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This paper presents the development and validation of the unsteady, three-dimensional, multiblock, 
parallel turbomachinery flow solver, TFLO. The Unsteady Reynolds Averaged Navier-Stokes (Un- 
steady RANS) equations are solved using a cell-centered discretization on arbitrary multiblock 
meshes. The solution procedure is based on efficient explicit Runge-Kutta methods with several 
convergence acceleration techniques such as multigrid, residual averaging, and local time-stepping. 
The algebraic Baldwin-Lomax, the one-equation Spalart-Allmaras, and the two-equation W ilcox 
k-w turbulence models are implemented. The solver is parallelized using domain decomposition, an 
SPMD (Single Program Multiple Data) strategy, and the Message Passing Interface (MPI) Stan- 
dard. A mixing model and a sliding mesh interface approach have been implemented to exchange 
flow information between blade rows in both steady and unsteady rotor/stator interaction flows. 
The dual-time stepping technique is applied to advance unsteady computations in time. This paper 
focuses heavily on the initial validation of the flow solver, TFLO, with emphasis on steady-state 
calculation of multiple blade-row flows. For validation and verification purposes, results from TFLO 
are compared with both existing experimental data and computational results from other software 
used in industry. The large set of cases tested increases our confidence in the ability of TFLO 
to accurately predict flows inside typical turbomachinery geometries, and sets the stage for the 
large-scale computation of unsteady, multiple blade-row flows. 

1. Introduction 

Computational Fluid Dynamic (CFD) simulations 
play an essential role in the design of modern gas tur- 
bine jet engiiies, providing engineering predictions of 

aerodynamic performance, heat transfer, and flow 
behavior. Steady-state flow predictions are com- 
monplace for problems ranging in size from the de- 
sign of an individual compressor or turbine blade, 
to large or whole sections of a complete component, 
such as a combustor or a low-pressure turbine. A 
few examples of steady, multi-stage turbomachinery 
flow prediction capability include those developed 
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by Adamczyk et. al. [l], Dawes [2], Denton and 
Singh [3], Ni et. al. [4, 51 and Rhie et. al. [6, 71. 
Adamczyk et. al. [8,9], Hall [lo], and others have ex- 
tended the steady-flow prediction schemes to model 
various unsteady-flow effects in multi-stage turbo- 

nh;mnr., LmabIIIIIc?LJ. I IuIuL vJ+:-componeiit &ca&ymfiow aim&- 

tions have not yet become routine in the design pro- 
cess because of the exceedingly large resource re- 
quirements to perform these analyses and the dis- 
parate flow physics prevalent in each component. 

The use of unsteady flow simulations in the design 
process remains limited to small sections of the en- 
gine, such as a single stage of a compressor or tur- 
bine. The main reasons for this lack of unsteady 
numerical results are the large computational re- 
quirements necessary to Cal&late the flow solution 
and the long integration times necessary to achieve 
meaningful time averages. As the size of an un- 
steady flow turbomachinery simulation increases be- 
yond two or three blade rows, the overall required 
computer memory size and solution time rapidly 
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grow to a point where the simulation is no longer 
feasible with most available computer systems. This 
rapid growth is due to the different number of airfoils 
in each blade row and the requirement to maintain 
a constant and equal circumferential section along 
the entire axial length of the domain for the sake of 
circumferential periodicity. Examples of current un- 
steady, multi-stage turbomachinery flow prediction 
procedures include those of Arnone et. al. [II], Dor- 
ney et. al. [12], Giles [13, 141, Gundy-Burlet [15], 

. ..Jorgensonand .Chi.ma .[!$I, Lewis- et,.. al: [_1_7], .I&+_. 
al. [18], and Rao et. al. [19]. Other components in 
the engine have similar requirements that make it 
just as difficult to utilize unsteady-flow simulations 
as a design tool. 

Shared and distributed memory parallel computers 
have helped to greatly extend the feasible size and 
reduce the solution time. of large-scale gas-turbine 
design and analysis problems. Many new advances 
in computer hardware, communication networks, 
and simulation software are required, however, to 
bring large-scale simulations into practical, every- 
day use. The design and analysis of gas turbine 
jet engines is not the only engineering or scien- 
tific arena that has encountered these bottlenecks. 
As a result, the Department of Energy (DOE) has 
launched the Accelerated Strategic Computing Ini- 
tiative (ASCI) to promote the development of large 
massively-parallel computer systems and the simu- 
lation software that can take advantage of them. 

As part of this initiative, the current effort has been 
focused on developing a new massively parallel com- 
putational fluid dynamic solution procedure. Al- 
though the simulation software has been written to 
allow for the computation of steady and unsteady 
flows in general configurations, the target applica- 
tion of the current effort has been gas turbine turbo- 
machinery flows. The long-term goal is to develop 
.the capability to simulate the steady or unsteady 
flow through an entire compressor or turbine com- 
ponent. Before reaching this goal, the fundamental 
ability of our program to predict some of the most 
basic turbomachinery flows needs to be. addressed 
thoroughly. The purpose of this paper is to doc- 
ument the numerical, data structure, and parallel 
computing techniques used in the baseline proce- 
dure as well as the results of a series of validation 
test cases used to verify the prediction accuracy for 
different flow regimes. 

2. Overview of TFLO 

The Unsteady Reynolds Averaged Navier-Stokes 
(Unsteady RANS) equations are solved using a 
cell-centered discretization on arbitrary multiblock 
meshes. The solver is parallelized using domain de- 

composition, an SPMD (Single Program Multiple 
Data) strategy, and the Message Passing Interface 
(MPI) Standard. 

The solution procedure is based on efficient ex- 
plicit modified Runge-Kutta methods with several 
convergence acceleration techniques such as multi- 
grid, residual averaging, and local time-stepping. 
These techniques, multigrid in particular, pro- 
vide excellent numerical convergence and fast so- 
lution turnaround. Two numerical dissipation 

schemes-have-been- implemented: -the-JST (Jameson----- ----.-- .--- -..-.-.. 
Schmidt-Turkel) switched scheme [20], and the more 
refined CUSP (Convective Upwind Split Pressure) 
dissipation model [21, 221, which provides sharper 
resolution of shock waves and contact discontinuities 
at a moderate increase in computational cost. 

The multiblock strategy facilitates the treatment 
of arbitrarily complex geometries using a series of 
structured blocks with point-to-point matching at 
their interfaces. This point-to-point matching en- 
sures that global conservation of the flow variables is 
preserved. The structure of the mesh is specified via 
a connectivity file which allows for arbitrary orienta- 
tions of the blocks. Two layers of halo cells are used 
for inter-block information transfer and an efficient 
communication scheme is implemented for the halo 
cell data structures. The load of each processor is 
balanced on the basis of a combination of the amount 
of computation and communication that each pro- 
cessor performs. Communication of halo cell values 
is conducted at every stage of the Runge-Kutta in- 
tegration and in every level of the multigrid cycle in 
order to guarantee fast convergence rates. 

The resulting pre-processor and flow solver combi- 
nation have been ported to a variety of today’s most 
advanced parallel computers. TFLO is routinely run 
on the CRAY T3E at the Pittsburgh Supercomput- 
ing Center, on SGI Origin 2000 systems at both 
Stanford University and the Los Alamos National 
Laboratory, and on the latest IBM-SP systems at 
the Lawrence Livermore National Laboratory. 

The solver incorporates a variety of boundary condi- 
tions and turbulence models which allow for a wide 
range of applications in internal flows. Currently 
supported boundary conditions include both viscous 
and inviscid solid walls, inflow, outflow, far-field, 
symmetry, circumferential periodic, open gap, flow 
through, and specified mass flux conditions. Addi- 
tional boundary conditions will be incorporated as 
needed. 

Several turbulence models have been implemented 
for the computation of the Reynolds stress. Current 
options include the Baldwin-Lomax algebraic model, 
the one-equation Spalart-Allmaras model, and the 
two-equation Wilcox Ic-w model. These options are 
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being extended to include a family of k-e models, 
and the Stanford-developed v2-f model. The k-w 
model is mostly used in this work and is strongly 
coupled with the Navier-Stokes solution procedure. 
A point-implicit treatment is applied to the source 
terms of the turbulence equations to achieve faster 
convergence. 

For steady-state flow calculations in a multiple 
blade-row environment, the conservative flow vari- 
ables at the mixing plane between adjacent blade 
rows are circumferentially averaged and exchanged. 
For unsteady calculations of rotor/stator interac- 
tion, the conservative flow variables at the sliding 
interface are suitably interpolated both upstream 
and downstream thus preserving the spatial varia- 
tions in the flow field; The dual-time stepping tech- 
nique [23, 24, 25, 261 is used for time-accurate simu- 
lations that account for the relative motion of rotors 
and stators as well as other sources of flow unsteadi- 
ness. 

Multiblock structured mesh with double halos 
at block boundaries. 

Parallel implementation using a Single Program 
Multiple Data (SPMD) strategy and the .Mes- 
sage Passing Interface (MPI) Standard for com- 
munication. 

Pre-processor for domain decomposition and 
load balancing. 

Dual-time stepping for unsteady flow simula- 
tion. ‘,i; ,‘i ‘, ._ 

The main goal in the development of TFLO is to en- 0 

sure that the solver can be scaled to large numbers 
of processors (in the thousands range) so that prob- 
lems of far larger size than ever attempted before 0 

can be computed efficiently. These problems will in- 
volve more data, more complexity, and a succession 
of more powerful computing platforms. The issue 
is not simply bigger and faster, but rather a fun- 

l 
damental shift in the way problems are solved. For 
this purpose, the solver has to be robust, efficient, 
and must be able to predict the proposed problems . 

accurately. However, our intention has also been to 
develop a code that can be used for small routine 
calculations that are repeatedly encountered during l 

the process of component design. 

Intensive validation has been an intrinsic part of 0 

TFLO’s development. Some fundamental test cases, 
such as boundary layers on a flat plate, the Bachalo- . 
Johnson transonic flow over a bump, the Hobson 

Convergence acceleration via multigrid and im- 

II cascade, and the vortex shedding over a circular 
plicit residual smoothing. 

cylinder have been computed to validate the char- . JST and CUSP algorithms for artificial dissipa- 
nrtmictira nf thn haair an1.m~ 5nc-l .trrrh..lnnnrr TnAnl- -v”--*““Auy VI “Al” “L6.r~” ““1.UI cullll YUI “UI.LIIk,b I I”UcTIU tion. 
in TFLO. Several turbomachinery test cases have 
been carefully selected to validate the predictions . 

of multistage compressor and turbine flows. These 
test cases include the VP1 turbine cascade, the 1.5- 
stage Aachen turbine, and the 3.5-stage Pennsylva- 
nia State University Research Compressor (PSRC). 

3. Numerical Methods 

3.1 Governing Equations 

The governing equations solved by TFLO are for- 

:, 
Moving mesh attached to rotors with sliding 
mesh interface between rotor and stator meihes. 

C,&, 
Modified Runge-Kutta time-stepping for 
steady-state simulation. 

Turbulence modeling: Baldwin-Lomax, 
Spalart-Allmaras, and Wilcox k-w models. 

2.1 TFLO Origins 

TFLO has been developed from scratch using the ex- 
perience in both turbomachinery computations and 
parallel computing gained during the development 
of two earlier simulation codes: 

(c)2000 American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)’ sponsoring organization. 

l FL0107-MB [27] is a general multiblock paral- 
lel Navier-Stokes solver that uses the Baldwin- 
Lomax turbulence model for the solution of ex- 
ternal flows. It implements a multiblock strat- 
egy and has a scalable, well-tuned parallel algo- 
rithm for block-to-block communication. 

l Turbo90 [28,29,30] is a single block, single pro- 
cessor Navier-Stokes solver for turbomachinery 
flows that uses the k-w turbulence model. 

2.2 Components and Main Features 

The major components which comprise the software 
are a grid generator, a simplified through-flow solver 
for the generation of initial flow conditions, a grid 
blocker and duplicator, a multiblock pre-processor, 
the flow solver, TFLO, and a host of visualization 
and post-processing utilities. The main features of 
the complete system can be summarized as follows: 

mulated in a general moving coordinate system. Let 
v(t) be a moving control volume with bounding sur- 
face S(t). The functional dependence of V and S on 
t implies that the control volume_and its boundary 
can be time dependent. Let p, V, E be the den- 
sity, absolute velocity and absolute total energy per 
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unit mass, respectively. Using a coordinate system 
which rotates with angular velocity w’ and neglect- 
ing body forces, the integral form of the unsteady 
Navier-Stokes equations can be shown to be 

where 

(2) 

0 s= [ 1 pw’x? . (4) 
0 

According to Stokes’ postulate, the total stress ten- 
sor can be written as 

Uij = -pdij + Tij, (5) 

where rij is the shear stress tensor 

2 auk 
Tij = 2/JSij - -/.A-, 

3 dXk 

and Sij is the strain rate tensor defined by 

The coefficient of viscosity of the fluid is represented 
by p, and p is the thermodynamic pressure that can 
be related to the conservative variables by an equa- 
tion of state. Under a calorically and thermally per- 
fect gas assumption, we have 

p = (7 - l)p(E - fp. ?); p = pRT, 

where R is the universal gas constant, and 7 is 
specific heat ratio. 

Using Fourier’s law the heat flux vector is given 

a= -KVT, 

(8) 

the 

by 

(9) 

where K is the Fourier coefficient of heat conductiv- 
ity. 

A-Wb”l) = w(n+l) _ W(n)+ 
3.2 Discretization 

A cell-centered finite volume scheme is used to dis- The superscripts (n + 1) denote the time level 
cretize the governing equations. Upwind biasing is (n -!- 1)At at which the flow variables are considered, 
achieved with the addition of numerical dissipation. and R(w) is the symbol for the combined convective 
The current version of TFLO uses either a switched and dissipative residuals (which can include viscous 
scalar dissipation scheme (Jameson-Schmidt-Turkel, residuals as well). Following Melson et al. [32], the 

JST) or the more sophisticated Convective Up- 
stream Split Pressure (CUSP) scheme, coupled 
with an Essentially Local Extremum Diminishing 
(ELED) formulation. Details of these techniques 
and an extensive validation of the schemes for both 
inviscid and viscous flows, can be found in [21, 22, 
311. 

3.3 Dual-Time Stepping 

When .unsteady.. flows are.-considered, the Navier- 
Stokes equations must be marched forward in time 
in a time-accurate fashion. Two basic alternatives 
exist: one can advance the system forward in time 
using either an explicit or an implicit method. 

Explicit methods require the selection of the time- 
accurate time-step based on numerical stability re- 
quirements. Except for very high frequency flow 
phenomena, the time-step required for reasonable 
accuracy of the calculation is often much larger than 
the limit imposed by numerical stability considera- 
tions. 

Implicit methods are, in general, more costly per 
time step, but set less restrictive limitations on the 
allowable time-step. Therefore, they allow the se- 
lection of the time-step based on the characteristic 
frequency of the physical phenomena to be resolved. 
Implicit methods also pose additional difficulties to 
the efficient parallelization of the scheme. 

The dual-time stepping technique combines the ad- 
vantages of both implicit methods and the fast solu- 
tion techniques that have been developed for steady- 
state solutions (multigrid, implicit residual smooth- 
ing etc). 

The governing equations (1) can be discretized im- 
plicitly a.9 follows: 

Dt(W(~fl)VW)) + R(w(n+l)) = 0, (10) 

where Dt is a Ic-th order accurate backward differ- 
ence operator of the form proposed by Jameson [23]. 

Dt = $5 [A-lq, 
q=l 

where 
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physical time derivative operator can be written as 
follows 

Dt (Wb+l) @+l)) 

+ E(WW(“), 
wb-q,AH,. . .) 

w(~+-q,A~+l-w)]. 

where the operator E represents the part of the time 
derivative operator that is due to the values of the 
flow variables and cell volumes at previous time- 
steps, and is therefore a fixed source term in the 
solution at each time-step. 

The second-order time discretization is then given 
by: 

- -@n)v(n) 

+ LWWVW), 
2At 

with 

a0 = -, ; E = -2W(4$74 + +‘$“-+(“-‘1, 

and the third-order discretization is given by: 

Dt (WC n+l)p+l)) =‘ &W(R+‘)$“fl) 

- 3&4V(4 

3w(n4),d?“-1) 
+ 2At 
- -L&+qA”-2). 

with 

11 
al-J = -, 

6 
E = -3W(79$n) 

+ 3W(WV(4 
2 

- 

Let W1 denote the I-th iterative approximation to 
the flow solution at time step (n + l), such that 

W(n+l) = lim W’. 
l-+x 

Equations (10) can now be rewritten as follows: 

Zwv( n+l) + ; + R(W) = 0. (12) 

These non-linear coupled ordinary differential equa- 
tions can be re-cast into a modified steady-state cal- 
culation for each implicit time-step as follows: 

dW 
Tg + R*(W) = 0, 

where the modified residual, R*(W) contains the 
usual steady-state residual with the addition of two 
source terms that arise from the discretization of the 
time derivative operator 

R*(W) = zw+ +) [~+7vv)] ? (14) 
and t* denotes the fictitious time used to reach a 
pseudo steady state which advances the solution for- 
ward in time from t = nAt to t = (n + 1)At. 
The solution W can be marched in fictitious time 
through successive approximations W1 with inner 
time step At* until a steady state in pseudo-time 
is reached. Once this is accomplished the solution 
vector W which satisfies equation (13) is actually 
the new solution at time-step (n + l), W(nfl) that 
we were looking for. Repeating this procedure at 
every time step, the time accurate behavior of the 
flow can be predicted as a sequence of pseudo-time 
steady-state solutions. 

Notice that when advancing Equation (13) in 
pseudo-time, if s is a small number, the ,@od- 
uct of the modified residual with the fictitious time 
step At*%?,*(W) differs from the steady-state resid- 
ual times its time step by a small perturbationonly, 
and, therefore, the solution methods used for steady- 
state problems ought to be almost as efficient for this 
problem. It must be pointed out that it is precisely 
these problems in which the physical time-step At is 
much larger than the fictitious. numerical time-step 
At* where the performance of an implicit discretiza- 
tion is at its best. 

The second order accurate discretization is used for 
the unsteady simulation presented in this paper, as 
it is considered to be a good compromise between 
accuracy, memory requirements, stability, and ro- 
bustness of the scheme. For some types of prob- 
lems, the third order discretization may be a better 
choice. The stability and robustness of the dual- 
time stepping scheme has also been verified by other 
researchers [26, 33, 24, 32, 34, 35, 361. 

The physical time-step used to advance the time- 
accurate solution in all the cells in the domain must 
be the same independently of the size of each of these 
cells. In the inner iteration, however, we are free to 
choose the pseudo time-step within the restrictions 
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imposed’ by numerical stability of the scheme. It 
pays off to use locally varying pseudo time-steps such 
that each cell in the domain is running close to its 
stability limit. For each cell, the time-step for the 
inner iteration is chosen as 

At* = 
CFL 

xc + A, + xc ’ (15) 

where Xc, X,, and Xc are the spectral radii of the 
flux Jacobians of the governing equations in each of 

-. ---the -three.coor-in&-e- directions; -. ..-... .._ ..-. .- .- 

It must.be mentioned that, although the overall for- 
mulation for the physical time integration is implicit 
in nature, advancement in time is driven by an ex- 
plicit ipner iteration. It is this characteristic of the 
dual-time stepping algorithm that allows for the use 
of well-tested explicit convergence acceleration tech- 
niques, such as multigrid and residual averaging, in 
order to obtain faster convergence of the pseudo- 
time iterations. The computational advantages of 
the dual-time stepping scheme are due, in large part, 
to the use of the multigrid technique; without it, 
a large number of iterations would be required to 
converge the flow at each physical time-step. More- 
over, a second advantage of the explicitness of the 
inner iteration is that it allows for the possibility of a 
straightforward, efficient parallelization. Because of 
these two reasons, the dual-time method is perfectly 
suited for the computation of unsteady problems. 

3.4 Time-Stepping Scheme 

An m-stage generalized Runge-Kutta scheme can be 
formulated as follows: 

The residual, R*, includes contributions from the 
convective and dissipative residuals, as well as from 
the time derivative discretization. In order to op- 
timize the smoothing properties of the scheme, the 
convective and dissipative parts of the original resid- 
ual at the k-th stage R(Wk) are treated separately 
in the following fashion: 

WW”) = Q(W”) + fi(W”) 
@wk) = ,6k2)(wk) + (1 - pk)D(wk-l) 

where 8 and ‘D are the convective and diffusive flux 
balances, respectively. 

The coefficients ok are chosen to maximize the sta- 
bility region along the imaginary axis, and the coeffi- 
cients ,f& are chosen to increase the stability interval 
along the negative real axis. A 5-stage scheme is 

used in the current code with coefficients 
1 13 1 

kd = {-,--,-,-,l), 4682 
{,&} = {1.0,0.0,0.56,0.0,0.44}. 

The term , sWV(“+l), which has been lumped into 
the R* operator and that originates from the dis- 
cretization of the time derivative term (see Equa- 
tion 12) can be treated implicitly within the Runge- 
Kutta integration since it is only a diagonal term, 
and a simple division is required. The Runge-Kutta 
mtegration is then reformulated as follotis: 

w(O) = w’ 
WC”) = (1 +Lks (W(O) + cYJwk-’ 

- CY~A~*L[R’(W”-~)]) 06) 
w1+1 = W(M), 

where 1 = w, and the operator C performs 
implicit residual averaging on the complete residual 
‘R,*(W) which vanishes as the solution converges to 
a steady state in pseudo-time. 

3.5 The Wilcox k-w Turbulence Model 

The reformulated k-w equations used in the code are 
given by 

;[ $1 +&[ ;~]Ldj= 
-+ , . / 

rate of change convection 

where 

Eij = 2Sij - :Adij 1 ) 

and 

The basic algorithm for solving the k-w equations 
follows that proposed by Liu and Zheng [28] ex- 
cept that a non-staggered finite volume discretiza- 
tion is used here. The k-w equations are solved at 
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every stage of Runge-Kutta scheme, and are closely 
coupled with the Navier-Stokes equations. The k-w 
equations are also solved on all multigrid levels to 
accelerate convergence. Communication of k and w 
is performed simultaneously with the conservative 
flow variables at all block interfaces. The implicit 
residual smoothing technique is also applied to the 
k-w equations. 

these terms, the faster k and w decay. In this case, 
the turbulence equations unfortunately become less 
stable because of larger negative eigenvalues. The 
update of the k and w equations within each stage 
of Runge-Kutta scheme is modified to treat part of 
the source terms implicitly and therefore obtain in- 
creased numerical stability: 

The k and w variables are defined at cell centers in 
a similar fashion to the main flow quantities. The 

[&#QV=R(W)+S(W) 

velocity derivatives, which are used to calculate pro- 
duction and dilation terms at cell centers, are ob- 
tained at the vertices of the cell using the values in dS -2/3*w- A+ 0 
all of the eight cell centers that surround a given aw= 0 1 -2pw -aA+ ’ 
node. The convection terms are discretized with a 
second order MUSCL-type upwinding scheme (first 
order in coarser grids of the multigrid sequence). 

where 

The time integration for the k-w equations requires 
special attention. The semi-discrete k-w equations A+ = max(O, :V. u). 

can be written as 

;(pkj +&-(&w) = 0 

-$Pw) + &(pk, pw> = 0, 

Even if the numerical scheme can guarantee the pos- 
itivity of k and w, the computation may lead to low 
IeveIs of w which are not physical, resulting in ex- 
cessively large values of eddy viscosity. To prevent 
this, we take 

where Rk and R, are the residuals for the k and w 
equations, respectively: 

(PW)min = acr*pfi. 

Rk(pk, Pw> = &(c, - Dk) - Sk 

ck and C, are the discrete forms of the convective 
terms in the k and w equations, and Dk and D, are 
the corresponding diffusive terms; Sk and S, are 
the discrete forms of the source terms which can be 
written as 

The turbulence production term Pd is calculated us- 
ing the mean rates of strain only on the finest grid, 
and is then injected to the coarser meshes in: the 
multigrid sequence. Certain limiters for k and w are 
applied when the solution is updated. This ensures 
the proper transfer of the residuals of the turbulence 
equations during the multigrid process. 

The free-stream boundary condition for k and w used 
currently can be described as follows: 

k, = &mTuj2, - SC Wm =cxwlU---, 
L 

where T, = 16 . is the freestream turbulent intensity 
and L is the !&bulence length scale. T, and CY, are 
also prescribed. 

The ,.&tPd and CrcU*pPd terms are the major produc- 
tion terms for k and w and are aIways positive. The 
$(V.u)(pk) and cr@7.u)(pw) terms also contribute 
to the production of k and w, but, however, may be 
either positive or negative. When the flow is under- 
going an expansion V . u > 0, they dissipate k or 
w. Conversely, when the flow is undergoing a com- 
pression, they produce k or w. The $(pw)(pk) and 
$ (pw)’ terms are dissipative terms which are always 
negative and thus annihilate k and w. The larger 

For solid walls, the value of k at the first halo cell is 
set to the negative value of the first real cell inside 
the domain to ensure that k = 0 at the wall. The 
value of w at the first cell away from the wall is 
set to wp = $$, which is valid for y+ < 2.5. In 
the first halo cell outside of the domain, w is set to 
wr = g#, where y is the distance from the first 
cell center to the wall. 

On coarser grids, k and w values at the first real and 
halo cells are transfered directly from the fine mesh. 

7. 



(c)2000 American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)’ sponsoring organization. 

4. Boundary Conditions 

The boundary conditions currently implemented in 
TFLO are: 

l linear extrapolation of flow variables 

l solid inviscid boundary 

0 XZ symmetry plane 

_._. t XY--symmetry plane 

0 YZ symmetry plane 

l far field 

l solid viscous adiabatic wall 

l inflow 

l outflow (fixed back pressure and non-reflection) 

l periodic boundary 

l inter-blade row interface 

Since each processor in the calculation (as we will 
see later) will typically be responsible for more than 
one block, and since similar boundary conditions can 
be imposed on more than one face of each of these 
blocks, an unstructured approach to the implemen- 
tation of the boundary conditions was followed. In 
the pre-processor, lists for each boundary condition 
type are constructed and initialized. These lists are 
later used.in TFLO such that each processor can 
impose all boundary conditions of the same type, 
independently of the number of blocks, in a single 
loop. 

Periodic boundary conditions require the transfer of 
both the values of the main flow and turbulence vari- 
ables, and the rotation angle through which the ve- 
locity vectors need to be transformed. Special data 
structures are created in the pre-processor to deal 
with the communication in an efficient fashion. 

5. Multiblock Domain Decomposition 

In order to apply the finite volume technique to the 
solution of flows around complex configurations, we 
have chosen to implement a multiblock strategy. In a 
multiblock environment, a series of structured blocks 
of varying sizes is constructed such that these blocks 
fill the complete space and conform to the surface of 
the geometry of interest. This segmentation of the 
complete domain into smaller blocks avoids the topo- 
logical problems in constructing a grid around com- 
plex configurations and multiply connected regions. 
The general strategy in the solution procedure of the 
multiblock flow solver is to construct a halo of cells 

that surrounds each block and contains information 
from cells in the neighboring blocks. This halo of 
cells, when updated at appropriate times during the 
numerical solution procedure, allows the flow calcu- 
lation inside each block to proceed independently of 
the others. 

This approach requires the identification of halo cells 
adjacent to block boundaries and the construction 
of lists of halo cells and their internal counterparts 
in the global mesh. In TFLO, we have chosen to 
carry out. -these- setup -procedures -as part- of. a. .pre- -. . . . ..- 
processing module. During the pre-processing step, 
a two-level halo of cells is added around each block. 
The requirement of this double halo results from the 
need to calculate all the necessary fluxes for the in- 
ternal cells of each block without reference to addi- 
tional cell locations outside the block.in question. In 
particular, the second differences used for the third- 
order artificial dissipation terms require the values 
of the flow variables in the two neighboring cells on 
all sides of any given cell. 

The conservation laws (Equation 1) are applied to 
all cells in each block. The time integration scheme 
follows that used in the single block solver [20]. 
The solution proceeds by performing the cell flux 
balance, updating the flow variables, and smooth- 
ing the residuals at each stage of the time-stepping 
scheme and at each level of the multigrid cycle. The 
main difference in the multiblock integration strat- 
egy is the need to loop over all blocks during each 
stage of the process. The addition of the double- 
halo of cells around each block permits standard 
single-block subroutines to be used, without modifi- 
cation, for the computation of the flow field within 
each individual block. This includes the single-block 
subroutines for convective and dissipative flux dis- 
cretization, viscous discretization, multistage time- 
stepping, and multigrid convergence acceleration. 

The only difference between single block and multi- 
block strategies is in the implementation of the resid- 
ual averaging technique. In the single-block solution 
strategy, tridiagonal systems of equations are set up 
and solved using flow information from the entire 
grid. Thus, each residual is replaced by a weighted 
average of itself and the residuals of its neighbors 
in the entire grid. In the multiblock strategy, the 
support for residual smoothing is reduced to the 
extent of each block. This eliminates the need to 
solve scalar tridiagonal systems spanning the blocks, 
which would incur a penalty in communication costs. 
Depending on the topology of the overall mesh, the 
setup of tridiagonal systems that follow coordinate 
lines may lose the physical interpretation it had in 
the single block implementation, This change has no 
effect on the final converged solution, and in all ap- 
plications of the solver has not led to any significant 
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reduction in the rate of convergence. 

Inter-block communication is performed at every 
stage of the Runge-Kutta scheme and at every level 
of the multigrid sequence so that the convergence 
characteristics of the multiblock parallel scheme are 
similar to those of a typical single-block solver. 

A connectivity file is used to specify the topology 
of all the blocks in the domain. The orientation of 
the ‘indices (I,J,K) for each block can be arbitrar- 
ily specified. Blocks and surfaces are grouped for 
boundary condition treatment, post-processing, and 
visualization. 

6. Parallelization and Load Balancing 

The previous section describes the partition of the 
domain into a series of connected blocks that can 
handle arbitrarily complex geometries. Once the 
complete flow domain has been partitioned, the 
computational workload has to be divided evenly 
among the processors participating in the calcula- 
tion. The multiblock decomposition provides a nat- 
ural approach to parallelization by assigning com- 
plete blocks to different processors in the parallel 
computer. This coarse grained parallelism is eas- 
ily handled using the double-halo construct men- 
tioned above and the MPI message passing library. 
Within each processor, fine-grain parallelism can be 
obtained using compiler-assisted techniques, such as 
OpenMP or multithreading, which are available on 
most platforms. We believe that this paradigm of 
parallel implementation used in TFLO maps ex- 
tremely well to current and future generations of 
high-performance parallel computers. 

ferences between the amount of computation and 
communication that the processors must perform is 
a minimum. This algorithm has a tendency to place 
approximately the same number of cells in each pro- 
cessor (this is not always possible because of vary- 
ing block sizes), but, in addition, attempts to place 
blocks that share a physical interface (and therefore 
must communicate with each other) on the same 
processor, thus decreasing the cost of communica- 
tion. It is the combination of these two criteria, 
together with a careful implementation of the com- 
munication algorithm, that allows TFLO to obtain 
high parallel efficiency and to scale to large numbers 
of processors. A detailed explanation of all the tech- 
niques used to improve the parallel performance of 
the code has been presented earlier and can be found 
in [27]. 

7. Inter-Blade Row Interface 

Because entire blocks are assigned to any of the N 
processors participating in the computation, if our 
mesh has a number of blocks equal to M, we are re- 
stricted to using a maximum number of processors 
N = M. This limitation has not typically presented 
any problems, since our pre-processing software has 
the ,&ility to &~~npwn the nr;&n~l mfioh :-+A -*---- y-Y” Y.AV “l’.yAu.uA I1ICUA1 lull” “Gly 

large numbers of blocks depending on the size of the 
complete mesh. In practice, each and every one of 
the N processors participating in the calculation is 
assigned several blocks so that each processor virtu- 
ally runs a copy of a multiblock flow solver. 

For multiple blade-row calculations we have chosen’ 
to use meshes that are attached to the individual 
blades (either rotors or stators) in the calculation. 
Due to the relative motion of rotors and stators, by 
design TFLO was required to handle areas of ‘the 
overall mesh which share a common surface, but that 
slide over each other as the rotors turn. These sur- 
faces are termed sliding mesh interfaces, and a ipe- 
cial boundary condition module was developed in 
TFLO to handle this situation in a completely gen- 
eral multiblock, multiprocessor environment. ,,The 
sliding mesh interface implementation is respo&ble 
for the exchange of all necessary information (flow 
variables, turbulence variables, etc.) across .these 
surfaces in a way that does not decrease the par- 
allel efficiency of the overall computation. Further- 
more, in TFLO, the sliding mesh interface module is 
used for both multiple blade-row steady-state calcu- 
lations and truly unsteady rotor/stator interaction 
situations. For the former, a mixing plane boundary 
condition was deveioped that requires the azimuthal 
average of the flow and turbulence variables at each 
radial station. For the latter, careful interpolation 
must be performed to transfer the details of the flow 
features in the upstream and downstream directions. 

The load balancing problem is that of assigning a set 
of M arbitrarily connected blocks of varying sizes to 
N processors of a parallel machine in a way that 
maximizes the overall computational performance. 
Load balancing is performed statically during the 
pre-processing step of TFLO. We have experimented 
with several load balancing algorithms and have set- 
tled on the one that distributes the blocks among 
participating processors in such a way that the dif- 

In a complex, general, multiblock-parallel environ- 
ment, there is the added difficulty that the sliding 
mesh interface will usually be composed of faces from 
many different blocks with potentially arbitrary ori- 
entations and which will most likely reside in differ- 
ent processors across the parallel computer. Because 
of this situation, information has to be collected in 
the right order by one processor, and then, the rele- 
vant pieces of the information need to be distributed 
to the right blocks/processors. 

Relative to each sliding interface we find upstream 
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and downstream sides. Figure 1 shows a simple 
sketch of the data structure used in TFLO. The idea 
of a data pool is defined in order to abstract the con- 
cept of the sliding mesh interface in the presence of 
multiple blocks and processors. A data pool is sim- 
ply a two-dimensional arrangement of data that has 
an identity provided by the fact that the totality of 
the data is ordered and lies on a sliding mesh inter- 
face. Data pools can be both physical and fictitious 
(if they correspond to halo cells). 

-_- . -. --... In.thE.ekxmpla bEIOm,. tlie..data po.ols .#l.and #3-are.. 
used to exchange information from the upstream to 
the downstream sides of the sliding interface, while 
data pools #2 and #4 are used in the reverse di- 
rection. Data pools #l and #2 are called source 
pools since they provide information about the phys- 
ical flow variables that need to be transferred, whiIe 
data pools #3 and #4 are called destination pools 
since they receive the information into the halo cells 
upstream and downstream of the sliding mesh inter- 
face. 

datapool#l 

\ 

Figure 1: ‘Data pools of a shding interface 

In order to simplify the data exchange operation, we 
currently require that, on both sides of the sliding 
mesh interface, the mesh lines in the circumferential 
direction be perfectly circular, and that the various 
radii of these circular mesh lines (in the blade span- 
wise direction) match upstream and downstream of 
the interface. This constraint, which is natural for 
turbomachinery flows, reduces the interpolation pro- 
cedure to a one-dimensional problem. More ad- 
vanced two-dimensional interpolation schemes are 
currently being pursued. 

As a second test of the accuracy of the basic numer- 
ical scheme in TFLO, the inviscid flow through the 
Hobson II cascade was computed. This is a transonic 
shock-free cascade which is very sensitive to the ac- 
curacy of the numerical scheme. It’s widely used as 
a test case for shock capturing schemes because nu- 
merical errors introduced by the solution procedure 
will cause a shock wave to appear. Figure 3 shows 
the pressure contours and the isentropic Mach num- 
ber on the cascade surfaces. The pressure field and 
Mach number profiles are very close to being sym- 
metric, showing a very small amount of dissipative 
loss. 

10 

8. Validation 

This section presents a range of fundamental test 
cases that have been chosen to validate the accuracy 
of the flow solver, TFLO. 

8.1 Transonic Flow over a Bump 

In order to verify the shock capturing properties of 
the numerical scheme, calculations were performed 
for the transonic flow over a circular arc bump on 
the lower wall of a channel. The bump has a 20.32 --.--.--.-’ -~~~~~~‘~-~~~~~~ 
cm chord and a thickness of 1.905 cm. The flow field 
is inviscid with an exit Mach number of 0.875. Fig- 
ure 2 shows the static pressure distribution on the 
lower channel wall for the fully converged solution. 
The results for both the JST and CUSP schemes are 
very similar. Note, however, that the CUSP scheme 
shows superior shock resolution with a single interior 
point as predicted by the theory [21, 221. By reduc- 
ing the amount of numerical dissipation introduced, 
the CUSP scheme achieves higher accuracy. The re- 
sults were computed on a mesh of size 161 x 73 x 9. 

‘.OO I 

0.20 ' I 
-2.0 -1.0 0.0 1 .o 2.0 3.0 

X/Chord 

Figure 2: Static pressure profile on the lower wall 

8.2 Hobson II Cascade 
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tions respectively. Notice that the radial (spanwise) 
direction should have no flow variation and, there- 
fore, only a small number of cells was required. The 
inlet Mach number was set to 0.3, and the Reynolds 
number based on the length of the plate was 35,000. 

Figure 4 shows the calculated skin friction, boundary 
layer thicknesses, velocity, and viscous stress pro- 
files. The results agree very well with the Blasius 
solution and show the expected similarity at vari- 
ous streamwise stations along the plate. Similarity 
and accuracy is also verified for the velocity compo- 
nent normal to the flat plate which is much harder 
to capture accurately due to its small magnitude. 
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Figure 3: Pressure contours and isentropic Mach 
number distribution for Hobson II cascade 

8.3 Viscous Flow over a Flat Plate 

8.3.1 Laminar Boundary Layer 

A laminar flow calculation was ‘performed to ver- 
ify the accuracy of the viscous discretization in the 
Navier-Stokes solver of TFLO. The geometry for this 
test case is a single passage of a flat plate cascade 
where the downstream end of the domain coincides 
with the trailing edge of the flat plates. The two flat 
plates in the geometry have unit chord and pitch, 
and a span of 0.1. A periodicity boundary condition 
was imposed on the portions of the mesh ahead of 
the leading edges of each of the flat plates, while in- 
viscid flow tangency boundary conditions were im- 
posed on the front and back faces (hub and case) 
of the domain. On the plate surfaces, a viscous, 
no-slip, adiabatic boundary condition was specified. 
The size of the mesh used in this calculation was 
129 x 9 x 65 in the axial, radial, and tangential direc- 

Figure 4: Laminar boundary layer on a flat plate 

8.32 Turbulent Boundary Layer 

The accuracy of the turbulence models in TFLO was 
initially tested using the case of a turbulent bound- 
ary layer over a flat plate in a zero pressure gradient. 
In this section, results are compared with those from 
NASA’s CFLSD code using exactly the same grid. 
Unlike the cascade-type grid used for the laminar 
flow calculation, the grid in this case had a rect- 
angular geometry with the flat plate occupying the 
lower surface of the mesh only. The mesh has 97 
points in the direction normal to the plate and 65 
points in the streamwise direction. Again, only 9 
nodes were required in the spanwise direction due to 
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reasons mentioned in the previous section. 

The portion of the lower surface ahead of the lead- 
ing edge was treated with a symmetry plane bound- 
ary condition, while the entire upper surface was 
treated as a far-field boundary. As in the laminar 
case, the front and back surfaces were treated as in- 
viscid walls. The inlet Mach number was set to 0.2, 
and the Reynolds number based on the length of the 
plate was approximately 6,000,OOO. 

.._ .The_CFL3D result using the Wilcox k-w turbulence 
model is shown in Figure 5. The velocity profile 
shown corresponds to a streamwise station located 
at about 91% of the length of the plate. The TFLO 
result for the same turbulence model and using the 
exact same grid is shown in Figure 6 at the same 
streamwise station. The viscous sub-layer, log-law 
layer and the defect layer are predicted accurately. 
The results of the two codes are in close agreement 
and capture the log-law layer as expected. 

-I 0 1 
2 wY+)3 

4 5 6 

Figure 5: Flat plate boundary layer velocity profile, 
result from CFLSD, Re=6,000,000, Wilcox k-w 

t . . . 
25 
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Figure 6: Flat plate boundary layer velocity profile, 
result from TFLO, Re=6,000,000, Wilcox Ic-w 

8.4 Bachalo and Johnson Transonic Flow 

For further validation of the turbulence models, cal- 
culations were carried out for the Bachalo and John- 
son test case [37]. This transonic test case consists of 
the flow over an annular bump on a circular cylinder 
aligned with the flow direction, Experimental data 
is available. The longitudinal section of the bump 
is a simple circular arc. The axisymmetric config- 
uration is chosen to avoid the presence of sidewall 
boundary layers that can contaminate the inherent 

--two-dimensionality--of.. this -flow.- ..The..resolved. ge=.. -.. . . .._. 
ometry has a baseline diameter of 0.152 m and it 
extends 61 cm upstream of the bump’s leading edge. 
The chord of the circular bump is 0.203 m and it has 
a maximum thickness of 0.019 m. A 161 x 73 x 9 
mesh was used. 

The freestream Mach number for this particular test 
case was set at 0.875 with a resulting Reynolds num- 
ber of 13.1 x 106/m. At this freestream Mach num- 
ber, a transonic shock wave appears over the rear 
portion of the bump. This shock wave is strong 
enough to produce a relatively large region of sepa- 
rated flow. The separation and re-attachment points 
can be found at distances of approximately 0.7 and 
1.1 chords from the leading edge of the bump, re- 
spectively. 

The surface pressure distributions obtained with 
TFLO and Allison’s ADPAC code [38] are compared 
to each other and to experimental data in Figure 7. 
Identical meshes and flow conditions were used for 
all computational results. 

TFLO’s Ic - w model predicts the separated region 
and the strength of the shock wave quite accurately, 
although the position of the shock is found somewhat 
downstream of the experiment. 

8.5 Unsteady Flow behind a Circular Cylin- 
der 

In order to test the accuracy of the dual-time step- 
ping scheme, we calculated the vortex shedding flow 
behind a circular cylinder at a Mach number of 0.2. 
For this case, a Karman vortex street is observed 
in the Reynolds number.range from 40 to 5000 [39]. 
In this range, the Strouhal frequency of the vortex 
shedding, St = 2, where n is the real frequency, 
D is the diameter of the cylinder, and U, is the free 
stream velocity, is primarily a function of Reynolds 
number. 

For the TFLO calculation presented here, the 
Reynolds number was fixed at ReD = 150. The 
mesh size of the cross-cylinder surface was 256x 128. 
The TFLO calculation was executed for 10 vor- 
tex shedding periods with 40 real time steps within 
each period. The calculated Strouhal frequency is 
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Bachalo and Johnson Transonic Flow Test Case 

0 - e ADPAC (SaIdwin-Lomax) 
. c--d ACPAC (Mixing Lenm) 
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Axial Chord (x/c) 

Figure 7: Static pressure comparison on bump sur- 
face 

St = 0.185, which agrees very well with the exper- 
imental value of 0.182 from the incompressible flow 
curve in the laminar shedding regime. 

The periodic response in the coefficients of lift and 
drag are shown in Figure 8. A series of entropy 
contours and streamlines at four instances of time 
within a shedding cycle is shown in Figure 9. The 
first four vortices can be accurately captured before 
the grid coarsens beyond the point where an accu- 
rate solution can be obtained. 

2.0 

s 

z 05 
m . 

u 

0.0 

-0.5 

-1 .o 
0.0 

Grid:256x126x6 
32blocksJ32PEs 

100.0 200.0 300.0 400.0 
real time step number 

Figure 8: Time. history of the coefficients of lift and 
drag 

t=.5T 

t=.75T ,U, /;, 

Figure 9: Entropy contours and instantaneous 
streamlines at four different times in the vortex shed- 
ding process 

8.6 VP1 Cascade 

The results of subsections 8J - 8.5 confirm the ac- 
curacy of the flow solution scheme for a variety of 
basic flows. Subsections 8.6 - 8.8 present results for 
actual turbomachinery test cases. 

The first of these cases is the VP1 cascade, which 
is a linear transonic turbine nozzle. This viscous 
flow was calculated using both the Wilcox k-w and 
the Baldwin-Lomax models. Two options were 
used for the exit boundary condition: uniform fixed . 
back pressure and a non-reflecting boundary condi- 
tion. Results for the surface pressure distribution 
produced by TFLO and APNASA-V5 [40] (NASA 
Glenn software run by GE personnel), are com- 
pared in Figure 10 together with the experimental 
data. All numerical calculations were carried out 
using exactly the same grid, whose dimensions were 
145 x 17 x 81. 

13 



(c)2000 American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)’ sponsoring organization. 

Figure 10 shows satisfactory pressure comparisons 
between both codes and the experimental data. In 
addition, it shows the improvement in the prediction 
of the suction surface isentropic Mach number when 
the non-reflecting exit boundary conditions are used. 
The reason for this improvement can be found in 
Figure 11. This Figure shows the pressure variation 
in the circumferential direction at the exit plane and 
at a mid-span location. The two curves refer to the 
results with and without the non-reflecting bound- 

..-_.. .._ ary condition.-.T.he..curve for the non-reflecting exit 
boundary condition shows a large jump in the pres- 
sure distribution at the point where the shock wave 
crosses the exit boundary. This pressure jump has 
been considerably smoothed when we fix the back 
pressure at the exit plane, thus distorting the shock 
wave structure and the blade isentropic Mach num- 
ber. 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 
X/C 

Figure 10: Isentropic Mach number on blade sur- 
.. faces 
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Figure 11: Static pressure in tangential direction at 
exit plane 

8.7 PennState 1.5-Stage Research Compres- 
sor 

The next test case is the Pen&ate Research Com- 
pressor (PSRC). The PSRC facility is an axial flow 
compressor consisting of an inlet guide vane row and 
three stages of rotor and cantilever-mounted stator 
blading with a rotating hub. See Figure 12 for a 
schematic of the physical setup. 

The results presented here are for a 1.5 stage sub- 
set of the complete configuration which consists of 
Rotor2-Stator2-Rotor3. The blade counts for these 
three blade rows are 72, 73, and 74. The tip gap 
of the rotor blade rows and the hub gap of the sta- 
tor blade row were modeled in this calculation using 
TFLO’s open-gap boundary condition. The inflow 
boundary conditions for this test case were obtained 
from a full rig simulation performed with ADPAC. 
The experimental data, computational grid, inlet 
conditions, and ADPAC results were provided by 
the Allison Engine Company. 

Penn State Research Compressor Schematic 
I---? 

i ,u 

Figure 12: Schematic of PennState Research Com- 
pressor 

In order to obtain a steady-state flow solution for 
this multiple blade row case, a mixing plane bound- 
ary condition was used between adjacent blade rows. 
Once again, the same grid is used for all computa- 
tional results regardless of the code that was run. 
The two stators used meshes with 125 x 65 x 81 nodes, 
while the single rotor used a mesh with 105 x 65 x 81 
nodes. All calculations were performed using 72 pro- 
cessors of a CRAY-T3E supercomputer. Figure 13 
shows a comparison between the results from TFLO, 
ADPAC, and the existing experimental data. The 
flow conditions for this test case are those described 
in [41,42]. The reader should note that all measure- 
ments were taken in the full rig environment. Fig- 
ure 13 shows comparisons of the circumferentially 
averaged total pressure, and the axial and tangen- 
tial velocity components along the blade spanwise 
direction at a distance of 5.6% of the chord behind 
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the trailing edge of Stator-2. TFLO predicts simi- 
lar results to ADPAC and both sets of results agree 
well with the test data. The axial velocity profile 
predicted by TFLO is very close to the experimental 
data. However, the results from TFLO show a slight 
overshoot in the total pressure distribution near the 
hub. 
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Figure 13: Circumferentially averaged parameters 
along spanwise direction at 5.6% chord after the 
trailing edge of stator-2. 

Figure 14: Predicted distribution of total pressure 
and total temperature in axial direction 

The TFLO prediction of total pressure and to- 
tal temperature in the axial direction is shown in 
Fig. 14. It shows very small but detectable losses of 
the total pressure caused by the mixing model. The 
total temperature remains constant cross the mixing 
plane. 

8.8 Aachen 1.5-Stage Turbine 

The final test case is the 1.5-Stage Aachen Tur- 
bine. The geometry and experimental data pack- 
age were provided by ERCOFTAC (European Re- 
search Community On Flow, Turbulence And Com- 
bustion). This facility is an axial flow turbine con- 
sisting of three blade rows: the first vane, the blade, 
and the second vane. The geometry of the second 
vane is exactly the same as that of the first vane,. A “. . schematic of the configuration is presented in,.,J$g- 
ure 15. The blade counts for this case are 36, 41, 
and 36 respectively. The experimental results at the 
various axial locations were taken at different times, 
with slight variations in the inlet flow conditions. 
For this reason, it is very hard to obtain good com- 
parisons at all axial stations with the results of a 
single simulation. 

The mesh sizes used in this calculation can be sum- 
marized as follows: IGV: 137 x 65 x 81, blade: 
113 x 65 j; 81 for the blade pmcage aiid 89 x 17 x 17 
for the tip gap, stator: 153 x 65 x 81. All calcu- 
lations were run on 58 processors of an SGI Origin 
2000 computer. 

Comparisons are presented between the results of 
TFLO, United Technologies’ solver SDFLOW [4, 51; 
NASA/GE’s solver APNASA-V5, and the experi- 
mental data for the low mass-flow rate condition. 
The calculated mass-flow rate was 7.1 Kg/s while 
the measured mass-flow rate was in the range 6.6 - 
6.9 Kg/s. The computational grids were generated 
by personnel of the United Technologies Research 
Center. These grids have a separate block for the 
tip gap region of the rotor. The results from TFLO 
and 3DFLOW were calculated using the same grids. 
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The grid used by APNASA-V5 was similar in size, 
although the tip gap region was not resolved; the 
open gap boundary condition was applied instead. 

TFLO’s total pressure and total temperature ax- 
ial distributions are shown in Figure 16. The mix- 
ing model in TFLO introduces a very small loss in 
the total pressure. The losses of total temperature 
across the mixing plane are not detectable. Prom 
additional comparisons performed, but not shown 
here, we were able to determine that TFLO and 

-- --- --.- - .- -.--. -- A-P-NASA-V5.-predict...ver-y. similar distributionsfor. 
these two quantities as ‘well. 

b 
,,).A7 

2 
\ 

Figure 15: Schematic of the Aachen l.&stage tur- 
bine. 

8.8.1 The First Vane 

Table 1 compares the parameters at the inlet and 
exit (8.8 mm after the trailing edge) of the first 
vane. TFLO predicts a very slight mass-flow rate 
loss (0.03%). Results from 3DFLOW and experi- 
ment are also summarized in the Table. 

Figure 17 shows the circumferentially averaged total 
pressure and total temperature at the first station 
(inlet) which simply indicate that the inlet boundary 
conditions are essentially the same. 

The circumferentially averaged total pressure, total 
temperature, and absolute flow angle after the trail- 
ing edge of the first vane are compared in Figure 18. 

Figure 16: Predicted distribution of total pressure 
and total temperature in the axial direction 
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Figure 17: Predicted circumferentially averaged to- 
tal pressure and total temperature at the inlet of the 
first vane 
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Total Pressure (bar), 8.8mm after the trailing edge of vane-1 

Total Temperature (K). 8.8mm after the trailing edge of vane-1 
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Figure 18: Predicted circumferentially averaged to- 
tal pressure, total temperature, and flow angle at a 
station 8.8mm downstream of the first vane trailing 
edge 

Figure 19 shows a comparison between the results 
of TFLO and the experimental data for the total 

pressure at a measurement plane located behind the 
first vane. The strong secondary flow near the end 
walls and in the wake behind the trailing edge cause 
major losses in, total pressure. TFLO appears to 
capture the main features of the total pressure map. 

(a) TFLO: Predicted contours of total pressure 
8.8 mm behind the trailing edge of the first vane 

(b) Measured contours of total pressure 
8.8 mm behind the trailing edge of the first vane 

Figure 19: Comparison of total pressure contours at 
the measurement plane behind the first vane 

8.8,2 The Blade 

Table 2 presents a comparison of various flow param- 
eters at the inlet and exit (8.8 mm after the trailing 
edge) of the blade. TFLO predicts a slight mass-flow 
rate gain of 0.2% due to the mixing model used at 
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the interface plane. TFLO also preserves the flow 
angle quite well across the mixing plane. The re- 
sults for SDFLOW are also included in the Table as 
a reference of what can be done with typical flows 
solvers used in industry. 

’ 
9. 25 126 127 128 129 13 131 132 133 134 135 

AbsoluteTotal Pressure (bar), 8.8mm afteflhe blade trailing edge 

Absolute Total Temperature(K), 8.8mm after the blade trailing edge 

1 
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0.7 

5 aO.6 
0-J 
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.n 
p 0.4 

0.3 ? 

0.2 5 

0.1 E 

Figure 20: Predicted circumferentially averaged to- 
tal pressure, total temperature, and flow angle at a 
station 8.8mm downstream of the blade trailing edge 

The circumferentially averaged total pressure, total 
temperature, and absolute flow angle are compared 
in Figure 20 as was done for the first vane. Pre- 
dictions of the different solvers seem to agree well 
with each other and the trends in the data but differ 
somewhat in the measured level, especially for the 
total pressure and total temperature. 

The limiting streamlines on the suction surface of the 
blade predicted by TFLO and 3DFLOW are shown 
in Figure 21. These flow patterns are the signature 
of.the..hub secondary flow and blade tip vortex. The 
dividing streamline patterns in the area of the blade 
tip look quite similar for both solvers, 

(4 TFLO: Predicted limiting streamlines 
on suction surface of the blade 

(b) SDFLOW: Predicted limiting streamlines 
on suction surface of the blade 

Figure 21: Predicted limiting streamlines on suction 
surface of the blade 

8.8.3 The Second Vane 

Finally, Table 3 compares flow parameters at the in- 
let and exit (8.8 mm after the trailing edge) of the 
second vane. TFLO predicts a slight mass-flow rate 
loss (0.2%) due to the details of the mixing model. 
ResuIts from SDFLOW and the experiment are in- 
cluded for comparison purposes. 
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The circumferentially averaged total pressure, total 
temperature, absolute flow angle, and absolute Mach 
number are compared in Figures 22 and 23. Similar 
conclusions drawn for the case of the first vane and 
blade can be arrived at here. 

TFLO produces similar results to APNASA-V5 and 
3DFLOW though the differences tend to be slightly 
larger for the second vane. TFLO shows close agree- 
ment with the experimental data especially in the 
spanwise direction. 

4 
>ar), 8.8mm after the second vane trailing edge Absolute Total Pressure (t 

0.8 

- TFLO 
0 Data 

, ---+--- APk?SA-‘V5 , 
; o.5 k I--T--- BYFLOW 1 
.z  

0 0.4 t 
1 

Absolute Total Temperature (K), 8.8mm after the second vane trailing edge 

Figure 22: Predicted circumferentially averaged to- 
tal pressure and total temperature at a station 
8.8mm downstream of the trailing edge of the second 
vane 

Figure 23: Predicted circumferentially averaged’ab- 
solute flow angle and absolute Mach number at a 
station 8.8mm downstream of the trailing edge of 
the second vane 

9. Conciuding Remarks 

The initial development and validation of the general 
turbomachinery flow solver TFLO has been com- 
pleted. The result is a versatile program that can 
handle a range of general, multiple blade-row ge- 
ometries in both steady and unsteady flow and that 
can be run on either simple workstations or large- 
scale parallel computers depending on the size of 
the test case in question. Detailed validation of the 
software has been presented and continues to this 
date. The results show that TFLO is able to ob- 
tain results that are very similar to those from other 
state-of-the-art simulation codes used in both gov- 
ernment laboratories and industry. All of the ba- 
sic elements of TFLO (steady-state and unsteady 
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CODE MT1 Ma1 a1 81 PL, 
(x105 Pa) $‘05 Pa) Ptr’Ptrl 

Tt,, Tt,, FlOWl 
W (W 

TL, /Tt,, 
PW) 

.THiO.. _.... 0.1251.. . ..O.l25l.. 90-L ..90-_.... .1.:53.. -1,5_3 1 307.4 307.4 1 7.11 ._ ._._ 
BDFLOW 0.1262 0.1262 90 90 1.53 1.53 1 307.5 307.5 1 7.17 
Data 0.1048 0.1048 92.95 92.95 1.58 1.58 1 309.1 309.1 1 6.61 

CODE Mrz Maa ,252 82 PL, 
(x 105 Pa) ;2? Pa) Ptr2’Ptrl 

Tt,, Tt,, Flow:! 
WI (K) 

Tt,,/Tt,, 
(Kg/s) 

TFLO 0.4022 0.4022 160.01 160.01 1.52 1.52 0.99237 307.3 307.3 0.99983 7.11 
BDFLOW 0.4116 0.4116 160.21 160.21 1.53. 1.53 0.99787 307~8 307.8 1.00078 7.20 
Data 0.4298 0.4298 160.3 160.3 1.52 1.52 0.95879 307.3 307.3 0.99434 6.70 

Table 1: Inlet(l) and exit(2) circumferentially averaged flow conditions for the first vane. 

CODE MTI Ma1 (~1 81 PL, 
(x lo6 Pa) Ptr’PtF1 

Tt,, Tta, Floq 
(K) (K) 

Tt,, /Tt,, 
(Kg/a) 

TFLO 0.163 0.4017 20.04 57.67 1.38 1.52 1 299.4 307.3 1 7.11 
BDFLOW 0.170 0.4115 19.8 55.13 1.39 1.52 1 299.5 307.8 1 7.20 
Data 0.1867 0.4298 19.7 53.07 1.37 1.52 1 298.5 307.3 1 6.70 

CODE Mrz Maz 012 82 
PL, 
(x lo6 Pa) $fY Pa) Ptr2’Ptr1 

Tt,, Tta, Flow2 
(K) (K) 

%, /Ttvl 
(Kg/s) 

TFLO 0.2956 0.1481 103.61 29.15 1.37 1.31 0.99307 299.5 295.6 1.00042 7.13 
3DFLOW 0.2977 0.1511 103.24 29.61 1.37 1.31 0.99050 299.1 295.2 0.99876 7.26 
Data 0.2934 0.1544 104.08 30.5 1.38 1.32 1.00762 300.0 296.2 1.00482 6.84 

Table 2: Blade inlet(l) and exit(a) circumferentially averaged flow conditions. 

CODE MT1 Mm 01 Pl Pf,, 
(x lo5 Pa) Ptr’Ptrl 

Tt,, T&s, Flow 
W) 6) 

Tt,, P.-t,, 
(Kg/s) 

TFLO 0.1488 0.1488 76.02 76.02 1.31 1.31 1 295.7 295.7 1 7.14 
BDFLOW 0.1511 0.1511 76.74 76.74 1.31 1.31 1 295.2 295.2 1 7.26 
Data 0.1544 0.1544 75.92 75.92 1.32 1.32 1 296.2 296.2 1 6.84 

CODE Mra Ma2 ff2 P2 pt,, 
(x10' Pa) ~2206 Pa) Ptr2’Pt71 

Tt,, Tta, Flow2 
(K) WI 

Tt,, /Ttr., 
(Kg/s) 

TFLO 0.4928 0.4928 160.32 160.32 1.30 1.30 0.98938 295.7 295.7 0.99989 7.16 
SDFLOW 0.4824 0.4824 159.87 159.87 1.30 1.30 0.99547 295.7 295.7 1.00153 7.16 
Data 0.5048 0.5048 160.82 160.82 1.31 1.31 0.98997 295.7 295.7 0.99912 6.71 

Table 3: Inlet( 1) and exit(2) circumferentially averaged flow conditions at the second vane. 
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discretization, domain decomposition, parallel im- 
plementation, sliding mesh interface boundary con- 
ditions, basic algorithms for viscous and artificial 
dissipation, pre- and post-processing) have been de- 
scribed, tested, and demonstrated. 

Emphasis has been placed on the ability of TFLO 
to scale to large numbers of processors so that 
the more interesting problems of complete compres- 
sor/turbine unsteady calculations can be tackled. It 
is in this area where we hope that TFLO can make 
a contribution to the field, since, using computa- 
tional resources from the ASCI project, we will be 
in a position to tackle the most complex calcula- 
tions attempted to this date. We are currently run- 
ning some large scale unsteady computations of the 
Aachen turbine case whose results will be presented 
at a later time. 

As mentioned above, additional validation test cases 
for both steady and unsteady rotor/stator inter- 
action flows in multi-stage turbomachinery are in 
progress. The validation strategy is composed of 
two main parts: 

l o-test within the Stanford Turbomachinery 
Simulation Group for new code and algorithm 
developments and modifications. 

l P-test and joint validation with industry: 

1. Demonstration on industrial computer 
platforms 

2. Continued comparison with results from 
other codes being used at the various engine 
companies 

3. Continued comparison with available ex- 
perimental data for representative test cases of 
progressively increasing complexity 
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