in terms of

their speed and accuracy.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

This paper studies the properties of the solution to the incomplete markets model with aggregate uncertainty in Den
Haan et al. (2009). Our solution method consists of two interconnected steps: the first is to solve the individual problem for
a given aggregate behavior of the economy and the second is to compute the aggregate law of motion for the given
individual policy rules. We iterate on these two steps until we find a fixed point at which the individual and aggregate
policy rules are mutually consistent.

Step one is straightforward: the individual problem is the typical capital-accumulation problem with an occasionally
binding borrowing constraint, and it can be solved by the standard numerical methods. We solve the individual problem by
using a grid-based Euler-equation algorithm similar to that in Maliar and Maliar (2005, 2006). We extend Maliar and
Maliar’s (2005, 2006) algorithm by incorporating a simple polynomial rule for constructing the grid, which allows us to
vary the concentration of capital grid points on different parts of the domain, thus increasing the accuracy of
approximation on non-linear parts of the policy rules. Our algorithm is also similar to the grid-based Euler-equation
method used by Baxter et al. (1990) for solving the standard one-sector growth model. Furthermore, our algorithm is
related to the parameterized expectations algorithm used in Den Haan and Marcet (1990), Den Haan (1997), Christiano and
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Fisher (2000), Maliar and Maliar (2003b), and Algan et al. (2008). However, the above papers parameterize an expectation
term in the Euler equation and use a polynomial approximation, whereas we parameterize a capital function and compute
a solution on a grid of pre-specified points.1

Step two is non-trivial. Decisions of each heterogeneous agent depend on the interest rate and wage rate, which in turn
depend on the aggregate capital stock. Since the aggregate capital stock is determined by capital holdings of all
heterogeneous agents, the whole capital distribution becomes a state variable.2 With a continuum of agents, this
distribution is a function, and therefore, it cannot be used as an argument of the individual policy rules. To deal with this
problem, Krusell and Smith (1998) propose to summarize the capital distribution by a discrete and finite set of moments.3

They solve the individual problem by using value iteration, and they compute the aggregate law of motion by simulating a
panel for a large finite number of agents and by running regressions on the simulated data. In this paper, we follow the
stochastic-simulation approach of Krusell and Smith (1998). Consequently, our solution procedure is a variant of the
Krusell–Smith algorithm, specifically one in which the individual problem is solved by an Euler-equation method instead of
Krusell and Smith’s (1998) value function iteration. Our computer programs are written in MATLAB in an instructive
manner and are provided on the JEDC web site (see the web pages of the authors for updated versions of the program).

An important advantage of the stochastic-simulation Krusell–Smith algorithm is that it is simple, intuitive and easy to
program. As Algan et al. (2008) show, however, stochastic-simulation methods have two potential shortcomings. First, the
introduction of stochastic simulations produces sampling noise, which makes the policy rules to depend on a specific
random draw. Second, the simulated endogenous data are clustered around the mean, which implies that the accuracy of
the approximation on the tails is low. They argue that replacing a stochastic simulation with a non-stochastic one can
enhance the accuracy and speed of the algorithm. Therefore, it is of interest to assess the accuracy of the stochastic-
simulation version of the Krusell–Smith algorithm and to compare it with a non-stochastic-simulation version.

We find that, despite the above shortcomings, the stochastic-simulation Krusell–Smith method produces sufficiently
accurate solutions.4 This is true even under our relatively small panel of 10,000 agents and relatively short simulation
length of 1,100 periods. For example, in an accuracy test where the model was simulated on a random realization of shocks
of 10,000 periods, the average and maximum errors in our aggregate capital series were 0.050% and 0.156%, respectively.
Furthermore, we consider a non-stochastic-simulation Krusell–Smith algorithm where simulations are performed on a grid
of pre-specified points, as is described in the appendix in Den Haan (2009).5 We find that the benchmark stochastic-
simulation version of the Krusell–Smith algorithm with a panel of 10,000 agents has approximately the same cost as the
non-stochastic-simulation version with a grid of 1,000 points and produces solutions of comparable (or even higher)
accuracy. Thus, in our case, the introduction of non-stochastic simulation does not lead to substantial improvements.

2. The individual problem

In this section, we describe an Euler-equation algorithm for finding a solution to the individual problem described in
Den Haan et al. (2009). This is the standard capital-accumulation problem with an occasionally binding borrowing
constraint. The Euler equation, the budget constraint, the borrowing constraint and the Kuhn–Tucker conditions,
respectively, are

c�g � h ¼ bEfðc0Þ�gð1� dþ r0Þg, (1)

k0 ¼ ð1� tÞwl�þ mwð1� �Þ þ ð1� dþ rÞk� c, (2)

k0 � 0, (3)

h � 0; hk0 ¼ 0, (4)

where variables without and with primes refer to the current and future periods, respectively (we omit the individual
superscripts for the sake of notational convenience). Here, c is consumption; k is capital; � is an idiosyncratic shock that
determines an employment status, with � ¼ 1 and � ¼ 0 representing the employed and unemployed states, respectively; h
1 For a general discussion of the Euler-equation methods, see Judd (1998).
2 Under the assumption of complete markets, the aggregate behavior of a similar heterogeneous-agent economy with idiosyncratic and aggregate

uncertainty can be described by a one-consumer model; see Maliar and Maliar (2003a) for this aggregation result. In this special case, the state space does

not include the whole capital distribution but only its mean.
3 Den Haan (1997) proposes an alternative approach for dealing with this problem, namely, to parameterize the cross-sectional distribution with a

polynomial.
4 An exception is very large errors produced by our method in a dynamic Euler-equation accuracy test, see Table 14 in Den Haan (2009). A typo in our

program is responsible for these large errors. After we corrected the typo, the errors became considerably lower, namely, in Table 14, the capital (scaled)

average and maximum errors should be equal to 0.0319% and 0.0926%, respectively, and the consumption average and maximum errors should be equal to

0.0091% and 0.4360%, respectively.
5 This non-stochastic-simulation procedure is close to the one considered in Rios-Rull (1997). A different non-stochastic-simulation procedure is

proposed by Young (2009), who was the first to combine the Krusell–Smith algorithm with non-stochastic simulation. Algan et al. (2008) perform a

comparison of Rios-Rull’s (1997) and Young’s (2009) and their own procedures.
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is the Lagrange multiplier associated with the borrowing constraint (3); r, w, m and t are the interest rate, wage rate,
unemployment–benefit rate and labor–income tax rate, respectively; b 2 ð0;1Þ is the discount factor; d 2 ð0;1� is the
depreciation rate of capital; g40 is the utility-function parameter; and l is the time endowment.

The interest rate, wage and labor-income tax rate are given by

r ¼ aa
K

lL

� �a�1

; w ¼ ð1� aÞa K

lL

� �a
; t ¼ mu

lL
,

where a is an aggregate productivity shock, which can take two values 1�Da and 1þDa; u ¼ uðaÞ is the unemployment
rate, which takes two values depending on the aggregate productivity shock, uð1� Da

Þ and uð1þDa
Þ; K and L � 1� u are

the aggregate capital and labor, respectively; and a 2 ð0;1Þ is the share of capital in production.
Our objective is to compute the individual policy rule for choosing the next-period capital stock k0. We restrict attention

to a first-order recursive Markov equilibrium for which the individual policy rules are time-invariant functions of a current
state. In an economy without aggregate uncertainty, Da

¼ 0, the individual state variables are k and �, and the individual
policy rule for capital is k0 ¼ k0ðk; �Þ. This economy is first considered in Huggett (1993) and Aiyagari (1994) and can be
studied using standard dynamic programming methods. In an economy with aggregate uncertainty, the state space also
includes the aggregate productivity shock a and the capital holdings of all heterogeneous agents. With a continuum of
agents, the distribution of capital is a function, and therefore, it cannot be used as an argument of the individual policy rule.
Following Krusell and Smith (1998), we characterize the capital distribution by a set of moments m.6 We must therefore
find a time-invariant policy rule for the future capital k0 ¼ k0ðk; �;m; aÞ that satisfies conditions (1)–(4).

Using the budget constraint (2), we eliminate current and future consumption from the Euler equation (1) to obtain

ek0 ¼ 1�
mu

lL

� �
wl�þ mwð1� �Þ þ ð1� dþ rÞk

� hþ bE
1� dþ r0

1�
mu0

lL0

� �
w0l�0 þ mw0ð1� �0Þ þ ð1� dþ r0Þk0 � k0ðk0Þ

� �g

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;

�1=g

, (5)

where h � hðk; �;m; aÞ, k0 � k0ðk; �;m; aÞ and k0ðk0Þ � k0ðk0ðk; �;m; aÞÞ. We choose the relevant intervals for k 2 ½0; kmax� and
m 2 ½mmin;mmax�, and we discretize these intervals to construct a grid of points for ðk; �;m; aÞ. We subsequently solve Eq. (5)
on the grid using the following iterative procedure.
�

rele

app

nee
Step I. Fix some initial capital function, k0ðk; �;m; aÞ, on the grid. We set the initial capital function at k0ðk; �;m; aÞ ¼ 0:9k

for all k; �;m; a.

�
 Step II. For each grid point ðk; �;m; aÞ, substitute the assumed capital function k0ðk; �;m; aÞ in the right-hand side of (5), set

the Lagrange multiplier equal to zero, hðk; �;m; aÞ ¼ 0, and compute the new capital function, ek0ðk; �;m; aÞ in the left-hand
side of (5). For each point on the grid for which ek0ðk; �;m; aÞ does not belong to ½0; kmax�, set ek0ðk; �;m; aÞ equal to the
corresponding boundary value.

�

�
 Step III. Compute the capital function for the next iteration k 0ðk; �;m; aÞ using the following updating formula:

k
�
0
ðk; �;m; aÞ ¼ Zek0ðk; �;m; aÞ þ ð1� ZÞk0ðk; �;m; aÞ, (6)

where Z 2 ð0;1� is an updating parameter.

Iterate on Steps II and III until the maximum difference between k
�
0
ðk; �;m; aÞ and k0ðk; �;m; aÞ is less than a given degree of

precision, which in our case was set at 10�8.
We now discuss several issues related to the algorithm. By construction, the capital function k0ðk; �;m; aÞ satisfies

conditions (1)–(3) and the complementary slackness condition in (4). However, we still need to check that the Lagrange
multiplier hðk; �;m; aÞ is non-negative for each grid point ðk; �;m; aÞ. Notice that since g40, the term fhþ bE½��g�1=g in (5) is
decreasing in h. Given that the unconstrained solution obtained under h ¼ 0 violates the borrowing constraint and that
capital on the left side of (5) must increase to satisfy the borrowing limit, we can preserve the equality sign in (5) only by
increasing the Lagrange multiplier. Hence, our method guarantees that the Lagrange multiplier is always non-negative.

Regarding the upper bound kmax, note that there is an ergodic set for k, which indicates that there exists a value kerg
max

such that the agent chooses k0 inside the interval ½0; kerg
max� at all grid points. However, using kerg

max as kmax leads to a grid that
is too big, in the sense that the upper values of such grid have an extremely low probability of occurring in simulations. We
can therefore save on computational costs by using a kmax that is smaller than kerg

max but is still sufficiently large as to never
6 For the given economy, Krusell and Smith (1998) show that the mean of the capital distribution contains essentially all the information, which is

vant for the individual decision making. This results is referred to in the literature as ‘‘approximate aggregation’’. We shall emphasize that

roximate aggregation is a numerical result that need not hold for other economies, and that in general, many moments in the state space might be

ded for accurate solutions.
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be reached during simulations. In our numerical analysis, we used kmax ¼ 1000, and we found ex post that the simulated
individual capital series never reached even the level of 500, which indicates that kmax ¼ 1000 is acceptable.

Furthermore, as is indicated in Step II, we bound k0 by kmax whenever it exceeds the grid, which ensures that the
individual capital is always inside the interval ½0; kmax�. Alternatively, we can extrapolate the individual policy rule outside
the interval ½0; kmax�. Since the latter alternative is more costly, and the properties of the policy rule in the region near kmax

play a minor role in the solution, we adhere to the former, simpler alternative.
Concerning the number of grid points and their placement, it has been known since Huggett (1993) and Aiyagari (1994)

that individual policy rules in problems with borrowing constraints have kinks near the borrowing constraints, but are
close to linear at higher levels of capital. To accurately approximate the individual policy rule at low levels of capital, many
grid points are thus necessary, while an accurate approximation at high levels of capital requires relatively few grid points.
To take into account the above regularity, we propose the following simple polynomial rule for the placement of grid
points:

zj ¼
j

J

� �y

kmax for j ¼ 0;1; . . . ; J, (7)

where J þ 1 is the number of grid points with J � 1, and y40 is a degree of the polynomial. Rule (7) is normalized so that
z0 ¼ 0 and zJ ¼ kmax. If y ¼ 1, we obtain grid points that are distributed uniformly in the interval ½0; kmax�; if y is increased,
the concentration of grid points in the beginning of the interval increases while the concentration of grid points toward the
end of the interval decreases.

To determine the degree of the polynomial y that leads to the most accurate solution for a given number of grid points,
we first compute an ‘‘accurate’’ solution by considering 100,000 grid points uniformly placed in the interval ½0; kmax�. We
then compute ‘‘approximate’’ solutions by considering 100 grid points, placed according to rule (7) using various values of
y. We then examine the average and maximum percentage errors between the capital choices under the ‘‘accurate’’ and
‘‘approximate’’ solutions. We find that the smallest errors are obtained under the polynomial degree y ¼ 7: the average
error was 0.0002% in this case, and the maximum error was 0.09%. We thus choose a 100-point grid with y ¼ 7, as the
benchmark. We also investigate the relationship between the solution’s accuracy and the number of grid points, and we
find that increasing the number of grid points from 100 to 400 augments the accuracy of the solution by about one order of
magnitude.

We find that the properties of the solution can significantly depend on a specific interpolation procedure used for
evaluating the decision rules off the grid. To compute the capital function off the grid, we try both a linear and a cubic
polynomial interpolation. In our case, the cubic polynomial interpolation is about three times slower than the linear
interpolation but produces considerably more accurate solutions. Given restrictions on computational cost, we therefore
face a trade-off between a linear interpolation with many points and a cubic interpolation with fewer of points. After
running a number of experiments, we conclude that the cubic interpolation with fewer points is superior to the linear one
with a large number of points, especially in areas where the policy rules are non-linear.
3. The stochastic-simulation algorithm

In this section, we discuss a version of the stochastic-simulation Krusell–Smith algorithm for solving the model with
aggregate uncertainty. We parameterize the aggregate law of motion (ALM) for a set of moments of the capital distribution,
m, by the following flexible functional form:

m0 ¼ f ðm; a; bÞ, (8)

where b is a vector of the ALM coefficients. Subsequently, we compute b by using the following iterative procedure.

Algorithm 1 (stochastic simulation).
�
 Step I. Fix an initial vector of coefficients b. Generate and fix time series of length T for the aggregate shocks. Fix the
initial distribution of capital across N heterogeneous agents. For each agent, generate and fix a time series of length T for
the idiosyncratic shocks.

�
 Step II. Given b and ALM (8), compute a solution to the individual problem as described in Section 2.

�
 Step III. Use the individual policy rules computed in Step II to simulate the economy T periods forward by explicitly

solving for the capital holdings of each agent i ¼ 1; . . . ;N, and by calculating the set of statistics mt for each t ¼ 1; . . . ; T.

�
 Step IV. Regress the time series for the statistics mtþ1 as calculated in Step III on the functional form f ðmt ; at; bÞ, and call

the regression coefficients eb.

�
 Step V. Compute the ALM coefficients for next iteration by using updating:

b
�

¼ lebþ ð1� lÞb, (9)

where l 2 ð0;1� is an updating parameter.
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Fig. 1. Accuracy of the aggregate law of motion under Algorithm 1 (random shocks).
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Iterate on Steps II–V until the average squared difference between b
�

and b is less than a given degree of precision, which
we set 10�8.

In our experiments, we take m to be either the first moment (mean) or the first and second moments (mean and
variance) of the capital distribution. We assume that for each aggregate state, ALM (8) is a linear function of moments. For
the mean, we consider a grid of four uniformly distributed values in the interval from 75% to 125% of the capital mean of
the ergodic distribution, and for the variance, we consider a grid of four uniformly distributed values in the interval from
10% to 500% of the capital variance of the ergodic distribution. In fact, the above ranges of the grid values are substantially
larger than those implied by the ergodic distribution. This is because the moments can deviate significantly from their
ergodic values on initial iterations when the solution is inaccurate, whereas our interpolation procedure requires the
moments to always be inside the grid. A more accurate—and more expensive—alternative would use narrower grids for the
moments and apply extrapolation outside the grids.

In the benchmark case, we consider an economy populated by N ¼ 10;000 agents, and we set the length of
simulations at T ¼ 1;100. In order to simulate the economy forward, we use a MATLAB interpolation routine ‘‘interpn’’
under the ‘‘cubic’’ interpolation option. The effect of initial conditions vanishes slowly over time, so that the solution
to the model effectively depends on the initial assumption of capital distribution. To ensure that our initial distribution
of capital comes from an ergodic set, we first solve the model by assuming a uniform distribution, then re-compute the
solution using the resulting terminal distribution as a starting point. To further mitigate the effect of initial condition,
we discard the first 100 periods when re-estimating ALM (8) in Step IV. We report the results only for the one-
moment solution, because the series produced by the one- and two-moment ALM parameterizations are practically
indistinguishable.

For the one-moment solution, the ALM for the bad and good aggregate states are, respectively,

lnðKtþ1Þ ¼ 0:123815þ 0:965565 lnðKtÞ,

and

lnðKtþ1Þ ¼ 0:137800þ 0:963238 lnðKtÞ.

Both regressions have R2 in excess of 0.9999; however, Den Haan (2007) shows that R2 is not a sensible measure in the
context of the ALM accuracy, and that solutions with high R2 values may still be inaccurate according to more appropriate
accuracy measures.7

Den Haan (2007) proposes a powerful accuracy test which compares two aggregate capital series: the first is obtained
by simulating a panel of agents using the individual policy rules, and the second is produced by the ALM. For a simulation
of 10,000 periods on a random realization of shocks, our stochastic-simulation method generates average and maximum
error of 0.050% and 0.156%, respectively. These errors are relatively low; see Den Haan (2009, Table 16) for the results of this
7 Den Haan and Rendahl (2009) report that two solutions to the model, both of which have R2 in excess of 0.999999, differ substantially in terms of

the mean aggregate capital stock predicted. We have similar findings: the stochastic-simulation Krusell–Smith algorithm considered in this section yields

a capital-distribution mean of 39.357, while the non-stochastic-simulation Krusell–Smith algorithm described in the next section (and also characterized

by R2 in excess of 0.9999) yields a mean of 39.037.
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Fig. 2. Accuracy of the aggregate law of motion under Algorithm 1 (peculiar shocks).
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test for other computational methods. To illustrate the errors produced by our algorithm, we plot the first 1,000 periods for
the two simulated capital series in Fig. 1, and we see that they are practically indistinguishable.

As a further accuracy check, we repeat the above test under a peculiar sequence of the aggregate productivity shock, in
which the economy remains in a bad state for the first 100 periods, then shifts into in a good state for the next 100 periods.
Even though this peculiar realization of shocks is very different from the one used in computing the solution, the average
and maximum errors are still very low: 0.062% and 0.146%, respectively. For this experiment, the aggregate capital series
generated by the individual policy rule and by the ALM are shown in Fig. 2. Overall, the solutions produced by this
algorithm are sufficiently accurate even under our computationally undemanding choices such as N ¼ 10;000 and
T ¼ 1;100.

4. Stochastic versus non-stochastic simulation

In this section, we compare the stochastic- and non-stochastic-simulation versions of the Krusell–Smith method. To this
purpose, we replace the procedure for simulating a panel of agents in our benchmark Krusell–Smith algorithm with a
procedure for simulating the evolution of capital distribution on a grid of pre-specified points, as described in the appendix
of Den Haan (2009). We outline the non-stochastic-simulation method below.

Algorithm 2 (non-stochastic simulation).
�
 Step I. Fix an initial vector of coefficients b. Generate and fix a time series of length T for the aggregate shocks. Fix the
initial distribution of capital for the employed and unemployed agents on an equally spaced 1,000-point grid over the
interval ½0;100�, i.e., k0 ¼ 0 and kj ¼ 0:1j, j ¼ 1; . . . ;1000.

�
 Step II. Identical to Step II of Algorithm 1.

�
 Step III. Use the individual policy rules computed in Step II to simulate the economy T periods forward by computing the

evolution of the capital distribution on the grid, as described in Den Haan (2009), and by calculating the set of statistics
mt for each t ¼ 1; . . . ; T .

�
 Steps IV–V. These are identical to Steps IV–V of Algorithm 1.

Iterate on Steps II–V until the average squared difference between b
�

and b is less than a given degree of precision, which
we set in this case as 10�8.

Den Haan (2009) proposes to compute the next-period capital distribution on the grid by solving the following non-
linear problem at each grid point:

k0ðx�;jt ; �Þ ¼ kj, (10)

where x�;jt is the current level of capital of agents with an employment status � 2 f0;1g such that the future capital choice is
equal to the grid point kj. We solve (10) by using the interpolation twice. Specifically, for each t ¼ 1; . . . ; T:
(1)
 for given mt and at , we interpolate the policy rules for employed and unemployed agents to obtain k0ðk;1;mt ; atÞ and
k0ðk;0;mt ; atÞ, respectively;
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Fig. 3. Accuracy of the aggregate law of motion under Algorithm 2 (peculiar shocks).
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(2)
8

(199
9

next
we define the inverse functions of k0ðk;1;mt ; atÞ and k0ðk;0;mt ; atÞ (i.e., we view k0 as an argument, and we view k as a
function of k0), and we use interpolation to restore the values of the inverse functions at each grid point ki.

8

We take the initial capital distribution on the grid from Den Haan et al. (2009). To make this algorithm comparable to the
stochastic-simulation algorithm, we use the same simulation length of T ¼ 1;100, and we discard the first 100 periods
when re-estimating ALM (8) on Step IV.

The two interpolation steps, which are components of Algorithm 2 but are absent in Algorithm 1, are costly. As a result,
the computational costs associated with the non-stochastic simulation is higher than the computational costs of the
stochastic simulation. Specifically, we find that running Algorithm 1 with a panel of 10,000 agents costs approximately the
same as running Algorithm 2 with a grid of 1,000 points, and the results are of similar accuracy. Presumably, we can reduce
the cost of non-stochastic simulation by solving the non-linear problem (10) with a procedure that is more efficient than
our double interpolation.9

In Algorithm 2, the ALM for the bad and good aggregate states are, respectively,

lnðKtþ1Þ ¼ 0:122146þ 0:965942 lnðKtÞ,

and

lnðKtþ1Þ ¼ 0:136272þ 0:963582 lnðKtÞ.

The R2 values of these two regressions were both in excess of 0.999999, and both were also higher than the R2s produced in
Algorithm 1. Again, however, this does not necessarily mean that Algorithm 2 produces more accurate solutions than
Algorithm 1.

To determine the relative accuracy of Algorithm 2, we perform the same two accuracy tests on Algorithm 2 that were
applied to Algorithm 1. For a simulation of 10,000 periods with a random realization of shocks, Algorithm 2 produces an
average error of 0.044%, which is smaller than the error of 0.050% generated under Algorithm 1. However, the maximum
error under Algorithm 2 is 0.187%, which is somewhat larger than Algorithm 1’s error of 0.156%. We do not provide a figure
for the series obtained under Algorithm 2 as a result of this test, as such a figure is visually identical to Fig. 1 which was
obtained under Algorithm 1.

For a simulation of 200 periods with a peculiar shock sequence (100 periods of bad shocks and 100 periods of good
shocks), Algorithm 2 produces average and maximum ALM errors of 0.087% and 0.182%, respectively. These are again
somewhat larger than the corresponding errors generated by Algorithm 1 which are 0.062% and 0.146%. In Fig. 3, we plot
the aggregate capital series generated by the individual policy rule and by the ALM under Algorithm 2. A comparison of
Figs. 2 and 3 shows that unlike Algorithm 1, which generates the largest errors toward the end of the simulation, Algorithm
2 generates the largest errors around the middle of the simulation, toward the end of the bad period.

As an additional accuracy check, we compute the average and maximum Euler-equation errors for a simulation of
10,000 periods on a random realization of shocks (see Table 1). In the benchmark case, Algorithm 2 produces slightly larger
A similar interpolation approach is used in Maliar and Maliar (2006) to solve for an equilibrium interest rate in Huggett’s (1993) and Aiyagari’s

4) model extended to include quasi-geometric (hyperbolic) consumers.

Young (2009) proposes a different variant of a non-stochastic-simulation procedure where the current capital is assumed to be on the grid and the

-period capital is obtained from the capital policy function. This procedure does not require an inverse and is consequently much faster.
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Table 1
Euler-equation errors for a simulation of 10,000 periods on a random realization of shocks.

100 grid points, T ¼ 1;100 300 grid points, T ¼ 1;100 100 grid points, T ¼ 10;100

Average (%) Maximum (%) Average (%) Maximum (%) Average (%) Maximum (%)

Algorithm 1 0.0065 0.1569 0.0059 0.0965 0.0095 0.1449

Algorithm 2 0.0067 0.1546 0.0060 0.0966 0.0066 0.1563
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Euler-equation errors than Algorithm 1 does (see column (1)). We also investigate the dependence of the Euler-equation
errors on the accuracy of the individual policy rule by increasing the number of capital grid points in the individual
problem from 100 to 300 (see column (2)), and we study the dependence of the Euler-equation errors on the simulation
length by increasing T from 1;100 to 10;100 (see column (3)). As the table presents, these two modifications have little
effect on the magnitudes of the errors. We perform additional sensitivity experiments by varying the number of agents in
Algorithm 1 and the number of grid points in Algorithm 2, and we find that the Euler-equation errors are not significantly
affected.
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