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Introduction 
Theoretical treatments of auctions usually analyze situations in which there is some 

particular item to be bought or sold and the question is what auction format to use. In real 

auctions, however, the important planning starts much earlier and is much more 

encompassing. For example, in a bankruptcy auction, the auctioneer may need to decide 

whether to sell a whole company as a single unit or its various assets individually, what 

guarantees to offer concerning the conditions of its physical assets, what kinds of 

financing terms to require, how much time to allow buyers to obtain needed regulatory or 

other approvals for the acquisition, and so on. 

A similarly richer set of questions arises when a buyer runs a procurement auction. 

For example, when the Chilean government sought to buy milk for its school milk 

programs, it had to decide about the sizes of the regions to be served, whether to require 

bonding or other performance guarantees and at what levels, how to measure and reward 

quality, whether and how to account for differences in past performances of suppliers, 

etc. 

Often, these packaging decisions, which establish what will be bought or sold in the 

auction and how bids will be compared, are among the most critical decisions the 

auctioneer makes. Arguably, in the Chilean milk auction example, if the government 

were to specify that bids for service are to cover large areas of the nation, then smaller 

milk suppliers would effectively be precluded from bidding. At the same time, larger 
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bidders, enjoying economies of scale in serving a large market, could pass on part of their 

cost savings by reducing their bids. Given these offsetting effects, how should the service 

areas be specified?  

In the US telecommunications spectrum auctions, sophisticated bidders anticipated 

the effects of packaging on the auction and lobbied the spectrum regulator for packages 

that served their individual interests. For example, the long-distance company MCI 

lobbied for a nationwide license which, it claimed, would enable cell phone companies to 

offer seamless coverage across the entire country. MCI knew that if such a nationwide 

license plan were adopted, it would exclude existing mobile telephone service providers 

from bidding, because those providers were ineligible to acquire new licenses covering 

areas that they already served. In the same proceeding, regional telephone companies 

such as Pacific Bell lobbied for licenses covering regional areas that fit well with their 

own business plans but poorly with the plans of MCI.1  

Typically, the auctioneer does not know which packaging decision is optimal. 

Ideally, one would like to avoid predetermining the packaging decision, instead designing 

an auction mechanism that allows bidders with different plans to bid accordingly. In that 

way, competition among the bidders would determine not just the prices but the relevant 

packaging decisions as well.  

The extra complexity involved in package auctions has been a serious barrier to 

implementation and is discussed extensively in other chapters of this book. In this 

chapter, we set aside the issue of complexity to focus on other aspects of performance. 

                                                 
1 For a more complete account of the pre-auction positioning, see Milgrom (2004), chapter 1.  
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Many discussions of package auctions begin with what is variously called the 

Vickrey auction or the Vickrey-Clarke-Groves (VCG) mechanism.2 As we described in 

chapter 1 of this volume, that mechanism and its extensions have their best performance 

when two conditions are satisfied: (i) the goods for sale are substitutes for all of the 

bidders; and (ii) bidders face no effective budget constraints. When either of these 

conditions fail, however, the VCG mechanism can exhibit serious performance 

deficiencies. We have shown that when goods are not substitutes, VCG revenues can be 

low or zero; revenues can decrease as more bidders are added or as some bidders raise 

their bids; and shill bidding and collusion can become profitable strategies for the 

bidders. Also, when a bidder’s budget constraint is binding, the VCG auction loses its 

dominant-strategy property, eliminating its greatest advantage over other designs.  

A second alternative is simply to solicit sealed bids and to accept the combination 

of bids that maximizes the seller’s revenue or minimizes its cost, subject to any relevant 

constraints. The payment rule is “first price” (i.e., each winning bidder pays the amount 

of the associated bid). The Chilean milk auction cited above was run in that way, and 

several related applications are described in chapters 21-23. A theory of sealed-bid, first-

price package auctions is developed by Bernheim and Whinston (1986). With complete 

information, this design has equilibria that are core allocations. However, this design has 

the same disadvantages as other static pay-as-bid auction formats, always forcing bidders 

to make guesses about the bids of others, and generally yielding inefficient outcomes in 

                                                 
2 Vickrey (1961) originally treated auctions with multiple units of a homogeneous product, while Clarke 
(1971) and Groves (1973) treated public choice problems. In particular, the Clarke-Groves treatment 
explicitly includes both the auctions Vickrey studied and auctions of multiple heterogeneous objects. For 
auction applications, we use “VCG mechanism” and “Vickrey auction” interchangeably.  
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asymmetric environments with private information (including environments satisfying 

the substitutes condition). 

In this chapter, we describe a third alternative, our ascending proxy auction, which 

retains some of the advantages while avoiding some of the disadvantages of the other two 

designs. We show that the new design duplicates the performance of the VCG 

mechanism when the two conditions described above hold, but leads to different results 

in general, avoiding the most serious shortcomings of the VCG mechanism when either 

condition fails. We will also show that, like the first-price package auction design, it has 

full-information equilibria that are core allocations.  

In its simplest form, the ascending proxy auction is a direct revelation mechanism.3 

Each bidder in the auction reports preferences for the contracts/packages that interest it to 

a proxy bidder (who may be an electronic proxy agent, or even the auctioneer), who then 

bids in a series of rounds on the bidder’s behalf. At each round, if a given bidder is not 

among the provisional winners, the proxy makes whatever new bid that the bidder most 

prefers, according to its reported preferences. The auctioneer then considers all bids from 

the current and past rounds and selects his most preferred feasible collection of bids, 

where feasibility incorporates the constraint that the accepted bids can include at most 

one from each bidder. In the simplest case, the auctioneer’s objective is to optimize the 

total price, but any other objective that leads to a unique choice is also allowed. The 

auctioneer’s selected bids become the new provisional allocation—while the associated 

bidders are designated provisional winners—and the process is allowed to repeat until no 

new bids are submitted. 
                                                 
3 The main ideas underlying the ascending proxy auction and its analysis were introduced in Ausubel 
(1997, 1999, 2000), Milgrom (2000a,b), Parkes (1999, 2001) and Ausubel and Milgrom (2002).  
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In the ascending proxy auction, both the nature of the packages or contracts 

between bidders and the seller and the bidders’ preferences among these packages or 

contracts can be very general. In principle, a contract could specify a set of items, price, 

quality, closing date, and so on, and any bidder preferences over such contracts could be 

accommodated. Although sellers will, in practice, want to limit the complexity of bids, 

the generality of the theory highlights the breadth of potential applications. In particular, 

by varying the preferences, one can accommodate bidder budget limits or even financing 

limits that differentially constrain what the bidder can bid for different packages.   

If there is just one item for sale and only price matters, the ascending proxy auction 

is similar to familiar Internet auctions, where a bidder may secretly confide its values to a 

proxy agent (or to the auctioneer), who bids on its behalf. The one important difference is 

that, in the ascending proxy auction, the use of the proxy bidder is mandatory.4 As 

described in chapter 1, a single-item ascending auction with mandatory proxy bidding is 

strategically equivalent to the VCG mechanism for a single item (i.e., the second-price, 

sealed-bid auction). We show that the equivalence between the VCG mechanism and our 

ascending proxy auction extends to the entire range of environments in which the goods 

for sale are substitutes and bidders are not subject to any budget limits. This is the same 

as the range of environments on which the VCG mechanism avoids the problems 

described above. The most interesting question then becomes how the ascending proxy 

auction performs generally, when the preceding assumptions do not apply.  

Our analysis has two parts. The first part characterizes the main property of the 

mapping from bids to outcomes: we find that the auction generally picks a core allocation 
                                                 
4 Some of our results continue to hold when the bidder retains some discretion to modify its proxy 
instructions, but we limit attention here to the pure proxy case.  
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with respect to the preferences reported by the bidders and the seller. If preferences are 

quasi-linear, then the allocation is bidder-optimal, that is, there is no other core allocation 

that all bidders prefer. The second part of our analysis studies equilibrium. We show, 

using an equilibrium refinement, that when budget limits do not apply, the set of 

equilibrium allocations coincides with the set of bidder-optimal core allocations.  

For additional detail about the ascending proxy auction, see Ausubel and Milgrom 

(2002), on which this paper is based, or Milgrom (2004), which discusses additional 

applications and other related auction designs. Some aspects of the ascending proxy 

auction technology are further described in Ausubel and Milgrom (2001). 

Modeling the Ascending Proxy Auction  

Denote the set of participants in the auction by {0,1, ... , }L , where 0 denotes the 

seller and 0l ≠  denotes a bidder. Let lX  denote the finite set of contracts available to 

bidder l. For example, in a spectrum allocation problem, lX  would contain pairs, each 

consisting of a set of spectrum licenses and an associated price. In that case, the relevant 

set lX  is finite if prices are described by positive integers and l faces some overall budget 

limit. For the Brewer-Plott (1996) train scheduling problem, a shipper’s contract specifies 

a train’s departure and arrival times, its direction of travel, and a price. For a procurement 

problem in which the eventual quantity to be purchased is uncertain, a seller’s contract 

specifies a range of permitted quantities and an associated price schedule and may also 

specify contract terms concerning quality, delivery, guarantees, and so on. As described 

in the next section, the model even applies to public decisions with transfers, in which 

case each lX  is a set of pairs describing the joint decision and l’s transfer.  
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In the environments we have described, an allocation is described by a profile of 

contracts 1( ,..., )Lx x x= . A feasible allocation is an element of the non-empty set 

1 ... LF X X⊂ × × .  For a spectrum allocation problem, F would constrain the seller to sell 

each license to at most one bidder. For the Brewer-Plott train scheduling problem, F 

would constrain the set of train schedules so that no trains will crash and safe spacing 

requirements are satisfied.  

In the ascending proxy auction, bids are the contracts that the bidders propose. We 

limit attention here to modeling auctions with voluntary trade. This means that for each 

bidder l, the “null offer” l∅  is always included in lX . For simplicity, we assume that 

1( ,..., )L F∅ ∅ ∈ . This means that the seller is not compelled to sell anything to anyone, 

which ensures that there is always at least one feasible allocation for the seller.  

Suppose that each bidder l ranks any allocations x based only on its own contract lx  

and let l;  denote a strict preference ordering over the finite set lX .5,6 In the proxy 

auction, the bidder reports such a preference ordering to its proxy bidder. The auctioneer 

specifies a preference ordering 0;  over the set of feasible bid profiles F. Given any set of 

bidders S, denote the set of feasible bid profiles for the coalition consisting of those 

bidders and the seller by { }| for allS l lF x F x l S= ∈ =∅ ∉ .  

                                                 
5 This formulation rules out “value interdependencies” in which one bidder’s information might affect 
another bidder’s choices. This assumption would not apply if, for example, the rankings of outcomes 
depend on the resolution of common uncertainties about technology or demand. See Milgrom and Weber 
(1982).  
6 In the case of public decisions with transfers, as described below, each xl describes the joint decision and 
l’s transfer. This allows the bidder to express preferences over a joint decision. 
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Once the bidders report their preferences, the ascending proxy auction operates in a 

series of rounds, where the state variable for the auction is the profile 1,...,( )t
l l LB =  of bid 

sets and the provisional allocation 0
tx . The seller initializes the bid sets by entering the 

null bid on each bidder’s behalf: 0 { }l lB = ∅  and initializes the provisional allocation 0
0x  

by assigning each bidder its null contract: 0
0l lx = ∅ . Each round t of the ascending proxy 

auction proceeds as described below, in which the notation “max” applied to any choice 

set is defined with respect to the chooser’s reported preference ordering. 

1. For each bidder, determine the set of available new bids, t
lA , which comprises 

the individually rational bids not yet made: 1{ | }t t
l l l l l l lA X x x B −= − ∅ −≺ .  

2. Any bidder l who is not a provisional winner and who has not exhausted its 

profitable bids offers its l; -most preferred contract in t
lA . Formally, 

0[ , ]t t
l l lx A= ∅ ≠∅ ⇒  1 {max }t t t

l l lB B A−= ∪ .  

3. All other bidders make no new bids: 1
0[  or ]t t t t

l l l l lx A B B −≠ ∅ = ∅ ⇒ = . 

4. If there are no new bids at round t ( 1t tB B −= ), then the auction terminates and 

the provisional allocation 0
tx  becomes the final allocation. Otherwise ( 1t tB B −≠ ), 

the auctioneer determines its current feasible set, 1{ | }t L t
l l lF F x x B== ∩ ∈∩ , selects 

its 0; -most-preferred element 1
0 maxt tx F+ = , and iterates with round 1t + .  

The ascending proxy algorithm determines a mapping from reported preferences to 

allocations. The first step in the analysis is to establish a key property of that mapping, 

namely, that it picks points in the core.  
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Theorem 1. The allocation determined by the ascending proxy auction is a stable 

allocation (and hence an NTU-core allocation) with respect to the reported preferences.7  

Proof. Let T be the final round and let 0
Tx  be the allocation determined by the 

ascending proxy auction. By construction, 0
Tx  is individually rational for bidders 

( T
lx =∅  or T

l lx ∅; ) and since only the null allocation is feasible for coalitions 

excluding the seller, no coalition of bidders alone can block 0
Tx . It therefore suffices to 

show that no coalition of the seller and one or more bidders can block.  

Let S be any non-empty set of bidders. Suppose Sx F∈ , so that for all l S∉ , 

l lx =∅ . Contrary to our conclusion, suppose that the coalition consisting of the seller and 

the bidders in S blocks 0
Tx  with x, that is, 0 0

Tx x;  and for all l S∈ , 0
T

l lx x=  or 0
T

l l lx x; . 

Consider the components of the auction outcome 0
Tx . By construction, whether l is a 

losing bidder ( 0
T
l lx = ∅ ) or a winning bidder ( 0

T
l lx ≠ ∅ ), by the end of the auction, the 

proxy for l in the auction has made every bid that l weakly prefers to 0
T
lx . In particular, 

the proxy has bid lx , so T
l lx B∈ . Hence, 1,..., { | }T T

l L l lx F x x B F=∈ = ∈ ∩∩ . Then, by step 

4 of the algorithm, it cannot be that 0 0
Tx x; , contradicting the hypothesis that 0

Tx  is 

blocked.  ■ 

                                                 
7 An allocation x is stable if (1) it is feasible ( x F∈ ), (2) it is individually rational for each bidder and for 
the seller, and (3) there exists no S and allocation Sy F∈  such that 0y x;  and for all l S∈ , l l ly x;  or 

l ly x= . The notion of blocking used to define the NTU-core replaces (3) with the weaker requirement that 
there exists no S and allocation Sy F∈  such that l l ly x;  for all {0}l S∈ ∪ , ruling out the possibility that 

l ly x=  for some l S∈ .  
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Theorem 1 provides an important hint about how the ascending proxy auction is 

related to the Vickrey auction. In chapter 1 of this volume, we showed that the Vickrey 

auction leads generally to core allocations only if the goods for sale are substitutes and 

bidder budgets are unlimited. Failure of the outcome to lie in the core, we showed, is 

associated with low seller revenues, non-monotonic prices (adding bidders or increasing 

bidder values may reduce prices), existence of profitable shill-bidding opportunities by 

individual bidders,8 and existence of profitable joint deviations by groups of losing 

bidders. 

Theorem 1 and its proof are closely related to similar results and proofs about 

deferred acceptance algorithms in matching theory. (For example, see Gale and Shapley 

1962, Kelso and Crawford 1982, and Roth and Sotomayor 1990.) In all of these 

algorithms, one side of the market makes a sequence of bids and continues to add bids 

when its old bids are rejected. Further connecting the results is Hatfield and Milgrom’s 

(2004) finding that, if the final allocation from such a cumulative offer process is feasible, 

then it is a stable allocation.  

The Transferable Utility Case 

Theorem 1’s conclusion that the outcome is a stable allocation (and hence an NTU- 

core allocation) with respect to reported preferences has three important limitations. First, 

it does not identify which NTU-core outcome among the possibly many such outcomes is 

selected. Second, it is silent about whether or when the reported preferences are likely to 

coincide with or even resemble the bidders’ actual preferences, which importantly affects 

                                                 
8 See Yokoo, Sakurai and Matsubara (2004) and chapter 7 of this volume for an alternative treatment of 
shills and “false name bidding.”  
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the interpretation of the result. Third, it is silent about how the outcome relates to the 

NTU-core when bidders play an equilibrium strategy that misreports their actual 

preferences. To answer the associated questions, we specialize the model and introduce 

additional assumptions.  

Our first change is to focus attention on the case in which the auction is conducted 

by a seller who ranks feasible collections of bids according to their total price. In this 

setting, an allocation is a pair ( , )z p  where 0 1( ,..., )Lz z z z= =  is a decision and p is a 

vector of cash transfers. In a typical package auction, the decision describes which bidder 

gets which goods, but there are other possibilities as well. For example, in a club or social 

organization, z may describe the levels of investment in club facilities and amenities and 

the ascending proxy auction may be used to decide both z and which bidders will be 

members. In this setting, it is convenient to apply the feasibility criterion to the decision 

z, rather than to the allocation ( , )z p .The condition in the club version of the problem 

that all “members” enjoy the same services ẑ  is F ⊂ { }ˆ 1ˆ
ˆ( ,..., ) | ( ) { , }L l lz Z

z z l z z
∈

∀ ∈ ∅∪ .  

We assume that the bidders’ valuations are quasi-linear, so a bidder’s payoff can be 

written as ( )l lv z p−  or ( )l l lv z p− . In this transferable utility case, the total payoff is 

1
( )L

l ll
v z

=∑  and variations in the payment profile p transfer utility among the participants.  

Finally, to reinforce the idea that there is just one seller, we assume that if 

1( ,..., )Lz z z F= ∈  is a feasible decision, then so is ( , )l lz−∅ . This ensures that one can 

exclude bidder l and its contract without affecting the feasibility of the sale, as is the case 

in many package auctions.  
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The ascending proxy auction modeled in the preceding section uses finite feasible 

sets for the bidders. In the transferable utility case, it simplifies the analysis to imagine 

that the monetary unit is very small, so that the NTU-core is closely approximated by the 

traditional transferable utility (TU) core. We will make our arguments below as if this 

approximation were exact. Also, since the theory was based on the assumption that seller 

preferences are strict, we need a method to resolve ties. Many different procedures are 

satisfactory. For example, it suffices to imagine that the seller breaks ties by adding a 

negligibly small, random, negative amount to each bid.  

To describe the TU core, one must first define the coalitional game (L,w) that is 

associated with the trading model. The set of players is just as above: L {0,..., }L= . The 

coalitional value function is defined as follows: 

 
max ( ), if 0 ,

( )
0,                         if 0 .

l ll Sx X
v x S

w S
S

∈∈
⎧ ∈⎪= ⎨

∉⎪⎩

∑  (1) 

The value of a coalition is the maximum total value the players can create by 

trading among themselves. If the seller is not included in the coalition, that value is zero.  

In TU-games, it is traditional to define the core by suppressing the allocation and 

focusing on the imputed payoffs, or imputations, associated with any feasible allocation. 

The TU-core in this case is a set of payoffs, as follows:  

 { }( , ) : ( ) , ( )  for all l ll l S
Core w w w S Sπ π π

∈ ∈
= = ≤ ⊂∑ ∑L

L L L .  (2) 

As new bids are introduced in the ascending proxy auction, the bidders move down 

their preference lists, so the payoff associated with each new bid is less than that 

associated with all earlier bids by the same bidder. It is convenient to track the progress 

of the auction in terms of the payoff associated with each bidder’s most recent bid. Let 
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t
lπ  be that payoff for bidder l at round t. The highest bid that l has made for decision lz  

by round t is within one bid increment of max(0, ( ) )t
l l lv z π− . In our calculations below, 

we treat this estimate of the bid as exact.   

Imagine that the seller regards the auction as serving two purposes: creating a 

coalition to utilize its goods and the bidders’ additional resources and expertise; and 

determining how to distribute the value created by the winning coalition. From that 

perspective, at every round of the auction, there is an implicit bid by every coalition of 

bidders for the seller’s goods. Given our previous formula describing the bids, the 

maximum total price offered at round t by coalition S is 

*
0 0

max max(0, ( ) ) max(0, ( ) )t t
l l l l Sl ll S l Sz F

v z v zπ π
∈ − ∈ −∈

− = −∑ ∑ . Notice that if coalition S 

includes any bidder n for whom *( ) 0t
n Sn nv z π− < , then the coalition S n−  bids as much as 

coalition S by using the same allocation among its continuing members (and setting 

*
,S n n nz − = ∅ ). If 0

tπ  is the highest total bid at round t, then  

 ( ) 00
max ( ) t t

ll SS
w S π π

∈ −
− =∑ ,  (3) 

so for all S, ( ) t
ll S

w S π
∈

≤ ∑ . This means that in the transferable utility game with 

coalitional value function w, no coalition can block the payoff vector tπ . At the last 

round T, the auction payoff vector Tπ  is the one associated with the actual final 

allocation, so it is also feasible and hence a core payoff imputation.  

This analysis suggests an interesting interpretation of the proxy auction for the 

transferable utility case. For concreteness, think of the bidders in the auction as workers 

seeking employment and the seller in the auction as a supplier of capital assets. Imagine 
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that there is a large set of competing brokers who may hire workers and buy assets from 

the seller to run a business. Each broker considers only one combination of workers 

whom it might employ. At round t, a typical bidder l demands a payoff or “wage” of t
lπ  

and a broker representing coalition S is driven by competition with identical brokers to 

offer 
0

( ) t
ll S

w S π
∈ −

−∑  to acquire the seller’s capital. At each round, there is a provisional 

winning coalition S and workers not in that coalition are unemployed. Any unemployed 

workers who have demanded positive wages reduce their wage demands by one unit, and 

the brokers then bid again. The process continues iteratively; it ends when a competitive 

equilibrium wage vector is found.  

In this interpretation, the auction is simply a tatonnement device to identify a 

competitive equilibrium. A (TU-)core imputation is a vector of competitive equilibrium 

prices specifying a wage for each worker and a price for the seller’s bundle of assets. The 

(TU-)core conditions state that the winning broker just breaks even and that there exist no 

profit opportunities for any broker at the given prices.  

With transferable utility, we have the following special case of Theorem 1: 

Theorem 2. In the transferable utility model, the payoff imputation determined by 

the ascending proxy auction is a core imputation with respect to the reported preferences. 

Profit-Targets, Collusion and Equilibrium 

We turn next to our analysis of bidder incentives and equilibrium. Our first result 

shows that one can sometimes limit attention to the class of lπ -profit-target or semi-

sincere strategies, in which a bidder reports its value for each decision z to be 
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max(0, ( ) )l lv z π− .9 That is, l reduces all of its reported values by essentially the same 

fixed amount lπ , which may be regarded as its minimum profit target. We say 

“essentially” because negative values are reported to be zero.  

Theorem 3. In the transferable utility model, given any pure strategy profile for the 

other bidders, bidder n has a best reply that is a profit-target strategy.  

Proof. Fix bidder n and any pure strategy report profile ˆ nv−  for the competing 

bidders. Define ˆ( )n vΠ  to be n’s profit for any report profile v̂ . Let ˆ ˆmax ( )
nn v n vπ = Π  be 

n’s maximum profit, *
ˆ ˆarg max ( )
nn v nv v∈ Π  be any best reply, and *z  be the corresponding 

decision selected by the ascending proxy auction. Since the outcome is in the core, for all 

decisions z, *
1 1
ˆ ˆ( ) ( )L L

l ll l
v z v z

= =
≥∑ ∑ . Also, since n pays *( )n nv z π− , we have 

* *ˆ ( ) ( )n n nv z v z π≥ − .  

Consider n’s nπ -profit-target reporting strategy: ( ) max(0, ( ) )n n nv z v z π= −� . Since 

bids are non-negative, we have that for all z, * *ˆ ˆ( ) ( ) ( )n l ll n l n
v z v z v z

≠ ≠
+ ≥∑ ∑� . So, the 

decision z selected when n reports is one for which 0 ( )n nv z π≤ − , that is, n is a winning 

bidder and pays a price of at most ( )nv z� . It follows that its profit is at least 

( ) ( )n n nv z v z π− =� , so the nπ -profit-target reporting strategy is also a best reply.  ■ 

Profit-target strategies are of interest for several reasons. First, if all bidders adopt 

such strategies and if the selected decision is not one for which any losing bidder l has set 
                                                 
9 The “semi-sincere” rubric arises because the bidder’s reports of relative valuations are truthful, but his 
reports of absolute valuations may be untruthful (i.e., shaded). In the NTU generalization, semi-sincere 
strategies rank every pair of outcomes accurately except pairs that include the null (non-participation) 
outcome; semi-sincere strategies may report the null outcome to be higher in the bidder’s ranking than it 
actually is.    
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0lπ = , then the decision maximizes total values, that is, it is efficient. Second, a bidder 

who uses such a strategy bids its full incremental value for changing from any decision z 

to any alternative decision z′ , which means it cannot be part of any collusive, price 

reducing agreement. For example, suppose the decision concerns the allocation of two 

licenses. Suppose, given the bids, the first license is won by bidder 1 and the second by 

bidder 2. If bidder 1 adopts any profit target strategy, then bidder 2 must pay at least 1’s 

incremental value, 1 1(12) (1)v v− , to win license 2. The conclusion in theorem 3 that each 

bidder always have a best reply that is a profit-target strategy means that there does not 

exist any profile of reports for the other bidders that can deter the bidder from bidding 

aggressively, offering to pay up to their full incremental values for different or extra 

licenses. More generally, within the rules of the proxy auction, there is no strategy profile 

that can deter a bidder from bidding to change the predicted decision to one that it 

prefers.  

The next theorem identifies full information Nash equilibria of the ascending proxy 

auction in profit-target strategies. The equilibrium outcome will be a bidder-optimal point 

in the core, meaning that the payoff profile ( , )Core wπ ∈ L  and that there is no 

( , )Core wπ ′∈ L  with π π′ ≠  and l lπ π′ ≥  for every bidder l. Notice that the outcome is a 

bidder-optimal core allocation with respect to the bidders’ actual preferences. In 

particular, the outcome is efficient and has the desirable revenue properties associated 

with core allocations. This duplicates a property previously identified by Bernheim and 

Whinston (1986) for sealed-bid, first-price package auctions.  
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Theorem 4. In the transferable utility model, for every bidder-optimal point π in the 

core, the strategy profile in which each bidder l plays its lπ -profit target strategy is a 

Nash equilibrium with associated profit vector π. Moreover, if v�  is a Nash equilibrium in 

semi-sincere strategies at which losing bidders bid sincerely, then ( )vπ �  is a bidder- 

optimal point in ( , )Core wL . 

Proof. Suppose that the proposed strategy profile is not an equilibrium. Then there 

is some player l and some unilateral deviation for that player that leads to a winning 

coalition T ( )T l  and profit outcome vector π̂ . For bidder l, ˆl lπ π> , and for all bidders 

k T∈ , the proxy strategies imply that ˆk kπ π≥ .  

Since π is bidder-optimal, there is a coalition S such that l S∉  and ( ) kk S
w S π

∈
=∑  

(Otherwise, for some 0ε > , there would be a point in the core at which l gets lπ ε+ , the 

seller gets 0π ε− , and others payoffs are as specified by π, contradicting bidder-

optimality.) Let ( )Sβ  and ( )Tβ  denote the highest total revenue associated with bids by 

the bidders in coalitions S and T during the proxy auction, given the specified deviation 

by bidder l. We show that ( ) ( )S Tβ β> , contradicting the hypothesis that T is the 

winning coalition. Indeed, using (3):  
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The first step in (4) follows from the proxy rules: any losing bidders in S stop 

bidding only when their potential profits reach the specified levels. The strict inequality 

in the second step follows because \l T S∈  and ˆl lπ π> . The third step follows by 

selection of S, the fourth because ( , )Core wπ ∈ L , and the fifth and sixth by the 

definitions of T, π̂  and ( )Tβ . 

If π is not bidder-optimal in the core, then there exists l and l lπ π′ >  such that 

( , ) ( , )l l Core wπ π−′ ∈ L . Bidder l can deviate by reporting { }max , 0l l lv π π ′− +�  instead of 

reporting lv� , thereby increasing its profits to lπ ′ .  ■ 

The examples in chapter 1 showed that Vickrey auction outcomes can fail to be in 

the core because seller revenues are too low. That conclusion, and the connection to 

matching theory, may seem to suggest that bidder-optimal outcomes are seller-pessimal 

ones, that is, outcomes that minimize the seller’s revenues among all core allocations.  

Here is a counter-example to refute that suggestion. There are three items for sale, 

denoted by A, B and C. Values for various packages are described in the following table: 

Bidder A B C AC BC 
1 2     
2  2    
3   10   
4    8 8 

We identify payoffs by a 5-vector with the payoff of the seller (player 0) listed first. 

Using the tabulated values, let us verify that X=(8,2,2,2,0) and Y=(10,0,0,4,0) are bidder-

optimal core allocations. Observe, first, that X and Y are individually rational and 

feasible, with a total payoff of 14.  
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Any blocking coalition must involve the seller and pay him more than 8, so we may 

limit attention to coalitions with value strictly exceeding 8. We may further limit 

attention to minimal coalitions with any particular value.  

There are six coalitions that meet these criteria. Coalition 0123 is the unique 

minimal coalition with value 14 and it receives 14 at both of the identified imputations, 

so it does not block. Coalitions 013 and 023 have value 12 and receive 12 or 14 at the two 

imputations, so they do not block. Coalitions 014 and 024 have value 10 and receive 12 

or 14 at the two imputations, while coalition 03 has value 10 and receives 10 or 14 at the 

two imputations, so none of those coalitions block. We conclude that the imputations X 

and Y are unblocked and hence are core imputations.  

Imputation X, in which the seller gets 8, is seller pessimal, because: (i) bidder 4 

must get zero at every core imputation; and (ii) the coalition 04 must get at least 8. 

Hence, X is a bidder-optimal core imputation. At imputation Y, bidder 3 gets his Vickrey 

payoff of 4, which, as we found in chapter 1, is his best core payoff. So, any bidder-

preferred core imputation must have the form (10 , , , 4,0)x y x y− − . If 0x > , this 

imputation is blocked by coalition 024 and if 0y > , it is blocked by coalition 014. Since 

any bidder-preferred imputation is blocked, Y is a bidder-optimal core imputation.  

This example identifies two-bidder optimal core allocations with different values 

for the seller, so bidder optimality is not the same as seller pessimality.  

When Sincere Bidding is an Equilibrium 

We found in Chapter 1 that, if the Vickrey payoff vector is an element of the core, 

then there is a unique bidder-optimal point in the core, which eliminates a fundamental 
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bargaining problem among the bidders. It might then seem that, under this condition, 

each bidder could simply use the straightforward bidding strategy and this would yield an 

equilibrium corresponding to the unique bidder-optimal point. However, this conclusion 

is not quite right, as the following example demonstrates. 

Suppose that there are four spectrum licenses. In order to understand that the 

following bidder valuations are sensible, it is helpful to depict the licenses as follows: 

 Geographic Space  

 

West-20 East-20 

B
an

dw
id

th
 

West-10 East-10 

There are five bidders. Bidder 1 desires a 10-MHz band of spectrum covering both 

East and West. Bidders 2 and 3 desire a 20-MHz band of spectrum covering both East 

and West. Bidder 4 wants the full 30-MHz of spectrum in the East. Bidder 5 wants the 

full 30-MHz of spectrum in the West. Thus: 

   v1(West-10, East-10) = 10, 

   v2(West-20, East-20) = 20, 

   v3(West-20, East-20) = 25, 

   v4(East-20, East-10) = 10, and 

   v5(West-20, West-10) = 10, 
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with all singletons and all other doubletons valued at zero. 

Observe that the Vickrey payoff vector, (20, 10, 0, 5, 0, 0), is an element of the 

core, corresponding to Bidder 3 paying 20 for his desired licenses and Bidder 1 paying 0 

for his desired licenses. Nevertheless, straightforward bidding is likely to lead Bidder 1 to 

pay a positive price.10 In the ascending proxy auction, bidder 1 could do better by setting 

profit target at or slightly below its Vickrey profit, ensuring that it never pays a 

substantial positive price for its licenses.  

Bidder-Submodular Values 
In this section and the next, we explore conditions under which there is a truthful 

reporting equilibrium of the ascending proxy auction. In this section, we investigate a 

restriction on the coalitional value function which implies that truthful reporting is an 

equilibrium. In the next section, we explore a corresponding condition on valuation of 

goods.  

In Chapter 1, we defined the coalitional value function w to be bidder-submodular 

if bidders are more valuable when added to smaller coalitions than when added to larger 

coalitions. Formally, the condition is that for all 0l L∈ −  and all coalitions S and S ′  

satisfying 0 S S ′∈ ⊂ , ( { }) ( ) ( { }) ( )w S l w S w S l w S′ ′∪ − ≥ ∪ − .11 

                                                 
10 For example, if each bidder raises his bid by the same bid increment whenever he is not a provisional 
winner, we see that (so long as Bidder 2 remains in the auction), Coalition {1, 2} is a provisional winner ¼ 
of the time, Coalition {1, 3} is a provisional winner ¼ of the time, and Coalition {4, 5} is a provisional 
winner ½ of the time. With starting prices of zero, straightforward bidding would lead Bidder 1 to bid 10, 
Bidders 2 and 3 to bid 15 each, and Bidders 4 and 5 to bid 10 apiece. At this point, Bidders 4 and 5 drop 
out of the auction, and so there is nothing further to induce Bidder 1 to raise his bid. But he has already, 
irrevocably, reached a bid of 10; when his bidder-Pareto-optimal core payment equals 0. If Bidder 1 had 
instead limited his bidding to 0, he still would have won the West-10 and East-10 licenses. 
11 This condition was introduced in Shapley’s (1962) treatment of the assignment problem. It was shown to 
imply that there is a unique bidder-optimal core point (coinciding with the Vickrey payoff) in Theorem 3 of 
Ausubel (1997b), which was superceded and improved upon by Theorem 7 of Ausubel and Milgrom 
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Since Shapley (1962), bidder-submodularity has been called the condition that 

“bidders are substitutes,” but that description does not coincide with the usual economic 

meaning of substitutes. For suppose there were a labor market in which the bidders could 

be hired and a seller who hired bidders to form coalition S earned a profit of w(S) minus 

the total wages paid. The bidder-submodularity condition is necessary, but not sufficient, 

for bidders to be substitutes in that labor market. For example, with three bidders, 

suppose that (02) (03) 1w w= = , (01) (023) (012) (013) (0123) 2w w w w w= = = = = , and 

all other values are zero. By inspection, w is bidder-submodular. Bidders, however, are 

not substitutes, because changing the wage profile from (1.7,0.8,0.8) to (1.7,1,0.8) 

changes the hiring decision from (0,1,1) to (1,0,0). That is, increasing the wage of bidder 

2 reduces the demand for bidder 3, contrary to the standard economic definition of 

substitutes.  

In Theorem 6 of chapter 1, we established that the following three statements are 

equivalent: 

(1) The coalitional value function w is bidder-submodular. 

(2) For every coalition S that includes the seller, the restricted Vickrey payoff 

vectors all lie in the cores of the corresponding restricted games: 

      ( ) ( , )S Core S wπ ∈ .  

(3) For every coalition S that includes the seller, there is a unique core point that 

is unanimously preferred by the buyers and, indeed:  

                                                                                                                                                 
(2002). The predecessor theorem also included the following necessary condition for the uniqueness of a 
bidder-optimal core point: ( ) ( )w L w L S− − ≥  ( )

0
( ) ( )

l S
w L w L l

∈ −
− −∑  for all coalitions S (0 )S L∈ ⊂ . 

Bikhchandani and Ostroy (2002) subsequently developed the implications of these conditions for dual 
problems to the package assignment problem.  
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        ( , ) { | ( ), 0 ( ) for all 0}S l l ll S
Core S w w S S l Sπ π π π

∈
= = ≤ ≤ ∈ −∑ . (5) 

Here we establish an additional result about bidder-submodular values.  

Theorem 5. Suppose that the coalitional value function is bidder-submodular. Then, 

truthful reporting is a Nash equilibrium strategy profile of the ascending proxy auction 

and leads to the Vickrey outcome: Tπ π= .  

Proof. We first establish that truthful reporting leads to the Vickrey payoff vector. 

Suppose there is some round t at which t
l lπ π< . We show that l is necessarily part of the 

winning coalition at that round. Let S be any coalition including the seller but not bidder 

l. Then,  

 

( )
{ }

{ }

{ }

( ) ( )

( ) ( ) ( )
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− < − + −

= − + − −

≤ − + ∪ −

= ∪ −

∑ ∑
∑
∑

∑

 (6) 

So, l’s profit t
lπ  is at least lπ  minus one bid increment ε. Taking the bid increment 

to zero for the ascending proxy auction proves that for 0l ≠ , T
l lπ π≥ , and the reverse 

inequality follows from theorem 4 of Chapter 1. 

Second, we show that truthful reporting is a best response to all other bidders 

reporting truthfully. For any bidder l and any report by that bidder, theorem 4 of Chapter 

1 implies that the payoff to coalition L l−  is at least ( )w L l− . Since the total payoff to all 

players is at most ( )w L , l’s payoff to any strategy is bounded above 

( ) ( )l w L w L lπ = − − , which is the payoff that results from truthful reporting.  ■ 



  

24 

When Goods are Substitutes 
In the preceding section, we studied bidder-submodularity, which is a restriction on 

the coalition value function. In auction models, however, coalition values are not 

primitive—they are derived from individual package values. It is therefore natural to ask: 

what conditions on bidder valuations imply bidder-submodularity of the coalitional value 

function?  

A key to the answer lies in a characterization of bidder-submodularity that we 

developed earlier. In Theorem 9 of chapter 1, we established that if there are at least four 

bidders and if the set of possible bidder values V  includes all additive values, then the 

following three conditions are equivalent: 

(1) V  includes only valuations for which goods are substitutes.  

(2) For every profile of bidder value functions drawn for each bidder from V, the 

coalitional value function is bidder-submodular. 

(3) For every profile of bidder value functions drawn for each bidder from V, 

( , )Core L wπ ∈ .  

According to this theorem, if goods are substitutes for each bidder, then the 

coalitional value function is bidder-submodular. Consequently, Theorem 5 can be recast 

in terms of substitutes preferences, as follows: 

Theorem 6. If goods are substitutes for all bidders, then truthful reporting is a Nash 

equilibrium strategy profile of the ascending proxy auction and leads to the generalized 

Vickrey outcome: Tπ π= . Moreover, if bidders are restricted to report preferences such 
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that goods are substitutes, and if bidder l’s actual preferences have the property that 

goods are substitutes, then it is a dominant strategy for bidder l to report truthfully. 

The theorem also has a converse. If we include any goods values for which goods 

are not substitutes, then we cannot ensure that the coalition value function is bidder-

submodular, so the theory of the preceding section does not apply. What is more, we also 

cannot ensure that the Vickrey outcome is a core outcome, so there cannot be an 

incentive for bidders to report truthfully in the ascending proxy auction. The reason is 

that, as observed in chapter 1, the Vickrey auction is the unique auction that, on a wide 

class, has the dominant-strategy property, leads to efficient outcomes, and takes only a 

zero payment from losing bidders.  

When goods are not substitutes, the theorem implies that the ascending proxy 

auction necessarily departs from the VCG results, because it selects core allocations with 

respect to reported preferences, while the VCG mechanism does not. Unlike the VCG 

mechanism, the proxy auction does not have a dominant-strategy solution in every 

private-values environment. However, the proxy auction has some offsetting advantages, 

at least at its full-information equilibrium.  

Comparisons of the Vickrey and Ascending Proxy Auctions  

In Chapter 1, we found that the failure of the substitutes condition and of bidder-

submodularity was closely connected to some extreme possibilities for manipulation in 

the Vickrey auction, including shill bidding and loser collusion. We also established that 

these possibilities for manipulation were intimately related to a failure of monotonicity of 

revenues in the set of bidders. 
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These shortcomings of the Vickrey auction contrast sharply with the properties of 

the ascending proxy auction. For the latter, to check bidder monotonicity, we need to be 

identify the “equilibrium revenues.” We focus attention on the equilibrium of the proxy 

auction that is consistent with the selection in theorem 4 and that minimizes revenues 

among those. Using the characterization of the theorem, the minimum equilibrium 

revenue is 0minπ  subject to ( )ll S
v Sπ

∈
≥∑  for every coalition S ⊂ L . It is 

straightforward to see that introducing additional bidders or increasing the reports of 

existing bidders must (weakly) increase 0π  in this formulation. Suppose that 

ˆ ( ) ( )l lv v≥i i for all 0l L∈ − . Consider any profit allocation ( )ˆl l L
π

∈
 that 

satisfies ˆ ˆ( )ll S
v Sπ

∈
≥∑ for all S L⊂ . Observe that ˆ ( )ll S

v Sπ
∈

≥∑  is also satisfied 

for all S L⊂ , implying that the minimum 0π  (subject to ( )ll S
v Sπ

∈
≥∑ ) is weakly lower 

than the minimum 0π̂  (subject to ˆ ˆ( )ll S
v Sπ

∈
≥∑ ). In this sense, the ascending proxy 

auction satisfies bidder monotonicity. 

One weakness of the Vickrey auction is its susceptibility to collusion, even by 

coalitions of losing bidders. The ascending proxy auction is clearly immune to loser 

collusion. Let S be any coalition of losing bidders. Then the prices paid by the 

complementary set, \ 0 \ SL , of bidders in the ascending proxy auction sum to at least 

w(S); otherwise, coalition S would outbid the winners. So, to become winning bidders, 

members of the coalition S would have to raise their total winning bid above w(S), 

suffering a loss in the process. Hence, a coalition consisting only of losing bidders has no 

profitable deviation. 
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A more severe failing of the Vickrey auction is its susceptibility to shill bidders, 

that is, a bidder can sometimes increase its payoff by employing two or agents to bid on 

its behalf. The ascending proxy auction is immune to the use of shills in the following 

sense: Given any pure strategy profile for the bidders besides l, there is a best reply for 

bidder l that does not use shill bids. In particular, this implies that at any pure strategy 

Nash equilibrium, there is no gain to any deviation using shill bids, in contrast with the 

result for Vickrey auctions. 

Since this result can be proved using the same reasoning as for Theorem 3, we 

simply sketch the argument here. Bidder l, or its several agents acting together, can 

acquire a set of goods A in the ascending proxy auction only if its final bid for that set 

exceeds the incremental value of A to the coalition l−L . This minimum price for A can 

only be increased by adding losing bidders to the coalition l−L , so bidder l cannot 

reduce its minimum price for any bundle it might acquire by using shills. Moreover, 

bidder l can win the bundle A at the minimum price by bidding just for A and offering the 

incremental value. Therefore, bidder l can achieve its maximum payoff using a strategy 

that does not employ shills. 

Each of the above comparisons has been made using one of two assumptions: either 

goods are substitutes or bidders have complete information about values. Although there 

are no theorems to identify how far our conclusions extend to environments where both 

conditions fail, there are robust examples showing that there is a class of environments 

with incomplete information and without the substitutes property that still have properties 

similar to those that we have described.  
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To illustrate, consider the following incomplete information, private-values 

extension of an example from Chapter 1. There are two items and two bidders. Bidder 1 

wants only the package of two licenses and values it at 1v , which is a random variable 

with support [0,3]. Bidder 2 values each license singly at 2v  and values the package of 

two licenses at 22v , where 2v  is a random variable with support [0.3,0.7]. Each bidder i 

knows the realization of iv  but only the distribution of ( )jv j i≠ . In the Vickrey auction, 

if bidder 1 is expected to report its value truthfully, then bidder 2 would benefit by 

participating in the auction under two names—say, “bidder 2” and “bidder 3”—each of 

whom bids $3 for a single license. The result would be that bidder 2 receives both 

licenses for a price of zero, which is the same conclusion as in the complete-information 

case.  

By contrast, in the proxy auction, it is optimal for bidder 2 to bid straightforwardly, 

that is, to bid 2v  for each single license and to bid 22v  for the package of two licenses. If 

bidder 2 instead bids using two identities, his optimal strategy is still to place bids that 

sum to 22v  for the package of two licenses. In either event, the result is that bidder 2 

receives both licenses if and only if 2 12v v≥ , and then for a price of 1v . In this example 

with private information and without substitutes preferences for bidder 1, the Vickrey 

auction remains vulnerable to shill bidding, while the ascending proxy auction 

implements the Vickrey outcome without that vulnerability. 

Conclusion 

Our analysis of the ascending package auction may explain the efficient outcomes 

that sometimes emerge in experiments with package bidding and entail new predictions 
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as well. If bidders bid “straightforwardly,” the auction outcome is not only efficient, but 

also a core allocation of the exchange game.  

The ascending proxy auction is a new kind of deferred acceptance algorithm, 

related to the algorithms studied in matching theory. Unlike the sealed-bid, first-price 

package auction, this new design duplicates the advantages of the Vickrey auction in 

environments where goods are substitutes, but the new auction design also has significant 

advantages compared to the Vickrey auction.  

First, the ascending proxy auction avoids the very low revenues possible in the 

Vickrey auction, because the former always selects core allocations both when bidders 

bid straightforwardly and at their full information equilibria. By contrast, the Vickrey 

auction is assured to select core allocations only when goods are substitutes.  

Second, the ascending proxy auction also avoids much of the vulnerability of the 

Vickrey auction to shill bids and to collusion by coalitions of losing bidders. Whereas a 

bidder in a Vickrey auction may sometimes find it profitable to bid under multiple names, 

there exists no pure strategy profile in the ascending proxy auction that ever makes such a 

behavior advantageous. And, whereas losing bidders in a Vickrey auction can sometimes 

collude profitably, that is never possible at the identified equilibria of the ascending 

proxy auction.  

Third, the ascending proxy auction can be implemented as a multi-stage process, in 

which bidders first specify initial proxy values and later have one or more opportunities 

to revise their proxy bids. That implementation, like other sequential communication 

protocols, economizes on the amount of information that bidders need to communicate. It 

may also economize on bidders’ costs of evaluating packages by allowing them to focus 
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their efforts on the packages that they have a reasonable chance to win based on the bids 

made by competitors earlier in the auction. 

Besides the basic ascending proxy auction, we have also introduced a generalized 

version that applies for much more general preferences and constraints than are permitted 

in the standard Vickrey model. For example, it applies to models in which bidders are 

budget-constrained and to procurement problems with their characteristic complex 

constraints and multi-faceted selection criteria. With complex auctioneer preferences, the 

Vickrey auction may not even apply, and with bidder budget constraints it may lead to 

inefficient outcomes, but the generalized ascending proxy auction selects allocations in 

the NTU-core. We believe that this family of auction designs holds considerable promise 

for a variety of practical applications. 
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