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A CONVERGENCE THEOREM FOR COMPETITIVE BIDDING
WITH DIFFERENTIAL INFORMATION

By PauL R. MiLGrom'

This paper investigates the behavior of the winning bid in a sealed bid tender auction
where each bidder has private information. With an appropriate concept of value, the
winning bid will converge in probability to the value of the object at auction (as the number
of bidders grows large) if and only if a certain information condition is satisfied. In
particular, it is not necessary for any bidder to know the value at the time the bids are
submitted.

These results bear on the relationship between price and value and on the aggregation of
private information by the auction mechanism.

1. INTRODUCTION

IN THIS PAPER we investigate the properties of the winning bid in a sealed bid
tender auction where each player has private information. We find that it is
possible for the winning bid to converge in probability to the true value of the
object at auction, even though no bidder knows the true value. Necessary and
sufficient conditions for this phenomenon are derived, extending and generalizing
certain of Wilson’s results [3].

We study an auction in which a seller offers to sell at the highest bid an item of
unknown value V. The kth bidder receives a private signal s, (for k=1,2,...)
and submits a bid without knowledge of the other signals. A finitely additive
probability measure P reflects the bidders’ unanimous beliefs about V' and the
signals. Conditional on V; the signals are independent and identically distributed.
The signals take their values in some space &.

With n bidders, a bidding strategy for k is a function p.«: ¥ R. k’s strategy
specifies that upon receiving the signal sy, he shall bid p,.(si).” Thus the winning
bid is
(1) W, = max p (sk)-

k=n

It is also helpful to define

(2) Wi = max Pk (8k).
v

Bidder i’s payoff is
(3) (V = Pri(S (Wi <prs(sid}

! The author gratefully acknowledges helpful discussions with John Christensen, David Kreps,
David Siegmund, and especially, Robert Wilson. The remarks of two anonymous referees were also
useful in clarifying the presentation.

Mixed strategies are easily incorporated into this framework by including in the signal space a
dimension unrelated to V. This dimension of each signal may be used for randomization. For a Nash
equilibrium to exist, it will generally be necessary that the distribution of the signals be atomless.
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where the last term is an indicator variable which equals one if i submits the
highest bid and equals zero otherwise. Expression (3) implies that in the event of
ties there is no winner. The introduction of a tie-breaking mechanism would
complicate the notation without altering the equilibrium strategies.

To rule out the possibility of infinite expected payoffs, we impose a minimum
bid of zero and assume V has finite expectation. We also assume that all bidders
are risk-neutral and that V takes its values in the nowhere dense set ¥ =
{v1, v2, ...} where 0<v;<wv,...and P{V =uv}>0 for each vy € V. (Finite ¥ is
also acceptable.)

No measurability conditions have been imposed in this formulation. The role of
measurability is discussed in the Appendix.

The above formulation defines a non-cooperative game with incomplete
information. We are concerned with the behavior of W, when the n-tuple of
strategies (Pn1, . . . , Pnn) fOorms a Nash equilibrium (if one exists). Our initial task is
to determine the conditions under which W, converges in probability to V.

2. THE MOTIVATING IDEAS

Before proceeding to a rigorous treatment, let us examine the intuitive
requirements for W, to converge in probability to V.

Suppose W, converges in probability to V. Let a = 3(vx_1 + vi). For large n, it
must be much more likely that W,, > « when V = v, than when V < v;. Thus when
V = vy, the winning bidder must receive a signal which leads him to bid more than
«. It must be very unlikely that he would receive such a signal if V were less than
vr. A necessary condition for convergence is that there exist signals which are
much more likely when V = v, than when V <u,.

On the other hand, if such signals exist, then (due to independence) many
bidders in a large auction will observe them. None of these bidders will (neces-
sarily) have great faith that V = v,. They may find it more likely that V > .
Nonetheless if such signals exist then whenever V = v, many bidders will be
confident that V = v,. Competition among them will force W, up to v,. Thus, the
possibility of distinguishing the event {V =uv,} from {V <uv,} using signals is
necessary and sufficient for W, » V in probability.

Notice that the necessity argument makes no use of our economic assumptions.
In order for the maximum bid to close to V, regardless of tastes, preferences, or
even motives, the signals must meet a minimal information condition. That this
quasi-measurability condition is also sufficient suggests that the auction makes
excellent use of the available information, subject to the prohibition against
communication.

Notice, too, that the sufficiency argument does not rely heavily on risk-
neutrality or identical beliefs. In essence, we only require that the bidders’
preferences lead them to compete vigorously when their information is good. This
idea is developed in Sections 4 and 5.

3w, converges in probability to V means P{|W, — V|> ¢}~ 0 for all positive &. See Feller [1, page
253].
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3. THE FORMAL DEVELOPMENT

DEFINITION: Let C and D be events and s a random variable, all in the same
probability space. Then by ““C can be distinguished from D using s’ we mean that
either (i) P(D) =0 or (ii) P(C)>0 and

. P{se A|D}
@ N cAlC)

Observe that this definition is distinctly asymmetric. It is possible that C can be
distinguished from D using s but not the reverse. It is also possible that the
distinction using s can be made in both directions, or in neither direction.

THEOREM 1: W, - V in probability if and only if (*) for every k the event
{V = v} can be distinguished from {V <uvy} using s1.

Theorem 1 will be reformulated and proved under more general assumptions in
Sections 4 and 5. The theorem states that certain economic consequences follow if
and only if the information structure satisfies condition *).

To improve our insight into condition (*), consider the special case where the
signals are real-valued. Assume that their conditional distributions (given V =v)
are absolutely continuous with continuous density functions f,( - ). (To interpret
absolute continuity in the finitely additive setting, see the Appendix.)

THEOREM 2: The following three conditions are equivalent. (i) W, >V in
probability. (ii) The sets

1
A= rmax £, (0/fu () <—}
i<k n
are nonempty. (iii) For every k there exists {t,.} such that for every i <k

lim fo,(tm)/fo (tm) = 0.

m->00

PrOOF: It is straightforward that (*) is equivalent to (ii) and that (ii) is
equivalent to (iii). Hence Theorem 2 follows from Theorem 1.

ExAMPLES: (i) f, normal with mean v and variance 1. (ii) f, normal with mean 0
and variance v>. (iii) f,(¢) = v exp (—vt) for t=0. (iv) f, (1) = exp (=t/v)/v for t =0
(v>0). .

For the normal densities in examples (i) and (ii), the ratios £, (¢)/f,(t) are

exp [(w—v)t—3w’+30°]
and

Vo/w) exp[-31°(1/w*~1/v7)],
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respectively. In both cases, for w <uv, the ratio tends to 0 as ¢ > co. If the signals
obey either of these distributions, the winning bid will converge in probability to
V.

In example (iii), the ratio f,, (¢)/f,(¢) is bounded below by w/v if w <v and by 0 if
w >v. Convergence fails, but interestingly with this distribution for the signals
{V = v} can be distinguished from {V > v, } using s;.

In example (iv), it is not possible to distinguish {V = v} from {V > v,} using s1,
but it is possible to distinguish {V = v, } from {V < uv:} using s1. We check this by
observing that for w <u, f,,(¢)/f,(¢) is equal to (v/w) exp [(1/v —1/w)t] which
tends to zero as ¢ - o©. For such signals we conclude that W,, > V in probability.

Wilson [3] proves a theorem which establishes a sufficient condition for W, > V
almost surely.® His setting is somewhat different from ours, but the following
corollary is similar to his result.

COLLARY: Suppose that for each k there exists some t such that for every i <k

fo(D)/ fu () = 0.
Then W, - V in probability.

PrOOF: In condition (iii) of Theorem 2, let ¢,, = ¢ for every m.

4. A GENERALIZATION

Let & be the set of possible descriptions of the object at auction. Let & be the
set of possible signals. Assume that all bidders agree on % and & Then the
relevant ‘‘states of the world”” are points in the set

(5) D=FXFPXELX ...

A typical point w € {2 is (z, s1, 2, . . .) Where z € Z and s; is the signal received by
bidder i(i=1,2,...).

Each bidder i is assumed to have a finitely additive probability measure P;
defined over all subsets of £2.° The random variable Z is defined by

(6) Z(Z, S$1, 82, . . .)=Z.

Z represents the unknown true description of the object at auction.
A von Neumann-Morgenstern utility function u;(-, -) describes the pref-
erences of bidder i. The first argument of u; is a point z € &. The second argument

* W, > V almost surely means that P{W,, > V}=1. This is a stronger form of convergence than
convergence in probability. (See Feller [1, page 237].)

5 In classical probability theory, probability measures are countably additive and defined only on a
o-algebra of subsets of £2. See Savage [2]. Any countably additive probability defined on a o-algebra
of subsets can be extended to a finitely additive probability defined on all subsets.



CONVERGENCE THEOREM 683

isa bid amount b € R... We normalize the utility functions so that the utility of each
losing bidder is zero.
Next we define the “value” (V;) of Z to bidder i.

(7) Vi(z)=sup {b: u:(z, b)=0}.

V; is the most { would be willing to pay if he knew Z. We regard V; as a random
variable. Finally, we define the value of the object at auction by

(8) V=sup{V;:i=1,2,...},

the most any informed bidder would be willing to pay.
Next we impose some substantive assumptions on Z and on the bidders’
preferences. Let I be the set of positive integers.

DEFINITION: The family of probability measures {P;, i € I'} is called consistent if
there is some finite real number b such that for every i, j € I and every subset A of
0

©) P;(A)<bP;(A).

DEFINITION: The family of utility functions {u;, i € I'} is called consistent if there
exist increasing functions u and & from R to R satisfying (a) for every positive x,
u(x)>0, (b) for every negative x, i (x) <0, and (c) foreveryie I,z € Z,and x e R,

(10) u(Vi(z)—x)<ui(z, x)<ia(Vi(z) — x).

ASSUMPTION 1: The set & ={zy,..., zar} is finite. P1{Z =zx}>0 for each
zgk€ Zand 2, ca P1{Z =zx}=1. Let vx = V(zk). Then Z is ordered so that
O=svo<vi<...<um

AssumpTION 2: Conditional on Z and under P;, the signals are independent
and identically distributed.

AsSUMPTION 3: The family {P;, i € I'} is consistent.
AsSUMPTION 4: The family {u;, i € I'} is consistent.

AsSSUMPTION 5: The random variables V; are bounded below by some real
number [ <0.

ASSUMPTION 6: For every z € Z and every positive §, there are infinitely many i
for which V(z)— Vi(z) <é.

AssSUMPTION 7: The minimum permissible bid is zero.
Assumption 1 serves in lieu of a regularity assumption on P;(s1|Z). The privacy

of the signals and the inability of any bidder to gather “special”’ information are
characterized by Assumption 2.
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Assumption 3 plays two major roles. First, it ensures that all bidders will agree
on the veracity of statements like *“W,, converges in probability to V"’ and “‘C can
be distinguished from D using s.”” Without such agreement, Theorem 3 would be
devoid of meaning. Second, the assumption guarantees that the competitors can
agree on what constitutes convincing evidence.

Assumptions 4 and 5 combine to ensure that no bidder is so risk averse that he is
effectively excluded from the auction. Assumption 6 promises that many bidders
can make effective use of accurate information. Taken together, Assumptions 3-6
constitute an assumption of vigorous competition.

Assumption 7 guarantees that expected payoffs are finite.

THEOREM 3: Under Assumptions 1-7, W,, > V in probability if and only if (*) for
every K the event {V = vk} can be distinguished from {V < vk} using s1.

5. PROOF OF THEOREM 3

LEMMA: Let {a,} and {b,} be sequences of nonnegative real numbers and
winning bid random variables W,. Suppose that (*) is satisfied but W, fails to

n n
Y am/ Y bm<c.
m=1

m=1
Then for some j(1<j<n), a;/b;<c.

PrOOF: Suppose to the contrary that for every j, either b; = 0 or a;/b; = c. Then
taking a convex combination,

c< ¥ @) (b)) % o)<t af3S b
ji=1 m=1 ji=1 m=1
b;#0
contradicting our hypothesis. Q.E.D.
PROOF OF THEOREM 3: Suppose W,, - V in probability. Fix K >1 and choose
a =3(vk_1 +vk). By conditional independence of the signals, for any i

(11) Pl{Wn<a|V=v,-}= ﬁ Pl{p,,m(sm)<a‘V=vi}
m=1

jomn B

L (1 _Pl{pnm(sm)zalv= vi})

m

<exp ( _mi=l Pipum(sm)=a|V = vi}).

Pick i <K so that v; <a. Since W,,»> V in probability, we have that P;{W, <
a|V =u;}- 1. It follows from this and (11) that for i <K

z Pl{an(Sm)Balv= Ui}_>0'
m=1
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Hence,
n K-1
(12) 0=1lim ¥ Y PV =0}Ppum(sm)=al|V =0}
n>com=1 i=1
= lim z Pl{pnm(sm)2a|V<vK}-
n-»>co m=1
Also,

Pl{Wn <alv= UK}Z]‘— Z Pl{an(Sm)ZalV= UK}-
m=1
Since the left-hand side of this inequality must tend to zero as n - o, it follows that

(13) liminf ¥ Pi{pum(sm)=a|V =0vk}=1.

n-»>co m=1

Combining (12) and (13) and replacing each s,, with an s; yields

1 M=

Pl{an(51)>a|V<UK}
(14)  lim 2= =0.
nre Pl{an(Sl)Ba|V=UK}

M=

I

m

Using (14) and the lemma, there must exist positive integers j = j(n) < n such that

. Pipn(s)=a|V <uvk}
15 lim =
( ) n—»ooPr{_pni(Sl)?alV:DK}

0.

Let A" =p,; [a, ©). Then we may rewrite (15) as

. Pl{sleA"lV< vk}
16 1 =0.
16)  lim o A"V = ox)

This proves necessity.

For sufficiency, suppose that for each n some Nash equilibrium n-tuple
(Pn1s - .-, Pnn) Of bidding strategies is fixed. These determine corresponding
winning bid random variables W,. Suppose that (*)is satisfied but W, fails to
converge in probability to V. We must show that these assumptions lead to a
contradiction.

Since W, fails to converge in probability to V, there must exist some vk and
some positive real numbers a and 8 <uvk/2 such that either

(173) limsupPl{Wn <‘UK—25|V=‘UK}>C!
or

(17b)  lim sup P1{W, > vk +28|V = vg}>a.

n-»>o0
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Suppose (17a) holds. Let vk be the largest number in {vo, . . . , var} such that W,
fails to converge to V under the measure Pi{- |V = vg}.

Since the information condition (*) is assumed satisfied, there is some subset A
of & for which

P1{S1€AlV<UK}< aPl{V=vK}_l’.‘_(8)

(18) <-— .
Pl{S1€A|V=Uk} 2b Pl{V<UK}_Ii(l+5—UK)

Define a bidding strategy p* by

*(s)_{vK—ZS ifseA,

p 0 otherwise.

Let i be any bidder for whom V(zx)— Vi(zx) <8. Choose n > i satisfying
(19) P1{Wn<UK—26|V=UK}>a.

Then i’s expected winnings from p* in the n-bidder auction is

(20) Eilu:(Z, P*(Si))l{w,,i<p*(s.-)}]> aP{V =uvg, s, € A}g(&)/(Zb)
+bP1{V>UK, S1€A, Wn,' <vg —26}g(l+6—vK).

By our choice of vk and the optimality of p,;,°

(21) lim Py{W,; <vk —28|V >uvk}=0.

n->oo

So for large n satisfying (19), strategy p* offers bidder i expected utility of at least
aP{V = vk, s1€ Alu(8)/(2b), a fixed positive real number.

In a Nash equilibrium, each bidder will have nonnegative expected utility.
(Otherwise, the strategy of always bidding zero will prove superior to the strategy
actually used.) Also, using Assumptions 3, 4, and 7, and defining

eni = Ei[ui(Z, pni(si))I{Wm-<p,,.-(S.-)) 1,

we can deduce that
(22) Y e <bE\[a(V)].
i=1

Let j(n) be the number of bidders among the first n for whom V(zx)— Vi(zx) <
8. Then for every n, it follows from (22) that there is some bidder i = i(rn) among
the j(n) for whom

eni <bE1[u(V)]/j(n).

By Assumption 6, j(n) tends to infinity. So e,; > 0. Hence for some large n
satisfying (19), bidder i(n) could do better with p* than with p,;. This contradicts

6 Otherwise, the strategy given pi;(s) = min (p,;(s), vx —28) is superior to p,; for some large n.
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our assumptions and so proves that (17a) cannot hold in a Nash equilibrium
satisfying the information condition (*).

Next suppose that for every positive 8, P1{W, < V —§}- 0. Using this, (15b),
and Assumptions 3 and 4, one can show that for some n

@3 X Ei[ui(Z, pui (s (W,i<pniisn ] < 0.

Hence, some bidder could improve his expected payoff by bidding zero. So
contrary to our hypothesis, neither (15a) nor (15b) can hold. Q.E.D.

The proof of Theorem 1 is similar but does not (in the sufficiency part) require
that the vx chosen be maximal. Hence finiteness plays no role in Theorem 1.

6. PARTIAL INFORMATION

It may often happen that the possible signals bear only on some aspect X of the
description Z. In such cases, by redefining the object at auction to be a lottery,
Theorems 1-3 continue to be useful.

To illustrate this principle, consider again the framework of Sections 1-3.
Assume that X is a sufficient statistic for the vector (X, s, 52 . . .). In this finitely
additive framework we take this to mean that the conditional distribution of V
given X exists and equals the conditional distribution of V given (X, s1, s5...).
Assume that the support of X is {x, x», . . .} and define v; = E[ V|X = x;]. Finally,
assume that

(24) V<2< ....

THEOREM 4: W, > E[V|X] in probability if and only if (**) for every k the event
{E[V|X]= v} can be distinguished from {E[V|X]< v} using s;.

PrOOF: Let V =E[V|X]. Bidder i seeks to maximize his expected payoff,
which is
E[(V = pri (S (Wi <ppisit ]
=E[E[(V = pi (S (Wyi<puitst | X5 51, -« -, 8u]]
=E[(V = pui(s) (W< s -

Thus each player bids as though V were the unknown value of the object at
auction. Apply Theorem 1. Q.E.D.

7. CONCLUSIONS

As Wilson [3] has discussed, there are many facets to convergence results of the
kind we have presented. First, we have shown the identity of price and value for
large tender auctions with appropriate information structures. Second, we have
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shown that the auction game results in private information being aggregated in the
equilibrium price. And third, this aggregation of information is reasonably
efficient. The information requirements for convergence are the minimum possi-
ble requirements (as discussed in Section 2).

Stanford University
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APPENDIX

The development of Theorems 1, 3, and 4 have relied exclusively on finitely additive subjective
probability measures with unrestricted domains. The theorems hold equally well when measurability
conditions and measures with restricted domains are introduced.

Let & and & be o-algebras of subsets of & and {2, respectively, and let 8 be the Borel sets. Let us
require that each signal (si, k =1, 2, .. .) be a measurable function from {2 to & and that the bidding
strategies pni: ¥ > R be Borel measurable. These are the standard requirements in models with
countably additive probability measures. Then all proofs presented in this paper remain valid with the
understanding that the sets A" are elements of &f.

Theorem 2 may be interpreted in either the classical setting described in the preceding paragraph or
in a finitely additive setting. For the latter, however, one must specify a finitely additive extension of
Lesbeque measure defined on all sets of real numbers. Then the requirement is that the conditional
distributions of the signals have continuous density functions with respect to the specified extension,
ie.,

PiscAlV =0}= fi(ouian
A

where u is the specified extension of Lesbeque measure.
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