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Abstract. The Vickrey and ascending package auctions are found to have 
identical equilibrium performance in the case where goods are substitutes. In 
the remaining cases, the Vickrey auction retains its incentive advantages at the 
cost of setting prices that are so low that the outcome is not in the core of the 
corresponding exchange economy. The Vickrey auction also introduces biases 
that distort investments in new technology. By contrast, the ascending 
package auction has its equilibrium outcomes in the core, provides neutral 
investment incentives, and is easier for bidders to understand and manage.  

1. Introduction 
Sellers of large or complex assets need to consider how to divide and package the 

assets. Packaging decisions are potentially important whenever a bidder’s value for a 
package is different from the sum of the values of the separate parts. For example, a 
wireless telephone company purchasing telecommunications spectrum licenses prefers to 
acquire rights to pairs of bands that allow proper physical separation between the in-
bound and out-bound signals. A flower wholesaler in Holland may incur fixed costs for 
shipping and handling that make single lot transactions unprofitable. Since flowers are 
highly perishable, it may also want to limit its purchases to what it can quickly resell. In 
real estate sales, some potential buyers may be interested in a whole complex of 
properties while others simply want space for individual homes or businesses.  

In practice, sellers accommodate packaging preferences such as these in a variety of 
ways. Government-run spectrum auctions are invariably preceded by political processes 
in which potential buyers press their cases about such matters as the allowed uses of the 
spectrum and the scope of the licenses in terms of bandwidth, band composition, and 
geographic coverage. In private auctions of relatively homogeneous goods, winning 
bidders may be allowed to purchase as many similar lots as they like at the winning price 
before bids are taken for the remaining lots. In the real estate example, bids might be 
taken both for a whole complex and for its individual properties, and the two 
constellations of prices compared.  

A complete approach to resource allocation problems of the kind described above 
must treat the packaging and auctioning problems as a single unit. Processes like that 



 2

described for the real estate example, which determine the packaging, pricing and 
allocation decisions, are called “package auctions” or “combinatorial auctions.” 
Typically, bidders in these auctions describe the packages that they wish to acquire and 
place bids for the named packages.  

The package auction design that is best known among economists is the (generalized) 
Vickrey auction. In the generalized Vickrey model, the items for sale are taken to be M 
exogenously given “goods” and each bidder submits bids on every one of the 2M−1 
packages.1 With distinct goods, such an auction may become impractically complicated 
for the bidders when M is still a single-digit number. Although there are special cases in 
which the Vickrey auction works well with larger numbers of goods, the sheer 
complexity of the general problem with many distinct kinds of goods has led auction 
designers to investigate alternative, dynamic auctions, which are often easier for bidders 
to comprehend and manage.2  

There is a second practical issue that recommends package auctions. It is that the 
current alternatives to package bidding adopted by spectrum and electricity regulators 
have significant drawbacks of their own that package auctions can avoid. When the items 
for sale are substitutes, large bidders in multi-unit auctions find it in their interest to 
withhold some of their demand, in order to avoid driving up prices or to divide the spoils 
with other bidders. Such “demand reduction” leads to inefficiency of the final allocation 
(Ausubel and Cramton, 1996). In the two package auctions studied in this paper, there is 
never a strict incentive for bidders to reduce demand in this way.3 

Auctions operate in a variety of environments, each involving different costs and 
constraints, and a credible general auction design must perform well across a range of 
different environments. We have identified several goals that arise repeatedly in the 
design of package auctions. The first is computational: there must be some sense in 
which, if bidders bid straightforwardly and bid evaluation costs are trivial, the auction 
outcomes will be good ones according to revenue and efficiency criteria. Second, because 
package bidding is often very complex, simplicity is an important objective of auction 
design. Dynamic designs are sometimes favored over similar one-shot designs for their 
relative comprehensibility and because they eliminate the need for bidders to evaluate 
closely every possible package. Third, the incentives for individuals or coalitions to 
deviate from straightforward bidding should be small or zero. Finally, the incentives for 
individuals and coalitions to deviate from efficient pre-auction investment decisions 
should also be small or zero.  

Vickrey’s package auction has well-known and unique advantages. According to 
theorems by Green and Laffont (1979) and by Holmstrom (1979), it is essentially the 
                                                 
1 There are also versions of the auction with M types of goods and nm goods of type m. Vickrey’s (1961) 
original model treated the case of one type of good. The generalization to multiple types of goods is due to 
Clarke (1971) and Groves (1973). 
2 In a static auction, bidders need to decide in advance which packages to evaluate. As we show in Ausubel 
and Milgrom (2001), a dynamic auction can sometimes provide valuable information to bidders about 
which packages are worth evaluating. 
3 While the model considered here has only private values, it is reasonable to expect that ascending package 
auctions will offer further advantages over the sealed-bid Vickrey auction when values are interdependent. 
See Milgrom and Weber (1982). 
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only design to provide dominant strategy incentives and yield efficient auction outcomes. 
Upon closer examination, however, these advantages come at a high cost. The Vickrey 
auction enjoys incentive advantages over the ascending package auction only in those 
circumstances in which it may charge “low” prices for the assets being sold—prices so 
low that the allocation lies outside the core of the buyer-seller game. Moreover, unlike 
ascending package auctions,4 the Vickrey auction distorts pre-auction technology 
choices.5 The ascending package auction may sometimes be preferred to the Vickrey 
design because its does not share these properties.  

The results supporting these claims are only announced here. The formal details are 
developed in Ausubel and Milgrom (2001).  

2. The Model 
The environment is one with private values. There is a set M={1,…,M} of items to be 

sold and a set N of players. The players consist of a single seller, identified by l=0, and 
bidders l=1,…,|N|−1. Bidder l’s preferences are described by its valuation function lv , 
according to which any package lA  has value ( )l lv A . If bidder l acquires the package for 
a price b, then l’s payoff from the game is ( )l lv A b− . We normalize by assuming that the 
null package has zero value.  

In the Vickrey auction, a bid is a vector ( ( )l lb A : lA∅ ≠ ⊂M ) that specifies a price for 

each package. The auctioneer selects a partition | | 1* | | 1
1 1

{ } arg max ( )NN
l l l ll

A b A−−
= =

∈ ∑ , that is, 
an allocation of packages to the bidders that maximizes the total bid. The price that each 
bidder pays is the opportunity cost of the goods it acquires, as given by the Vickrey-
Clarke-Groves formula:  

 *max ( ) ( )n A l l l ll n l n
p b A b A

≠ ≠
= −∑ ∑ . 

In our model of the ascending package auction,6 bidders iteratively submit bids, each 
comprising a package and a proposed payment. After each round, the auctioneer 
considers the entire list of bids that have been submitted in the current or prior rounds, 
and determines the collection of compatible bids—at most one from each bidder—that 
maximizes revenues. These are denoted the “provisionally-winning bids,” i.e., the bids 
that would win if the auction ended right then. However, bidders are given additional 
opportunities to submit bids in subsequent rounds. The auction concludes after no further 
bids are submitted and each winning bidder then pays the amount of its own best bid for 
the package it wins. Thus, the auction can be regarded as a generalization of the simple 
English auction for one good to the case of packages.  

                                                 
4 Rassenti, Smith and Bulfin (1982) are often credited with the first experimental study of package 
auctions. Bernheim and Whinston (1986) have an early and important theoretical analysis of the sealed-bid, 
first-price package auction. Banks, Ledyard and Porter (1989) have an early study of ascending package 
auctions which helped to pioneer the modern applications. For a recent survey of some related work, see 
DeVries and Vohra (2001).  
5 Additional problems with the Vickrey auction are discussed in Ausubel and Milgrom (2001).  
6 Some facets of the ascending package auction and ascending proxy auction are described in greater detail 
in Ausubel and Milgrom (2001), Ausubel (1999), and various patent applications of the authors. 
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More precisely, for each bidder l and package lA , at the beginning of round t there is a 
best bid 1( )t

l lb A−  carried over from the previous round and a minimum bid 
1( ) ( ) ( , )t t

l l l l lb A b A l Aε−= + . In round t, a bidder may raise its bid on one or more packages 

lA  to the minimum ( )t
l lb A , or it may submit no new bids. At the end of the round, the 

auctioneer determines a profile of packages * * *
1 | | 1( ,..., )NA A A −=  to maximize the total 

round-winning bid:  

 { }| | 1*
1

arg max ( ) : ,  for N t
l l l l kl

A b A A A A k l−

=
∈ ⊂ ∩ =∅ ≠∑ M . 

To focus on the most important economic issues, we assume that the bid increments 
( , )ll Aε  are negligibly small and specified so that there is a unique package allocation in 

each round that maximizes the total bid.  

In our suggested implementation, the bidding process is accelerated by having a 
“proxy bidder” place the bids on each bidder’s behalf. Instructions to the proxy bidder are 
analogous to those given to proxy bidders at Internet auction sites and the rule that the 
proxy bidder uses is a generalization of those rules. The instructions to l’s proxy bidder 
take the form of a valuation vector l̂v . We suppose that these proxy instructions can be 
periodically revised, but that there is at some time a final opportunity for all bidders to 
revise their instructions. 

At round t, the proxy bidder decides whether and how to bid as follows. If bidder l is a 
provisional winner at t−1, then l’s proxy bidder sets * 1 *ˆ ˆ ( ) ( )t t

l l l l lv A b Aπ −= − ; otherwise, it 
sets ˆ 0t

lπ = . It then identifies a package lA  that maximizes the “potential earnings” 
ˆ ( ) ( )t

l l l lv A b A− . If the potential earnings from lA  exceed ˆ t
lπ , then the proxy submits the 

minimum new bid on that package. Otherwise, it submits no new bid.  

The auction ends when no proxy bidder makes a new bid. At that time, the provisional 
winners become final winners and the winners pay amounts equal to their own winning 
bids.  

3. The Ascending Proxy Auction 
The early rounds of the ascending package auction are most important when there is 

uncertainty about which packages are potentially interesting. The initial stages can then 
be regarded as a kind of communication phase in which bidders try to form bidding 
coalitions. We do not study that process in this paper. Instead, we focus on the last stage 
of the auction, when final bids are made.  

The main insight that guides our analysis is that the package auction with proxy 
bidders is a new kind of “deferred acceptance algorithm,” closely related to the ones 
found in matching theory.7 Generally, deferred acceptance algorithms are multi-round 
algorithms in which one side of a market (the “buyers”) makes offers while the other side 

                                                 
7 The most closely related matching process is the one described by Kelso and Crawford (1982). See Roth 
and Sotomayor (1990) for a detailed survey of matching theory.  
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(the “sellers”) remains passive. The dynamics all occur inside the algorithm in a sequence 
of rounds. The inputs to the algorithm are lists of preferences for the buyers and the 
sellers. In the present application, the seller ranks offers by the total revenue they 
generate, while buyers specify preferences in terms of a valuation function. The 
algorithm begins with each buyer making a bid directed to a single seller8 that 
corresponds to its most preferred outcome, relative to whatever reserve price applies. For 
example, if the reserve prices are low, each buyer’s first bid will likely be for the package 
of all lots at its reserve price. After each round in which a particular bidder is not a 
provisional winner, the algorithm moves on to make the bid corresponding to the buyer’s 
next most preferred outcome. On behalf of each seller, the algorithm holds on to the best 
bids received to date, but defers accepting these bids until the process is complete. The 
process ends when there is a round with no new bids. At that time, the provisional 
winners from the last round are declared final winners and their pending bids are 
accepted.  

In line with the results of matching theory, our results are focused around the concept 
of the core of a cooperative game. To describe our results, we let 0 denote the seller and 
we generate a cooperative game (N,w) in which, for each coalition S ∋ 0:  

 { }\0
( ) max ( ) : ,  for l l l l kl S

w S v A A A A k l
∈

= ⊂ ∩ =∅ ≠∑ M . 

Coalitions excluding the seller have value 0.  

In this paper, we interpret core payoffs as the “competitive” prices for the buyers’ and 
seller’s services. To justify this interpretation, let us regard the situation as one in which 
each party has services or assets that it can sell as a package. Let lπ  denote the price for 
the services of player l. Suppose there are competing brokers who, by assembling 
coalition S, can create value w(S). The zero profit constraint then implies that for each 
coalition S, ( ) ll S

w S π
∈

≤∑ . Under our assumptions, value is maximized for the economy 
when the coalition of the whole forms, so the brokers lose money unless that maximum 
value is at least what they pay for inputs: ( ) ll N

w N π
∈

≥∑ . These inequalities define 
competitive equilibrium prices for the services of the seller and buyers in the model 
economy.  

Notice that the first set of inequalities above coincides exactly with the constraints that 
no coalition S can block the value allocation π. The additional inequality coincides with 
the feasibility constraint that the total value allocation is limited to w(N). Therefore, π is a 
competitive equilibrium price vector for the buyers’ and seller’s services if and only if 

( , )Core N wπ ∈ .  

The coalitional game notation (N,w) also provides a convenient way to characterize 
the payoffs of the Vickrey auction. The payoff of a bidder l in the Vickrey auction is the 
value the player adds to the coalition of the whole: ( ) ( ) ( \ )V

l N w N w N lπ = − . For the 

                                                 
8 Matching markets get their special structure from the condition that the participants on one side of the 
market can trade with at most one participant of the other side. In this description, each buyer can be 
matched to just one seller.  
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seller, the Vickrey revenue is the residual:  0 \0
( ) ( ) ( )V V

ll N
N w N Nπ π

∈
= −∑ . A similar 

characterization defines the Vickrey payoff vector ( )V
l Sπ  when participation is restricted 

to members of a coalition S.  

By construction, each bidder l’s Vickrey payoff is its highest payoff at any point in the 
core. Any larger payoff to player l would leave the total feasible payoff to the coalition 

\N l  at less than ( \ )w N l , so such a payoff vector would be blocked. The payoff vector 
that pays l its Vickrey payoff and pays the seller the balance (i.e.,  ( ) ( \ )w N w N l− ) is 
unblocked by inspection. Thus, the Vickrey payoff vector is Pareto-preferred by bidders 
to all core allocations. We return in Theorem 2, below, to the problem of characterizing 
when the Vickrey payoff vector is itself contained in the core. 

Our theorems about the “ascending proxy auction” refer to the one-shot revelation-
game version of the ascending package auction in which instructions to proxy bidders 
cannot be revised. This analysis is also the basis for any analysis of the multi-stage 
version, using a backwards induction argument. By an argument similar to ones used to 
analyze deferred acceptance algorithms in matching theory, we have shown the 
following:  

Theorem 1. Suppose that each bidder reports its actual valuation function to its proxy 
bidder. Then, the outcome of the ascending proxy auction is an element of ( , )Core N w , 
the core of the cooperative game. There is no other point in ( , )Core N w  at which each 
winning bidder earns a strictly higher profit.9  

4. The Core, Substitutes and Nash Equilibrium  
The geometry of the core depends on certain properties of the coalitional value 

function w, which in turn depends on properties of the individual valuation functions. 
One relevant property of w is submodularity, which means roughly that any individual 
bidder has a lower marginal value to more inclusive coalitions. 

Definition. The function w is submodular for bidders if for every two coalitions S and 
T that include the seller, ( ) ( ) ( ) ( )w S w T w S T w S T+ ≥ ∩ + ∪ .  

The following theorem establishes precise conditions under which the ascending 
proxy auction leads to an outcome of ( )V Sπ , the Vickrey payoff allocation. 

Theorem 2. The following statements are equivalent: 

(i) The coalitional value function, w, is submodular for bidders. 

(ii) For every coalition S N⊂  that includes the seller, ( ) ( , )V S Core S wπ ∈ , i.e., 
the Vickrey payoff vector is in the core of the game with participation 
restricted to S.  

                                                 
9 The conclusion of this theorem holds even when there are binding budget constraints—a fact that also 
provides the basis for extensions of Theorem 5 below. The ability of the ascending proxy auction to lead to 
core allocations even in the face of budget constraints is another potentially important improvement on the 
performance of the Vickrey auction.  
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(iii) For every coalition S N⊂  that includes the seller, the payoff vector resulting 
from truthful reporting in the ascending proxy auction is the Vickrey payoff 
vector, ( )V Sπ . 

(iv) For every coalition S N⊂  that includes the seller, truthful reporting is a Nash 
equilibrium of the ascending proxy auction restricting participation to the 
bidders in S. 

Condition (i) means that the marginal contribution of a bidder to a coalition is 
diminishing in the size (inclusiveness) of the coalition. Condition (ii) is a statement about 
the seller’s revenues. Since every bidder’s Vickrey payoff is the best it can get at any 
point in the core, the failure of the Vickrey outcome to lie in the core reflects auction 
revenues for the seller that are “uncompetitively” low. Condition (iii) characterizes the 
outcome of the ascending proxy auction when condition (i) holds: it coincides with the 
outcome of the Vickrey auction. Condition (iv) asserts that truthful reporting is a Nash 
equilibrium of the ascending proxy auction.  

To understand the connection between the third and fourth result, recall that the 
package auction mechanism always picks points in the core. Consequently, it gives at 
least ( \ )w N l to coalition \N l , regardless of l’s report. Similarly, regardless of l’s report, 
the actual total payoff cannot exceed w(N). So, regardless of l’s report, l’s actual payoff 
cannot exceed ( ) ( \ )w N w N l− : if truthful reporting yields Vickrey payoffs, then truthful 
reporting is optimal.  

Theorem 2 directly formalizes two of our main claims. One was that, for the 
submodular coalitional value functions, the ascending package auction has incentive 
properties that are nearly as good as those of the Vickrey auction: truthful reporting is a 
Nash equilibrium; and, with incomplete information about opponents’ valuations, truthful 
reporting is an ex post Nash equilibrium.10 The other was that the Vickrey auction’s 
incentive properties are more strictly favorable than those of the ascending package 
auction game only when the seller’s Vickrey payoff is so low that the payoff vector lies 
outside the core.  

In view of these conclusions, comparing the performance of the two auctions in 
various real environments requires two additional developments. First, taking valuation 
information as primitive, when is it likely that the coalitional value functions will satisfy 
the submodularity condition? Second, how does the performance of the two auctions 
compare in the alternative cases, when the coalitional value functions are not 
submodular?  

Some new notation and a definition are useful for stating the results. Let V be the set 
of functions from which bidder valuations are drawn. A valuation function v V∈  is 

                                                 
10 Both the Vickrey auction and the ascending package auction have other Nash equilibria as well, and the 
Vickrey auction also has a dominant strategy property that the ascending auction lacks.   
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additive if for all A B∩ =∅ , ( ) ( ) ( )v A B v A v B∪ = + . Let Vsub denote the set of 
valuations for which goods are substitutes.11  

Theorem 3. Suppose that the set of possible valuations V includes all of the additive 
valuation functions and that there are at least four bidders (i.e., | | 5N ≥ ). Then, the 
following are equivalent: 

(i) subV V⊂ . 

(ii) For every profile of valuations | | 1
1 | | 1( ,..., ) N

Nv v V −
− ∈ , the corresponding 

coalitional value function is submodular for bidders.  

(iii) For every profile of valuations | | 1
1 | | 1( ,..., ) N

Nv v V −
− ∈ , ( ) ( , )V N Core N wπ ∈ . 

(iv) For every profile of valuations | | 1
1 | | 1( ,..., ) N

Nv v V −
− ∈ , there exists a competitive 

equilibrium of the corresponding exchange economy.12 

5. When Goods May Not be Substitutes 
Theorems 2 and 3 suggest that, setting aside issues about the costs of bidding, the 

performances of the Vickrey and ascending auctions are most likely to be similar when 
the goods for sale are substitutes. This leads us to the part of the analysis that motivates 
much of the research in package auctions: the case of goods that are not substitutes, 
which is also the case in which the Vickrey outcome is not in the core.  

Both the Vickrey auction and the ascending proxy auction have some implausible 
Nash equilibria that rest on excessive bidder pessimism. Here is an example to illustrate 
the problem. In the example, there are three bidders and two goods. The bidders’ 
valuations are tabulated below.  

Table 1 

Goods: 1 2 Package 

Bidder 1 6 0 6 

Bidder 2 0 6 6 

Bidder 3 4 4 8 

In the Vickrey auction with the tabulated valuations, there is a Nash equilibrium in 
which bidder 3 bids 10 for the package while bidders 1 and 2 each bid zero for 
everything. The bidders’ valuations satisfy the substitutes condition, so there is a 
corresponding equilibrium in the ascending proxy auction. The usual analysis of the 
Vickrey auction rules out this strategy profile on the basis that the strategies are weakly 
dominated, but we shall need a more refined criterion for the ascending proxy auction. 
The equilibrium is characterized by the idea that bidders 1 and 2 are discouraged. Each 

                                                 
11 Goods are mutual substitutes if the demand function, restricted to the domain of prices for which demand 
is single-valued, has the property that an increase in the price of one good never reduces the demand for 
any other good.  
12 Milgrom (2000) first proved the equivalence of (i) and (iv).  
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bids low because it expects the other to do so and forecasts that raising its bid cannot 
raise its profits.  

We are continuing to explore a variety of refinements to clarify the likely outcome. 
The equilibrium refinement we apply in this paper rules out discouraged bidders quite 
directly, as follows. For any strategy profile 1 | | 1( ,..., )Nv v v −= , let ( )vω  denote the 
outcome induced by v. Consider a Nash equilibrium strategy profile 1 | | 1ˆ ˆ ˆ( ,..., )Nv v v −=  and, 

for any l, define { }ˆ ˆ ˆ ˆ( ) : ( , ) ( , )l l l l l lv v v v v vω ω− − − −Σ = = . Bidder l is said to be discouraged at 

v̂  if there exists an alternative strategy lv ′  for bidder l such that ˆ( , ) ( , )l l l l l lv v v vπ π− −
′ ≥  

for all ˆ( )l lv v− −∈Σ , with strict inequality holding for some ˆ( )l lv v− −∈Σ . Verbally, bidder l 
is discouraged at v̂  if l̂v  is weakly dominated by another bid in the game where bidder 
l’s opponents are restricted to strategy profiles which yield the same outcome against l̂v  
as does ˆ lv− . Intuitively, the criterion is that the bidder firmly expects the equilibrium 
outcome to result unless it increases some bid, but is unsure about what will happen if it 
does increase its bids. An undiscouraged bidder equilibrium is a Nash equilibrium profile 
in strategies satisfying l̂ lv v≤  at which no bidder is discouraged. This concept is a first 
attempt to capture the idea that a bidder with multiple best replies does not make low bids 
merely because the bidder believes it is hopeless to bid higher.  

In the tabulated example considered above, an “undiscouraged” bidder 1 will not bid 
zero. Given multiple best replies, the undiscouraged bidder chooses among them based 
on the possibility that there might be a way to earn more than the equilibrium payoff. 
That could happen, for example, if bidder 2 bid more aggressively than the equilibrium 
profile specifies or if bidder 3 bid less aggressively.  

Theorem 4. In an undiscouraged bidder equilibrium *v  of the ascending proxy auction, 
the following inequality must hold for all bidders l=1,…,|N|−1 and all packages lA : 

* *( ) ( ) ( )l l l l lv A v A vπ≥ − . The associated payoff vector satisfies *( ) ( , )v Core N wπ ∈ . No 
other point in ( , )Core N w  is Pareto-preferred by the bidders. Conversely, for every such 
bidder-Pareto-optimal payoff allocation ˆ ( , )Core N wπ ∈ , there is an undiscouraged 
bidder equilibrium with payoff vector π̂ .  

The inequality, * *( ) ( ) ( )l l l l lv A v A vπ≥ − , in Theorem 4 means that bidder l bids at least 
his true valuation minus his equilibrium payoff for every package. In contrast to the 
dominant strategy equilibrium of the Vickrey auction, the equilibria of the ascending 
proxy auction identified in Theorem 4 always lead to payoffs that are in the core and 
therefore are weakly lower for every bidder than the Vickrey payoffs. It follows that the 
seller’s total revenue, which is equal to the total value minus the bidders’ profits, is 
greater in the ascending proxy auction than in the Vickrey auction.  

Theorem 5. The seller’s revenue at an undiscouraged bidder equilibrium of the 
ascending proxy auction is equal to its revenue at the dominant strategy equilibrium of 
the Vickrey auction when ( ) ( , )V N Core N wπ ∈  and is strictly greater when 

( ) ( , )V N Core N wπ ∉ .  
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6. Choice of Organization and Technology 
Another consideration in selecting among auctions is whether they create a “level 

playing field” among competing technologies, encouraging choices that are based on the 
merits of the technology in creating value rather than on the discounts provided to some 
technologies by the auction rules. We are particularly interested in package auctions in 
which different technologies imply incompatible divisions of the assets—a case that we 
call incompatible technologies.  

More precisely, we study a situation in which there are two groups of buyers, and it is 
known in advance that efficiency demands that all of the winners be members of the 
same group. The question concerns what coordination, if any, takes place among 
members of the group before the auction. As an example, suppose that the values of each 
of two regional wireless phone services are x/2, while the combined value if the providers 
coordinate their service before the auction is x+y, where y may be positive or negative. 
Suppose that the value of a competing national data service is z. Then, the total profits of 
the wireless phone providers in a Vickrey auction if they coordinate their services and bid 
as a single entity will be max(0, )x y z+ − . If they do not coordinate, their bids will still 
win if z x< . In that case their prices will each be / 2z x−  and their individual profits 
will therefore be max(0, )x z− ; their total prices and profits will be twice that amount. 
Consequently, their total profit from coordinating services is larger precisely when both 

0x y z+ − >  and 0y z x+ − > . The first inequality holds if the coordinated bidders win 
and the second holds when, as winners, they earn more as a coordinated unit. These 
conditions are to be compared to the ones that identify when coordinating strictly 
increases social value: 0x y z+ − >  and 0y > . The difference establishes that the 
organization/coordination incentives created by a Vickrey auction do not coincide with 
the first-best incentives. This happens because the winning bidders in a Vickrey auction 
pay different total prices depending on how they are organized.  

By way of contrast, the total price that the wireless phone bidders must pay to win in 
the ascending proxy auction is z, regardless of whether the bidders coordinate their 
services. For competitions among incompatible technologies, the ascending proxy 
auction is effectively a coalitional second-price auction: the “winning technology” pays a 
total price equal to the value of the asset to the second-best technology. This provides 
better ex ante incentives for coordination (and associated investment) than those provided 
by the Vickrey auction.  

Theorem 6. Consider package auctions among incompatible technologies. In the 
dominant-strategy equilibrium of the Vickrey auction, the total price paid by the winning 
coalition sometimes depends on its organization, and incentives for coalition formation 
are sometimes inefficient. In an undiscouraged bidder equilibrium of the ascending proxy 
auction, the total payoff to ex ante coordination among bidders is exactly equal to the 
associated increase in total value and coordination incentives are efficient.  

7. Conclusion 
We have investigated the performance of two kinds of package auctions. The 

ascending proxy auction, which we introduce here, is motivated partly by the ease that 
bidders may experience in using it. In important ways, the new design compares 
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favorably with the better-known Vickrey package auction. When all goods are 
substitutes, the two auctions theoretically achieve identical equilibrium performance. In 
the cases where their equilibrium performances differ, the Vickrey auction always leads 
to lower total revenues and, indeed, to revenues that are uncompetitively low in the sense 
that the Vickrey payoff allocation is “blocked” by a coalition including the seller and 
some of the bidders. In addition, the Vickrey auction introduces biases in pre-auction 
investments that are absent when the ascending proxy auction is used. In our related 
paper, we show that the ascending auction also has better resistance to collusion and 
better handling of budget constraints than the Vickrey auction. We offer the ascending 
proxy auction as a realistic and theoretically sound auction method for actual applications 
where package bidding may be useful.  
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