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Abstract
This paper reviews the formulation and application
of optimization techniques based on control theory
for aerodynamic shape design in both inviscid and
viscous compressible flow. The theory is applied to
a system defined by the partial differential equa-
tions of the flow, with the boundary shape acting
as the control. The Frechet derivative of the cost
function is determined via the solution of an ad-
joint partial differential equation, and the bound-
ary shape is then modified in a direction of descent.
This process is repeated until an optimum solution
is approached. Each design cycle requires the nu-
merical solution of both the flow and the adjoint
equations, leading to a computational cost roughly
equal to the cost of two flow solutions. Representa-
tive results are presented for viscous optimization
of transonic wing-body combinations and inviscid
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optimization of complex configurations.

1 Introduction
The definition of the aerodynamic shapes of mod-
ern aircraft relies heavily on computational simula-
tion to enable the rapid evaluation of many alter-
native designs. Wind tunnel testing is then used to
confirm the performance of designs that have been
identified by simulation as promising to meet the
performance goals. In the case of wing design and
propulsion system integration, several complete cy-
cles of computational analysis followed by testing
of a preferred design may be used in the evolution
of the final configuration. Wind tunnel testing also
plays a crucial role in the development of the de-
tailed loads needed to complete the structural de-
sign, and in gathering data throughout the flight
envelope for the design and verification of the sta-
bility and control system. The use of computational
simulation to scan many alternative designs has
proved extremely valuable in practice, but it still
suffers the limitation that it does not guarantee the
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identification of the best possible design. Generally
one has to accept the best so far by a given cutoff
date in the program schedule. To ensure the real-
ization of the true best design, the ultimate goal of
computational simulation methods should not just
be the analysis of prescribed shapes, but the auto-
matic determination of the true optimum shape for
the intended application.

This is the underlying motivation for the com-
bination of computational fluid dynamics with nu-
merical optimization methods. Some of the earliest
studies of such an approach were made by Hicks
and Henne [1, 2]. The principal obstacle was the
large computational cost of determining the sensi-
tivity of the cost function to variations of the design
parameters by repeated calculation of the flow. An-
other way to approach the problem is to formulate
aerodynamic shape design within the framework of
the mathematical theory for the control of systems
governed by partial differential equations [3]. In
this view the wing is regarded as a device to pro-
duce lift by controlling the flow, and its design is
regarded as a problem in the optimal control of the
flow equations by changing the shape of the bound-
ary. If the boundary shape is regarded as arbitrary
within some requirements of smoothness, then the
full generality of shapes cannot be defined with a
finite number of parameters, and one must use the
concept of the Frechet derivative of the cost with
respect to a function. Clearly such a derivative can-
not be determined directly by separate variation of
each design parameter, because there are now an
infinite number of these.

Using techniques of control theory, however, the
gradient can be determined indirectly by solving an
adjoint equation which has coefficients determined
by the solution of the flow equations. This directly
corresponds to the gradient technique for trajectory
optimization pioneered by Bryson [4]. The cost of
solving the adjoint equation is comparable to the
cost of solving the flow equations, with the conse-
quence that the gradient with respect to an arbi-
trarily large number of parameters can be calcu-
lated with roughly the same computational cost as
two flow solutions. Once the gradient has been cal-
culated, a descent method can be used to determine
a shape change which will make an improvement in
the design. The gradient can then be recalculated,
and the whole process can be repeated until the
design converges to an optimum solution, usually
within 50 to 100 cycles. The fast calculation of
the gradients makes optimization computationally
feasible even for designs in three-dimensional vis-
cous flow. There is a possibility that the descent
method could converge to a local minimum rather
than the global optimum solution. In practice this

has not proved a difficulty, provided care is taken
in the choice of a cost function which properly re-
flects the design requirements. Conceptually, with
this approach the problem is viewed as infinitely di-
mensional, with the control being the shape of the
bounding surface. Eventually the equations must
be discretized for a numerical implementation of
the method. For this purpose the flow and adjoint
equations may either be separately discretized from
their representations as differential equations, or,
alternatively, the flow equations may be discretized
first, and the discrete adjoint equations then de-
rived directly from the discrete flow equations.

The effectiveness of optimization as a tool for
aerodynamic design also depends crucially on the
proper choice of cost functions and constraints.
One popular approach is to define a target pressure
distribution, and then solve the inverse problem of
finding the shape that will produce that pressure
distribution. Since such a shape does not necessar-
ily exist, direct inverse methods may be ill-posed.
This difficulty is removed by reformulating the in-
verse problem as an optimization problem, in which
the deviation between the target and the actual
pressure distribution is to be minimized according
to a suitable measure such as the surface integral

1= =•

where p and pr are the actual and target pres-
sures. This still leaves the definition of an appropri-
ate pressure architecture to the designer. One may
prefer to directly improve suitable performance pa-
rameters, for example, to minimize the drag at a
given lift and Mach number. In this case it is im-
portant to introduce appropriate constraints. For
example, if the span is not fixed the vortex drag can
be made arbitrarily small by sufficiently increasing
the span. In practice, a useful approach is to fix the
planform, and optimize the wing sections subject to
constraints on minimum thickness.

Studies of the use of control theory for optimum
shape design of systems governed by elliptic equa-
tions were initiated by Pironneau [5]. The con-
trol theory approach to optimal aerodynamic de-
sign was first applied to transonic flow by Jame-
son [6, 7, 8, 9, 10, 11]. He formulated the method
for inviscid compressible flows with shock waves
governed by both the potential flow and the Eu-
ler equations [7]. Numerical results showing the
method to be extremely effective for the design of
airfoils in transonic potential flow were presented
in [12], and for three-dimensional wing design us-
ing the Euler equations in [13]. More recently
the method has been employed for the shape de-
sign of complex aircraft configurations [14, 15],
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using a grid perturbation approach to accommo-
date the geometry modifications. The method
has been used to support the aerodynamic design
studies of several industrial projects, including the
Beech Premier and the McDonnell Douglas MDXX
and Blended Wing-Body projects. The applica-
tion to the MDXX is described in [9]. The experi-
ence gained in these industrial applications made it
clear that the viscous effects cannot be ignored in
transonic wing design, and the method has there-
fore been extended to treat the Reynolds Aver-
aged Navier-Stokes equations [11]. Adjoint meth-
ods have also been the subject of studies by a num-
ber of other authors, including Baysal and Ele-
shaky [16], Huan and Modi [17], Desai and Ito [18],
Anderson and Venkatakrishnan [19], and Peraire
and Elliot [20].

This paper reviews the formulation and develop-
ment of the compressible viscous adjoint equations,
and presents some examples of recent applications
of design techniques based on control theory to vis-
cous transonic wing design, and also to transonic
and supersonic wing design for complex configura-
tions.

2 General Formulation of the
Adjoint Approach to Opti-
mal Design

Before embarking on a detailed derivation of the
adjoint formulation for optimal design using the
Navier-Stokes equations, it is helpful to summa-
rize the general abstract description of the adjoint
approach which has been thoroughly documented
in references [7, 21].

The progress of the design procedure is measured
in terms of a cost function /, which could be, for
example the drag coefficient or the lift to drag ratio.
For flow about an airfoil or wing, the aerodynamic
properties which define the cost function are func-
tions of the flow-field variables (w) and the physical
location of the boundary, which may be represented
by the function f, say. Then

and a change in J- results in a change

(1)

in the cost function. Here, the subscripts / and
II are used to distinguish the contributions due
to the variation Sw in the flow solution from the
change associated directly with the modification SJ-"

in the shape. This notation is introduced to assist
in grouping the numerous terms that arise during
the derivation of the full Navier-Stokes adjoint op-
erator, so that it remains feasible to recognize the
basic structure of the approach as it is sketched in
the present section.

Using control theory, the governing equations of
the flow field are introduced as a constraint in such
a way that the final expression for the gradient
does not require multiple flow solutions. This cor-
responds to eliminating Sw from (1).

Suppose that the governing equation R which ex-
presses the dependence of w and T within the flow-
field domain T> can be written as

R(w,f) = Q. (2)

Then Sw is determined from the equation

,„
Next, introducing a Lagrange Multiplier V>, we have

dIT ,dIT
 T / r d f l l ,\9RSI = -z— Sw + — -=-6F - V I 5— \Sw+ —

aw dT \ l9t tfJ id?
fdIT

H -fT~-|̂  dw
dI

-V- ^ f <5^-(4)

Choosing $ to satisfy the adjoint equation

[dw\ dw

the first term is eliminated, and we find that

SI = QSF, (6)

where

'dR

The advantage is that (6) is independent of Sw,
with the result that the gradient of / with respect
to an arbitrary number of design variables can be
determined without the need for additional flow-
field evaluations. In the case that (2) is a partial
differential equation, the adjoint equation (5) is also
a partial differential equation and determination of
the appropriate boundary conditions requires care-
ful mathematical treatment.

The computational cost of a single design cycle
is roughly equivalent to the cost of two flow so-
lutions since the the adjoint problem has similar
complexity. When the number of design variables
becomes large, the computational efficiency of the
control theory approach over traditional approach,
which requires direct evaluation of the gradients by
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individually varying each design variable and re-
computing the flow field, becomes compelling.

Once equation (3) is established, an improvement
can be made with a shape change

&f = -\g
where A is positive, and small enough that the first
variation is an accurate estimate of SI. The varia-
tion in the cost function then becomes

si = -\QTQ < o.
After making such a modification, the flow field and
corresponding gradient can be recalculated and the
process repeated to follow a path of steepest descent
until a minimum is reached. In order to avoid vi-
olating constraints, such as a minimum acceptable
wing thickness, the gradient may be projected into
an allowable subspace within which the constraints
are satisfied. In this way, procedures can be devised
which must necessarily converge at least to a local
minimum.

3 The Navier-Stokes Equa-
tions

For the derivations that follow, it is convenient to
use Cartesian coordinates (x\,x-2,xz) and to adopt
the convention of indicial notation where a re-
peated index "j" implies summation over i = 1 to
3. The three-dimensional Navier-Stokes equations
then take the form

dw dfi _ dfvi
~37" ' "3— ~ ~3— ln
at axi axi (7)

where the state vector w, inviscid flux vector / and
viscous flux vector /„ are described respectively by

w = < P«2
PU3

(8)

(Willy + p6i2 (9)

/«,' = (10)

In these definitions, p is the density, u\,u^, 1*3 are
the Cartesian velocity components, E is the total
energy and Sfj is the Kronecker delta function. The
pressure is determined by the equation of state

P= ~f~

and the stagnation enthalpy is given by

where 7 is the ratio of the specific heats. The vis-
cous stresses may be written as

where \i and A are the first and second coefficients
of viscosity. The coefficient of thermal conductivity
and the temperature are computed as

K — Pr' -Rp' (12)

where Pr is the Prandtl number, cp is the specific
heat at constant pressure, and R is the gas con-
stant.

For discussion of real applications using a dis-
cretization on a body conforming structured mesh,
it is also useful to consider a transformation to the
computational coordinates (£1,^2 ,£3) defined by the
metrics

The Navier-Stokes equations can then be written
in computational space as

—E:— + —^—~ = ° in ^' (13)

where the inviscid and viscous flux contributions
are now defined with respect to the computational
cell faces by F{ = Sijfj and Fv{ = Sijfvj, and
the quantity 5,-j = J^i] represents the projection
of the £,• cell face along the Xj axis. In obtaining
equation (13) we have made use of the property
that

which represents the fact that the sum of the face
areas over a closed volume is zero, as can be read-
ily verified by a direct examination of the metric
terms.
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4 Formulation of the Opti-
mal Design Problem for the
Navier-Stokes Equations

Aerodynamic optimization is based on the deter-
mination of the effect of shape modifications on
some performance measure which depends on the
flow. For convenience, the coordinates £,• describing
the fixed computational domain are chosen so that
each boundary conforms to a constant value of one
of these coordinates. Variations in the shape then
result in corresponding variations in the mapping
derivatives defined by K{j.

Suppose that the performance is measured by a
cost function

/= / M (w, S) dBs + f P(w,S)dP(,JB J-D
containing both boundary and field contributions
where dB$ and dD^ are the surface and volume ele-
ments in the computational domain. In general, M
and P will depend on both the flow variables w and
the metrics 5 defining the computational space. In
the case of a multi-point design the flow variables
may be separately calculated for several different
conditions of interest.

The design problem is now treated as a control
problem where the boundary shape represents the
control function, which is chosen to minimize / sub-
ject to the constraints defined by the flow equations
(13). A shape change produces a variation in the
flow solution Sw and the metrics SS which in turn
produce a variation in the cost function

81= f 8M(w, S) dBt: + I SP(w, S) dVs, (15)
JB J-D

with

SM =
8P = (16)

where we continue to use the subscripts / and //
to distinguish between the contributions associated
with the variation of the flow solution 8w and those
associated with the metric variations SS. Thus
[MW]I and [Pw]j represent ^£ and f£ with the
metrics fixed, while SMu and SPn represent the
contribution of the metric variations SS to SM and
SP.

In the steady state, the constraint equation (13)
specifies the variation of the state vector Sw by

(17)

Here SF{ and SFvi can also be split into contribu-
tions associated with Sw and SS using the notation

]j Sw + 6 Fia

SFvi = (18)

The inviscid contributions are easily evaluated as

= -[Fiw]f = Sij = 6 Sij fj .

The details of the viscous contributions are com-
plicated by the additional level of derivatives in
the stress and heat flux terms and will be derived
in Section 6. Multiplying by a co-state vector ^,
which will play an analogous role to the Lagrange
multiplier introduced in equation (4) , and integrat-
ing over the domain produces

f rp 3

J-D d&
(19)

If ip is differentiable this may be integrated by parts
to give

In*
JB

t - Fvi)

(20)

Since the left hand expression equals zero, it may be
subtracted from the variation in the cost function
(15) to give

SI = f [SM - n^TS (Ft - Fvi)} dB<:
JB

(21)

Now, since if> is an arbitrary differentiable function,
it may be chosen in such a way that SI no longer de-
pends explicitly on the variation of the state vector
Sw. The gradient of the cost function can then be
evaluated directly from the metric variations with-
out having to recompute the variation Sw resulting
from the perturbation of each design variable.

Comparing equations (16) and (18), the varia-
tion Sw may be eliminated from (21) by equating
all field terms with subscript "/" to produce a dif-
ferential adjoint system governing ij>

^r- [Fiw - FViw]r + Pw = 0 in V. (22)

The corresponding adjoint boundary condition is
produced by equating the subscript "/" boundary
terms in equation (21) to produce

[Fiw - Fviw]T = Mv on B. (23)
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The remaining terms from equation (21) then yield
a simplified expression for the variation of the cost
function which defines the gradient

inviscid adjoint equation may be written as

SI i - SFvi] n= I {5Mn - n,-V>'
J &

f f dibT )+ / \SPn + -^-[SFi-SFvi]a \ttDf. (24)
JT> I a?' J

The details of the formula for the gradient depend
on the way in which the boundary shape is parame-
terized as a function of the design variables, and the
way in which the mesh is deformed as the bound-
ary is modified. Using the relationship between the
mesh deformation and the surface modification, the
field integral is reduced to a surface integral by inte-
grating along the coordinate lines emanating from
the surface. Thus the expression for SI is finally
reduced to the form of equation (6)

SI -L dBe

where f represents the design variables, and Q is
the gradient, which is a function defined over the
boundary surface.

The boundary conditions satisfied by the flow
equations restrict the form of the left hand side of
the adjoint boundary condition (23). Consequently,
the boundary contribution to the cost function M
cannot be specified arbitrarily. Instead, it must be
chosen from the class of functions which allow can-
cellation of all terms containing Sw in the bound-
ary integral of equation (21). On the other hand,
there is no such restriction on the specification of
the field contribution to the cost function P, since
these terms may always be absorbed into the ad-
joint field equation (22) as source terms.

It is convenient to develop the inviscid and vis-
cous contributions to the adjoint equations sepa-
rately. Also, for simplicity, it will be assumed that
the portion of the boundary that undergoes shape
modifications is restricted to the coordinate surface
£2 = 0. Then equations (21) and (23) may be sim-
plified by incorporating the conditions

n x = n3 = 0, n-2 = 1, dB$ = d£id£3,

so that only the variations SF2 and SFv2 need to be
considered at the wall boundary.

5 Derivation of the Inviscid
Adjoint Terms

The inviscid contributions have been previously de-
rived in [12, 22] but are included here for complete-
ness. Taking the transpose of equation (22), the

(25)

where the inviscid Jacobian matrices in the trans-
formed space are given by

IJ dw '
The transformed velocity components have the
form

and the condition that there is no flow through the
wall boundary at £2 = 0 is equivalent to

so that
SU2 = 0

when the boundary shape is modified. Conse-
quently the variation of the inviscid flux at the
boundary reduces to

SF-2 = 5p <

S-23

0

+ P ££22
6823

0

(26)

Since SF2 depends only on the pressure, it is now
clear that the performance measure on the bound-
ary M (w, S) may only be a function of the pressure
and metric terms. Otherwise, complete cancella-
tion of the terms containing Sw in the boundary
integral would be impossible. One may, for exam-
ple, include arbitrary measures of the forces and
moments in the cost function, since these are func-
tions of the surface pressure.

In order to design a shape which will lead to a
desired pressure distribution, a natural choice is to
set

I =- •dS

where pd is the desired surface pressure, and the
integral is evaluated over the actual surface area.
In the computational domain this is transformed
to
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denotes the face area corresponding to a unit el-
ement of face area in the computational domain.
Now, to cancel the dependence of the boundary in-
tegral on Sp, the adjoint boundary condition re-
duces to

T p j n j = P ~ P d (27)
where HJ are the components of the surface normal

This amounts to a transpiration boundary condi-
tion on the co-state variables corresponding to the
momentum components. Note that it imposes no
restriction on the tangential component of ip at the
boundary.

In the presence of shock waves, neither p nor
Pd are necessarily continuous at the surface. The
boundary condition is then in conflict with the as-
sumption that if} is differentiate. This difficulty
can be circumvented by the use of a smoothed
boundary condition [22].

6 Derivation of the Viscous
Adjoint Terms

In computational coordinates, the viscous terms in
the Navier-Stokes equations have the form

Computing the variation Sw resulting from a shape
modification of the boundary, introducing a co-
state vector $ and integrating by parts following
the steps outlined by equations (17) to (20) pro-
duces

where the shape modification is restricted to the
coordinate surface £2 = 0 so that RI = n3 = 0,
and r»a = 1- Furthermore, it is assumed that the
boundary contributions at the far field may either
be neglected or else eliminated by a proper choice
of boundary conditions as previously shown for the
inviscid case [12, 22].

The viscous terms will be derived under the as-
sumption that the viscosity and heat conduction co-
efficients n and k are essentially independent of the
flow, and that their variations may be neglected.
This simplification has been successfully used for
may aerodynamic problems of interest. In the case

of some turbulent flows, there is the possibility
that the flow variations could result in significant
changes in the turbulent viscosity, and it may then
be necessary to account for its variation in the cal-
culation.

Transformation to Primitive Variables
The derivation of the viscous adjoint terms is sim-
plified by transforming to the primitive variables

because the viscous stresses depend on the veloc-
ity derivatives -^, while the heat flux can be ex-u j, j

pressed as
d

where « = ^ = pJ!^.^. The relationship between
the conservative and primitive variations is defined
by the expressions

Sw = MSw, Sw = M~lSw

which make use of the transformation matrices
M = ff- and M"1 = ff. These matrices are pro-
vided in transposed form for future convenience

MT =

' 1
0
0
0
0

«1
p
0
0
0

"2
0
p
0
0

«3
0
0
p
0

2
pui
pU-2
PU3i
-r-i -

' 1
0
0
0
0

-^
~f
0
0
0

Mi
p

0
1.
p
0
0

p
0
0
7
0

(l- l)UiUi
2

—(7 — 1)«1
—(7 — 1)«2
-(7 - I)w3

7-1 .
The conservative and primitive adjoint operators L
and L corresponding to the variations Sw and Sw
are then related by

/ SwTLi^ dT>( = I 6wTLil>
Jv Jr>

with
L = MTL,

so that after determining the primitive adjoint op-
erator by direct evaluation of the viscous portion
of (22), the conservative operator may be obtained
by the transformation L = M~l L. Since the
continuity equation contains no viscous terms, it
makes no contribution to the viscous adjoint sys-
tem. Therefore, the derivation proceeds by first
examining the adjoint operators arising from the
momentum equations.
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Contributions from the Momentum
Equations
In order to make use of the summation convention,
it is convenient to set if>j+i — <j)j for j = 1,2,3.
Then the contribution from the momentum equa-
tions is

L
T>

(28)

The velocity derivatives in the viscous stresses can
be expressed as

duj __ duj d£i _ Sij duj

with corresponding variations

The variations in the stresses are then

As before, only those terms with subscript /, which
contain variations of the flow variables, need be
considered further in deriving the adjoint operator.
The field contributions that contain Sui in equation
(28) appear as

This may be integrated by parts to yield

d-
8̂

where the boundary integral has been eliminated
by noting that <5u,- = 0 on the solid boundary. By

exchanging indices, the field integrals may be com-
bined to produce

Sir,

which is further simplified by transforming the in-
ner derivatives back to Cartesian coordinates

f Suk^sJJf^Jv ot,i { \ dxj
(29)

The boundary contributions that contain Sut in
equation (28) may be simplified using the fact that

f\

—Sui = Q if 1=1,3

on the boundary B so that they become

£• (30)

Together, (29) and (30) comprise the field and
boundary contributions of the momentum equa-
tions to the viscous adjoint operator in primitive
variables.

Contributions from the Energy Equa-
tion
In order to derive the contribution of the energy
equation to the viscous adjoint terms it is conve-
nient to set

d (p\V>5 = 0, Qj = Ui<ri:i + K —— [ £ } ,
OXj \pj

where the temperature has been written in terms of
pressure and density using (12). The contribution
from the energy equation can then be written as

L
r do

JT> d&

+ dB

c. (31)

The field contributions that contain Su{,6p, and
Sp in equation (31) appear as

f 90
Jv &£i >J

•/,%*>{
P P P

(32)
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The term involving Sffkj may be integrated by parts
to produce

f Ac
1-D Ukd& 'J

dd dd \
c——— +Ui——dxj dxkJ

dB+\Sjkum-—dxm
(33)

where the conditions u,- = Suf = 0 are used to
eliminate the boundary integral on B. Notice that
the other term in (32) that involves Su/, need not
be integrated by parts and is merely carried on as

-L' (34)

The terms in expression (32) that involve 6p and
Sp may also be integrated by parts to produce both
a field and a boundary integral. The field integral
becomes

which may be simplified by transforming the inner
derivative to Cartesian coordinates

/ (*_£«£) » f a "
Jv \ P P P J d£i \ dxj

The boundary integral becomes

'8p _
P P J

f (Sp pSp
I \ — ~ ~"—JB \P P P

(36)

This can be simplified by transforming the inner
derivative to Cartesian coordinates

J (37)

and identifying the normal derivative at the wall

— = 5 ——dn dxj

and the variation in temperature

'Sp

(38)

to produce the boundary contribution

JB
 kSTdn (39)

This term vanishes if T is constant on the wall but
persists if the wall is adiabatic.

There is also a boundary contribution left over
from the first integration by parts (31) which has
the form

(40)/.

where

since w,- = 0. Notice that for future convenience in
discussing the adjoint boundary conditions result-
ing from the energy equation, both the Sw and SS
terms corresponding to subscript classes / and 71
are considered simultaneously. If the wall is adia-
batic

so that using (38),

and both the Sw and SS boundary contributions
vanish.

On the other hand, if T is constant J£ =
0 for 1= 1,3, so that

, dT

Thus, the boundary integral (40) becomes

Therefore, for constant T, the first term corre-
sponding to variations in the flow field contributes
to the adjoint boundary operator and the second
set of terms corresponding to metric variations con-
tribute to the cost function gradient.

All together, the contributions from the energy
equation to the viscous adjoint operator are the
three field terms (33), (34) and (35), and either of
two boundary contributions ( 39) or ( 41), depend-
ing on whether the wall is adiabatic or has constant
temperature.

The Viscous Adjoint Field Operator
Collecting together the contributions from the mo-
mentum and energy equations, the viscous adjoint
operator in primitive variables can be expressed as

de

1 d

for i = l , 2 , 3
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The conservative viscous adjoint operator may now
be obtained by the transformation

L = M~lTL.

7 Viscous Adjoint Boundary
Conditions

It was recognized in Section 4 that the boundary
conditions satisfied by the flow equations restrict
the form of the performance measure that may be
chosen for the cost function. There must be a di-
rect correspondence between the flow variables for
which variations appear in the variation of the cost
function, and those variables for which variations
appear in the boundary terms arising during the
derivation of the adjoint field equations. Otherwise
it would be impossible to eliminate the dependence
of SI on Sw through proper specification of the ad-
joint boundary condition. As in the derivation of
the field equations, it proves convenient to consider
the contributions from the momentum equations
and the energy equation separately.

Boundary Conditions Arising from
the Momentum Equations
The boundary term that arises from the momen-
tum equations including both the Sw and SS com-
ponents (28) takes the form

/
JB

Replacing the metric term with the corresponding
local face area 8-2 and unit normal HJ defined by

rij = —L

f
JB

Defining the components of the surface stress as

and the physical surface element

dS= \Sa\dBf,

the integral may then be split into two components

/ far* \SS,\ dBs + I (t>kSrkdS, (42)
JB JB

where only the second term contains variations in
the flow variables and must consequently cancel the
Sw terms arising in the cost function. The first term
will appear in the expression for the gradient.

A general expression for the cost function that
allows cancellation with terms containing $Tk has
the form

/= f M(r)dS, (43)
JB

corresponding to a variation

SI = I j£JB ork

for which cancellation is achieved by the adjoint
boundary condition

Natural choices for M arise from force optimiza-
tion and as measures of the deviation of the surface
stresses from desired target values.

For viscous force optimization, the cost function
should measure friction drag. The friction force in
the x,- direction is

B

so that the force in a direction with cosines nt has
the form

nf = / riiSijffij
JB

Expressed in terms of the surface stress TJ , this cor-
responds to

Cn} = / mndS,
JB

so that basing the cost function (43) on this quan-
tity gives

J\f = n,-r,-.

Cancellation with the flow variation terms in equa-
tion (42) therefore mandates the adjoint boundary
condition

Note that this choice of boundary condition also
eliminates the first term in equation (42) so that it
need not be included in the gradient calculation.

In the inverse design case, where the cost func-
tion is intended to measure the deviation of the
surface stresses from some desired target values, a
suitable definition is

fa ~

10
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where TJ is the desired surface stress, including the
contribution of the pressure, and the coefficients a;^
define a weighting matrix. For cancellation

Oik (n - Tdl) Srk.

This is satisfied by the boundary condition

4>k = aik (T) -Tdi). (44)

Assuming arbitrary variations in STk , this condition
is also necessary.

In order to control the surface pressure and nor-
mal stress one can measure the difference

"j {*kj + faj (P - Pd)} ,

where pd is the desired pressure. The normal com-
ponent is then

so that the measure becomes

~ Pd)}

This corresponds to setting

aik = nink

in equation (44) . Defining the viscous normal stress
as

Tvn =

the measure can be expanded as

) (p - Pd) + (P - Pdf

For cancellation of the boundary terms

n? (p - pd) } nk (njS<rkj + nkSp)

leading to the boundary condition

<t>k = nk (rvn +p — pd) •

In the case of high Reynolds number, this is well
approximated by the equations

which should be compared with the single scalar
equation derived for the inviscid boundary condi-
tion (27). In the case of an inviscid flow, choosing

requires

<j>knk6p = (p- Pd) nk6p = (p-

which is satisfied by equation (45), but which rep-
resents an overspecification of the boundary con-
dition since only the single condition (27) need be
specified to ensure cancellation.

Boundary Conditions Arising from
the Energy Equation
The form of the boundary terms arising from the
energy equation depends on the choice of tempera-
ture boundary condition at the wall. For the adia-
batic case, the boundary contribution is (39)

f dOI kST—c
JB dn

<t>k = nk(p- pd) , (45)

while for the constant temperature case the bound-
ary term is (41). One possibility is to introduce a
contribution into the cost function which depends
on T or |̂  so that the appropriate cancellation
would occur. Since there is little physical intuition
to guide the choice of such a cost function for aero-
dynamic design, a more natural solution is to set

in the constant temperature case or

£-•
in the adiabatic case. Note that in the constant
temperature case, this choice of 0 on the boundary
would also eliminate the boundary metric variation
terms in (40).

8 Implementation of Navier-
Stokes Design

The design procedures can be summarized as fol-
lows:

1. Solve the flow equations for p, u\, u^, «3, P-

2. Solve the adjoint equations for ^ subject to
appropriate boundary conditions.

3. Evaluate Q .

11
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4. Project Q into an allowable subspace that sat-
isfies any geometric constraints.

5. Update the shape based on the direction of
steepest descent.

6. Return to I until convergence is reached.

Practical implementation of the viscous design
method relies heavily upon fast and accurate
solvers for both the state (w) and co-state (^) sys-
tems. This work uses well-validated software for the
solution of the Euler and Navier-Stokes equations
developed over the course of many years [23, 24, 25].

For inverse design the lift is fixed by the tar-
get pressure. In drag minimization it is also ap-
propriate to fix the lift coefficient, because the in-
duced drag is a major fraction of the total drag, and
this could be reduced simply by reducing the lift.
Therefore the angle of attack is adjusted during the
flow solution to force a specified lift coefficient to
be attained, and the influence of variations of the
angle of attack is included in the calculation of the
gradient. The vortex drag also depends on the span
loading, which may be constrained by other consid-
erations such as structural loading or buffet onset.
Consequently, the option is provided to force the
span loading by adjusting the twist distribution as
well as the angle of attack during the flow solution.

Discretization
Both the flow and the adjoint equations are dis-
cretized using a semi-discrete cell-centered finite
volume scheme. The convective fluxes across cell
interfaces are represented by simple arithmetic av-
erages of the fluxes computed using values from the
cells on either side of the face, augmented by arti-
ficial diffusive terms to prevent numerical oscilla-
tions in the vicinity of shock waves. Continuing to
use the summation convention for repeated indices,
the numerical convective flux across the interface
between cells A and B in a three dimensional mesh
has the form

where

j (/Aj +

where SABJ is the component of the face area in the
jtk Cartesian coordinate direction, (/A,-) and (fsj)
denote the flux fj as defined by equation (12) and
<IAB is the diffusive term. Variations of the com-
puter program provide options for alternate con-
structions of the diffusive flux.

The simplest option implements the Jameson-
Schmidt-Turkel scheme [23, 26], using scalar dif-
fusive terms of the form

- e(4)

and Aw+ and Atu~ are the same differences across
the adjacent cell interfaces behind cell A and be-
yond cell B in the AB direction. By making the
coefficient e'2' depend on a switch proportional to
the undivided second difference of a flow quantity
such as the pressure or entropy, the diffusive flux
becomes a third order quantity, proportional to the
cube of the mesh width in regions where the so-
lution is smooth. Oscillations are suppressed near
a shock wave because e^2' becomes of order unity,
while e'4) is reduced to zero by the same switch. For
a scalar conservation law, it is shown in reference
[26] that e(2) and e'4) can be constructed to make
the scheme satisfy the local extremum diminishing
(LED) principle that local maxima cannot increase
while local minima cannot decrease.

The second option applies the same construction
to local characteristic variables. There are derived
from the eigenvectors of the Jacobian matrix AAB
which exactly satisfies the relation

This corresponds to the definition of Roe [27]. The
resulting scheme is LED in the characteristic vari-
ables. The third option implements the H-CUSP
scheme proposed by Jameson [28] which combines
differences fg — /A and WB — WA in a manner such
that stationary shock waves can be captured with
a single interior point in the discrete solution. This
scheme minimizes the numerical diffusion as the ve-
locity approaches zero in the boundary layer, and
has therefore been preferred for viscous calculations
in this work.

Similar artificial diffusive terms are introduced
in the discretization of the adjoint equation, but
with the opposite sign because the wave directions
are reversed in the adjoint equation. Satisfactory
results have been obtained using scalar diffusion
in the adjoint equation while characteristic or H-
CUSP constructions are used in the flow solution.

The discretization of the viscous terms of the
Navier Stokes equations requires the evaluation of
the velocity derivatives -£>- in order to calculate the

'viscous stress tensor <T,-J defined in equation (11).
These are most conveniently evaluated at the cell
vertices of the primary mesh by introducing a dual
mesh which connects the cell centers of the primary
mesh, as depicted in Figure (1). According to the
Gauss formula for a control volume V with bound-
ary S

t dv'^ fI ^rdv ~ I Uinic
Jv oxj Js

12
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Figure 1: Cell-centered scheme,
vertices of the primary mesh

evaluated at

where HJ is the outward normal. Applied to the
dual cells this yields the estimate

dxj vol
faces

where 5 is the area of a face, and «,- is an esti-
mate of the average of u,- over that face. In order
to determine the viscous flux balance of each pri-
mary cell, the viscous flux across each of its faces
is then calculated from the average of the viscous
stress tensor at the four vertices connected by that
face. This leads to a compact scheme with a stencil
connecting each cell to its 26 nearest neighbors.

The semi-discrete schemes for both the flow and
the adjoint equations are both advanced to steady
state by a multi-stage time stepping scheme. This
is a generalized Runge-Kutta scheme in which the
convective and diffusive terms are treated differ-
ently to enlarge the stability region [26, 29]. Con-
vergence to a steady state is accelerated by residual
averaging and a multi-grid procedure [30]. These
algorithms have been implemented both for single
and multiblock meshes and for operation on paral-
lel computers with message passing .using the MPI
(Message Passing Interface) protocol [8, 31, 32].

In this work, the adjoint and flow equations are
discretized separately. The alternative approach
of deriving the discrete adjoint equations directly
from the discrete flow equations yields another pos-
sible discretization of the adjoint partial differen-
tial equation which is more complex. If the re-
sulting equations were solved exactly, they could
provide the exact gradient of the inexact cost func-

tion which results from the discretization of the
flow equations. On the other hand, any consis-
tent discretization of the adjoint partial differential
equation will yield the exact gradient as the mesh
is refined, and separate discretization has proved
to work perfectly well in practice. It should also
be noted that the discrete gradient includes both
mesh effects and numerical errors such as spurious
entropy production which may not reflect the true
cost function of the continuous problem.

Mesh Generation and Geometry Con-
trol

Meshes for both viscous optimization and for the
treatment of complex configurations are externally
generated in order to allow for their inspection and
careful quality control. Single block meshes with a
C-H topology have been used for viscous optimiza-
tion of wing-body combinations, while multiblock
meshes have been generated for complex configura-
tions using GRIDGEN [33]. In either case geometry
modifications are accommodated by a grid pertur-
bation scheme. For viscous wing-body design using
single block meshes, the wing surface mesh points
themselves are taken as the design variables. A
simple mesh perturbation scheme is then used, in
which the mesh points lying on a mesh line project-
ing out from the wing surface are all shifted in the
same sense as the surface mesh point, with a decay
factor proportional to the arc length along the mesh
line. The resulting perturbation in the face areas
of the neighboring cells are then included in the
gradient calculation. For complex configurations
the geometry is controlled by superposition of an-
alytic "bump" functions defined over the surfaces
which are to be modified. The grid is then per-
turbed to conform to modifications of the surface
shape by the WARP3D and WARP-MB algorithms
described in [31].

Optimization

Two main search procedures have been used in our
applications to date. The first is a simple descent
method in which small steps are taken in the nega-
tive gradient direction. Let T represent the design
variable, and Q the gradient. Then the iteration

can be regarded as simulating the time dependent
process

13
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where A is the time step At. Let A be the Hessian
matrix with elements

Aij
aft

£1 direction, for example, the smoothed gradient Q
ma be calculated from a discrete approximation to

Suppose that a locally minimum value of the cost
function /* = /(.F*) is attained when £ = T* .
Then the gradient Q* = G(F*) must be zero, while
the Hessian matrix A* = A(3:*} must be positive
definite. Since Q* is zero, the cost function can be
expanded as a Taylor series in the neighborhood of
T* with the form

= r + (f - ?*) A (f - F] + . . .

Correspondingly,

As T approaches JF*, the leading terms become
dominant. Then, setting f = (F — J-*), the search
process approximates

-dt ~ -
Also, since A* is positive definite it can be ex-
panded as

A' = RMRT,
where M is a diagonal matrix containing the eigen-
values of A* , and

Setting

RR = R R = /.

v = RTF,
the search process can be represented as

dv
- = -Mv. •

The stability region for the simple forward Euler
stepping scheme is a unit circle centered at —1 on
the negative real axis. Thus for stability we must
choose

^maxAt = /imaxA < 2,

while the asymptotic decay rate, given by the small-
est eigenvalue, is proportional to

In order to make sure that each new shape in the
optimization sequence remains smooth, it proves
essential to smooth the gradient and to replace Q by
its smoothed value Q in the descent process. This
also acts as a preconditioner which allows the use
of much larger steps. To apply smoothing in the

where e is the smoothing parameter. If one sets
SJ- — —Xg, then, assuming the modification is ap-
plied on the surface £2 = constant, the first order
change in the cost function is

SI

< 0,

assuring an improvement if A is sufficiently small
and positive, unless the process has already reached
a stationary point at which Q = 0.

It turns out that this approach is tolerant to
the use of approximate values of the gradient, so
that neither the flow solution nor the adjoint solu-
tion need be fully converged before making a shape
change. This results in very large savings in the
computational cost. For inviscid optimization it is
necessary to use only 15 multigrid cycles for the
flow solution and the adjoint solution in each de-
sign iteration. For viscous optimization, about 100
multigrid cycles are needed. This is partly because
convergence of the lift coefficient is much slower, so
about 20 iterations must be made before each ad-
justment of the angle of attack to force the target
lift coefficient.

Our second main search procedure incorporates
a quasi-Newton method for general constrained op-
timization. In this class of methods the step is de-
fined as

s? = -xpg,
where P is a preconditioner for the search. An ideal
choice is P = A*~l, so that the corresponding time
dependent process reduces to

_
dt ~ '

for which all the eigenvalues are equal to unity, and
T is reduced to zero in one time step by the choice
At = 1 if the Hessian, A, is constant. The full New-
ton method takes P = A~l, requiring the evalua-
tion of the Hessian matrix, A, at each step. It corre-
sponds to the use of the Newton-Raphson method
to solve the non-linear equation Q = 0. Quasi-
Newton methods estimate A* from the change in
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the gradient during the search process. This re-
quires accurate estimates of the gradient at each
time step. In order to obtain these, both the flow
solution and the adjoint equation must be fully con-
verged. Most quasi-Newton methods also require a
line search in each search direction, for which the
flow equations and cost function must be accurately
evaluated several times. They have proven quite ro-
bust for aerodynamic optimization [34].

In the applications to complex configurations
presented below the optimization was carried out
using the existing, well validated software NPSOL.
This software, which implements a quasi-Newton
method for optimization with both linear and non-
linear constraints, has proved very reliable but is
generally more expensive than the simple search
method with smoothing.

9 Industrial Experience and
Results

The methods described in this paper have been
quite thoroughly tested in industrial applications in
which they were used as a tool for aerodynamic de-
sign. They have proved useful both in inverse mode
to find shapes that would produce desired pres-
sure distributions, and for direct minimization of
the drag. They have been applied both to well un-
derstood configurations that have gradually evolved
through incremental improvements guided by wind
tunnel tests and computational simulation, and to
new concepts for which there is a limited knowledge
base. In either case they have enabled engineers to
produce improved designs.

Substantial improvements are usually obtained
with 20 — 200 design cycles, depending on the dif-
ficulty of the case. One concern is the possibility
of getting trapped in a local minimum. In prac-
tice this has not proved to be a source of difficulty.
In inverse mode, it often proves possible to come
very close to realizing the target pressure distri-
bution, thus effectively demonstrating convergence.
In drag minimization, the result of the optimization
is usually a shock-free wing. If one considers drag
minimization of airfoils in two-dimensional inviscid
transonic flow, it can be seen that every shock-free
airfoil produces zero drag, and thus optimization
based solely on drag has a highly non-unique solu-
tion. Different shock-free airfoils can be obtained
by starting from different initial profiles. One may
also influence the character of the final design by
blending a target pressure distribution with the
drag in the definition of the cost function.

Similar considerations apply
to three-dimensional wing design in viscous tran-

sonic flow. Since the vortex drag can be reduced
simply by reducing the lift, the lift coefficient must
be fixed for a meaningful drag minimization. A
typical wing of a transport aircraft is designed for
a lift coefficient in the range of 0.4 to 0.6. The
total wing drag may be broken down into vortex
drag, drag due to viscous effects, and shock drag.
The vortex drag coefficient is typically in the range
of 0.0100 (100 counts), while the friction drag co-
efficient is in the range of 45 counts, and the shock
drag at a Mach number just before the onset of se-
vere drag rise is of the order of 15 counts. With
a fixed span, typically dictated by structural limits
or a constraint imposed by airport gates, the vor-
tex drag is entirely a function of span loading, and
is minimized by an elliptic loading unless winglets
are added. Transport aircraft usually have highly
tapered wings with very large root chords to ac-
commodate retraction of the undercarriage. An el-
liptic loading may lead to excessively large section
lift coefficients on the outboard wing, leading to
premature shock stall or buffet when the load is in-
creased. The structure weight is also reduced by a
more inboard loading which reduces the root bend-
ing moment. Thus the choice of span loading is
influenced by other considerations. The skin fric-
tion of transport aircraft is typically very close to
flat plate skin friction in turbulent flow, and is very
insensitive to section variations. An exception to
this is the case of smaller executive jet aircraft, for
which the Reynolds number may be small enough
to allow a significant run of laminar flow if the suc-
tion peak of the pressure distribution is moved back
on the section. This leaves the shock drag as the
primary target for wing section optimization. This
is reduced to zero if the wing is shock-free, leaving
no room for further improvement. Thus the attain-
ment of a shock-free flow is a demonstration of a
successful drag minimization. In practice range is
maximized by maximizing M ||-, and this is likely to
be increased by increasing the lift coefficient to the
point where a weak shock appears. One may also
use optimization to find the maximum Mach num-
ber at which the shock drag can be eliminated or
significantly reduced for a wing with a given sweep-
back angle and thickness. Alternatively one may
try to find the largest wing thickness or the mini-
mum sweepback angle for which the shock drag can
be eliminated at a given Mach number. This can
yield both savings in structure weight and increased
fuel volume . If there is no fixed limit for the wing
span, such as a gate constraint, increased thickness
can be used to allow an increase in aspect ratio for
a wing of equal weight, in turn leading to a reduc-
tion in vortex drag. Since the vortex drag is usually
the largest component of the total wing drag, this

15



Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

is probably the most effective design strategy, and
it may pay to increase the wing thickness to the
point where the optimized section produces a weak
shock wave rather than a shock-free flow [22].

The first major industrial application of an ad-
joint based aerodynamic optimization method was
the wing design of the Beech Premier [35] in 1995.
The method was successfully used in inverse mode
as a tool to obtain pressure distributions favorable
to the maintenance of natural laminar flow over a
range of cruise Mach numbers. Wing contours were
obtained which yielded the desired pressure distri-
bution in the presence of closely coupled engine na-
celles on the fuselage above the wing trailing edge.

During 1996 some preliminary studies indicated
that the wings of both the McDonnell Douglas MD-
11 and the Boeing 747-200 could be made shock-
free in a representative cruise condition by using
very small shape modifications, with consequent
drag savings which could amount to several percent
of the total drag. This led to a decision to evaluate
adjoint-based design methods in the design of the
McDonnell Douglas MDXX during the summer and
fall of 1996. In initial studies wing redesigns were
carried out for inviscid transonic flow modelled by
the Euler equations. A redesign to minimize the
drag at a specified lift and Mach number required
about 40 design cycles, which could be completed
overnight on a workstation.

Three main lessons were drawn from these ini-
tial studies: (i) the fuselage effect is to large to
be ignored and must be included in the optimiza-
tion, (ii) single-point designs could be too sensitive
to small variations in the flight condition, typically
producing a shock-free flow at the design point with
a tendency to break up into a severe double shock
pattern below the design point, and (iii) the shape
changes necessary to optimize a wing in transonic
flow are smaller than the boundary layer displace-
ment thickness, with the consequence that viscous
effects must be included in the final design.

In order to meet the first two of these consid-
erations, the second phase of the study was con-
centrated on the optimization of wing-body com-
binations with multiple design points. These were
still performed with inviscid flow to reduce com-
putational cost and allow for fast turnaround. It
was found that comparatively insensitive designs
could be obtained by minimizing the drag at a fixed
Mach number for three fairly closely spaced lift co-
efficients such as 0.5, 0.525, and 0.55, or alterna-
tively three nearby Mach numbers with a fixed lift
coefficient.

The third phase of the project was focused on the
design with viscous effects using as a starting point
wings which resulted from multipoint inviscid op-

timization. While the full viscous adjoint method
was still under development, it was found that use-
ful improvements could be realized, particularly in
inverse mode, using the inviscid result to provide
the target pressure, by coupling an inviscid adjoint
solver to a viscous flow solver. Computer costs are
many times larger, both because finer meshes are
needed to resolve the boundary layer, and because
more iterations are needed in the flow and adjoint
solutions. In order to force the specified lift coeffi-
cient the number of iterations in each flow solution
had to be increased from 15 to 100. To achieve
overnight turnaround a fully parallel implementa-
tion of the software had to be developed. Finally
it was found that in order to produce sufficiently
accurate results, the number of mesh points had
to be increased to about 1.8 million. In the final
phase of this project it was planned to carry out a
propulsion integration study using the multiblock
versions of the software. This study was not com-
pleted due to the cancellation of the entire MDXX
project.

During the summer of 1997, adjoint methods
were again used to assist the McDonnell Douglas
Blended Wing-Body project. By this time the
viscous adjoint method was well developed, and
it was found that it was needed to achieve truly
smooth shock-free solutions. With an inviscid ad-
joint solver coupled to a viscous flow solver some
improvements could be made, but the shocks could
not be entirely eliminated.

The next subsection shows a wing design using
the full viscous adjoint method in its current form,
implemented in the computer program SYN107.
The remaining subsections present results of op-
timizations for complete configurations in inviscid
transonic and supersonic flow using the multiblock
parallel design program, SYN107-MB.

Transonic Viscous Wing-Body Design
A typical result of drag minimization in transonic
viscous flow is presented below. This calculation
is a redesign of a wing using the viscous adjoint
optimization method with a Baldwin-Lomax tur-
bulence model. The initial wing is similar to one
produced during the MDXX design studies. Fig-
ures 2-4 show the result of the wing-body redesign
on a C-H mesh with 288 x 96 x 64 cells. The wing has
sweep back of about 38 degrees at the 1/4 chord.
A total of 44 iterations of the viscous optimiza-
tion procedure resulted in a shock-free wing at a
cruise design point of Mach 0.86, with a lift coef-
ficient of 0.61 for the wing-body combination at a
Reynolds number of 101 million based on the root
chord. Using 48 processors of an SGI Origin2000
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parallel computer, each design iteration takes about
22 minutes so that overnight turnaround for such
a calculation is possible. Figure 2 compares the
pressure distribution of the final design with that
of the initial wing. The final wing is quite thick,
with a thickness to chord ratio of about 14 percent
at the root and 9 percent at the tip. The opti-
mization was performed with a constraint that the
section modifications were not allowed to decrease
the thickness anywhere. The design offers excellent
performance at the nominal cruise point. A drag
reduction of 2.2 counts was achieved from the ini-
tial wing which had itself been derived by inviscid
optimization. Figures 3 and 4 show the results of
a Mach number sweep to determine the drag rise.
The drag coefficients shown in the figures represent
the total wing drag including shock, vortex, and
skin friction contributions. It can be seen that a
double shock pattern forms below the design point,
while there is actually a slight increase in the drag
coefficient at Mach 0.85. The tendency to produce
double shocks below the design point is typical of
supercritical wings. This wing has a low drag co-
efficient, however, over a wide range of conditions.
Above the design point a single shock forms and
strengthens as the Mach number increases, a be-
havior typical in transonic flow.

Transonic Multipoint Constrained
Aircraft Design
As a first example of the automatic design capabil-
ity for complex configurations, a typical business
jet configuration is chosen for a multipoint drag
minimization run. The objective of the design is
to alter the geometry of the wing in order to min-
imize the configuration inviscid drag at three dif-
ferent flight conditions simultaneously. Realistic
geometric spar thickness constraints are enforced.
The geometry chosen for this analysis is a full con-
figuration business jet composed of wing, fuselage,
pylon, nacelle, and empennage. The inviscid multi-
block mesh around this configuration follows a gen-
eral C-O topology with special blocking to capture
the geometric details of the nacelles, pylons and
empennage. A total of 240 point-to-point matched
blocks with 4,157,440 cells (including halos) are
used to grid the complete configuration. This mesh
allows the use of 4 multigrid levels obtained through
recursive coarsening of the initial fine mesh. The
upstream, downstream, upper and lower far field
boundaries are located at an approximate distance
of 15 wing semispans, while the far field boundary
beyond the wing tip is located at a distance ap-
proximately equal to 5 semispans. An engineering-
accuracy solution (with a decrease of 4 orders of

magnitude in the average density residual) can be
obtained in 100 multigrid cycles. This kind of so-
lution can be routinely accomplished in under 20
minutes of wall clock time using 32 processors of
an SGI Origin2000 computer.

The initial configuration was designed for Mach
= 0.8 and CL = 0.3. The three operating points
chosen for this design are Mach = 0.81 with CL
= 0.35, Mach = 0.82 with CL = 0.30, and Mach
= 0.83 with CL = 0.25. For each of the design
points, both Mach number and lift coefficient are
held fixed. In order to demonstrate the advan-
tage of a multipoint design approach, the final so-
lution at the middle design point will be compared
with a single point design at the same conditions.
As the geometry of the wing is modified, the de-
sign algorithm computes new wing-fuselage inter-
sections. The wing component is made up of six
airfoil defining sections. Eighteen Hicks-Henne de-
sign variables are applied to five of these sections
for a total of 90 design variables. The sixth section
at the symmetry plane is not modified. Spar thick-
ness constraints were also enforced on each defining
station at the x/c = 0.2 and x/c = 0.8 locations.
Maximum thickness was forced to be preserved at
x/c = 0.4 for all six defining sections. To ensure an
adequate included angle at the trailing edge, each
section was also constrained to preserve thickness
at x/c — 0.95. Finally, to preserve leading edge
bluntness, the upper surface of each section was
forced to maintain its height above the camber line
at x/c = 0.02. Combined, a total of 30 linear geo-
metric constraints were imposed on the configura-
tion.

Figures 5-7 show the initial and final airfoil
geometries and Cp distributions after 5 NPSOL de-
sign iterations. It is evident that the new design
has significantly reduced the shock strengths on
both upper and lower wing surfaces at all design
points. The transitions between design points are
also quite smooth. For comparison purposes, a sin-
gle point drag minimization study (Mach = 0.81
and CL = 0.25) is carried out starting from the
same initial configuration and using the same de-
sign variables and geometric constraints.

Figures 8-10 show comparisons of the solutions
from the three-point design with those of the sin-
gle point design. Interestingly, the upper surface
shapes for both final designs are very similar. How-
ever, in the case of the single point design, a strong
lower surface shock appears at the Mach = 0.83,
CL — 0.25 design point. The three-point design is
able to suppress the formation of this lower surface
shock and achieves a 9 count drag benefit over the
single point design at this condition. However, it
has a 1 count penalty at the single point design
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condition. The three-point design features a weak
single shock for one of the three design points and
a very weak double shock at another design point.
Table 1 summarizes the drag results for the two de-
signs. The CD values have been normalized by the
drag of the initial configuration at the second design
point. Figure 11 shows the surface of the configu-
ration colored by the local coefficient of pressure,
Cp, before and after redesign for the middle design
point. One can clearly observe that the strength of
the shock wave on the upper surface of the config-
uration has been considerably reduced.

Finally, Figure 12 shows the parallel scalability
of the multiblock design method for the mesh in
question using up to 32 processors of an SGI Ori-
gin2000 parallel computer. Despite the fact that
the multigrid technique is used in both the flow and
adjoint solvers, the demonstrated parallel speedups
are outstanding.

Supersonic Constrained Aircraft De-
sign
For supersonic design, provided that turbulent flow
is assumed over the entire configuration, the in-
viscid Euler equations suffice for aerodynamic de-
sign since the pressure drag is not greatly affected
by the inclusion of viscous effects. Moreover, flat
plate skin friction estimates of viscous drag are of-
ten very good approximations. In this study, the
generic supersonic transport configuration used in
reference [36] is revisited.

The baseline supersonic transport configuration
was sized to accommodate 300 passengers with a
gross take-off weight of 750,000 Ibs. The super-
sonic cruise point is Mach 2.2 with a CL of 0.105.
Figure 13 shows that the planform is a cranked-
delta configuration with a break in the leading edge
sweep. The inboard leading edge sweep is 68.5 de-
grees while the outboard is 49.5 degrees. Since the
Mach angle at M = 2.2 is 63 degrees it is clear that
some leading edge bluntness may be used inboard
without a significant wave drag penalty. Blunt lead-
ing edge airfoils were created with thickness rang-
ing from 4% at the root to 2.5% at the leading
edge break point. These symmetric airfoils were
chosen to accommodate thick spars at roughly the
5% and 80% chord locations over the span up to
the leading edge break. Outboard of the leading
edge break where the wing sweep is ahead of the
Mach cone, a sharp leading edge was used to avoid
unnecessary wave drag. The airfoils were chosen
to be symmetric, biconvex shapes modified to have
a region of constant thickness over the mid-chord.
The four-engine configuration features axisymmet-
ric nacelles tucked close to the wing lower surface.

This layout favors reduced wave drag by minimiz-
ing the exposed boundary layer diverter area. How-
ever, in practice it may be problematic because of
the channel flows occurring in the juncture region of
the diverter, wing, and nacelle at the wing trailing

The computational mesh on which the design is
run has 180 blocks and 1,500,000 mesh cells (in-
cluding halos), while the underlying geometry enti-
ties define the wing with 16 sectional cuts and the
body with 200 sectional cuts. In this case, where we
hope to optimize the shape of the wing, care must
be taken to ensure that the nacelles remain properly
attached with diverter heights being maintained.

The objective of the design is to reduce the total
drag of the configuration at a single design point
(Mach = 2.2, CL = 0.105) by modifying the wing
shape. Just as in the transonic case, 18 design vari-
ables of the Hicks-Henne type are chosen for each
wing defining section. Similarly, instead of applying
them to all 16 sections, they are applied to 8 of the
sections and then lofted linearly to the neighboring
sections. Spar thickness constraints are imposed
for all wing defining sections at x/c = 0.05 and
x/c = 0.8. An additional maximum thickness con-
straint is specified along the span at x/c = 0.5. A
final thickness constraint is enforced at x/c = 0.95
to ensure a reasonable trailing edge included angle.
An iso-Cp representation of the initial and final de-
signs is depicted in Figure 13 for both the upper
and lower surfaces.

It is noted that the strong oblique shock evident
near the leading edge of the upper surface on the
initial configuration is largely eliminated in the fi-
nal design after 5 NPSOL design iterations. Also,
it is seen that the upper surface pressure distribu-
tion in the vicinity of the nacelles has formed an
unexpected pattern. However, recalling that thick-
ness constraints abound in this design, these upper
surface pressure patterns are assumed to be the re-
sult of sculpting of the lower surface near the na-
celles which affects the upper surface shape via the
thickness constraints. For the lower surface, the
leading edge has developed a suction region while
the shocks and expansions around the nacelles have
been somewhat reduced. Figure 14 shows the pres-
sure coefficients and (scaled) airfoil sections for four
sectional cuts along the wing. These cuts fur-
ther demonstrate the removal of the oblique shock
on the upper surface and the addition of a suc-
tion region on the leading edge of the lower sur-
face. The airfoil sections have been scaled by a
factor of 2 so that shape changes may be seen more
easily. Most notably, the section at 38.7% span
has had the lower surface drastically modified such
that a large region of the aft airfoil has a forward-
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facing portion near where the pressure spike from
the nacelle shock impinges on the surface. The fi-
nal overall pressure drag was reduced by 8%, from
CD = 0.0088 to CD = 0.0081.

10 Conclusions
We have developed a three-dimensional control the-
ory based design method for the Navier Stokes
equations and applied it successfully to the design
of wings in transonic flow. The method represents
an extension of our previous work on design with
the potential flow and Euler equations. The new
method combines the versatility of numerical op-
timization methods with the efficiency of inverse
design. The geometry is modified by a grid pertur-
bation technique which is applicable to arbitrary
configurations. Both the wing-body and multiblock
version of the design algorithms have been imple-
mented in parallel using the MPI (Message Passing
Interface) Standard, and they both yield excellent
parallel speedups. The combination of computa-
tional efficiency with geometric flexibility provides
a powerful tool, with the final goal being to cre-
ate practical aerodynamic shape design methods for
complete aircraft configurations.

Acknowledgment
This work has benefited from the generous support
of AFOSR under Grant No. AFOSR-91-0391, the
NASA-IBM Cooperative Research Agreement, and
the DoD under the Grand Challenge Projects of
the High Performance Computing Modernization
Program.

References
[1] R. M. Hicks, E. M. Murman, and G. N. Van-

derplaats. An assessment of airfoil design by
numerical optimization. NASA TM X-3092,
Ames Research Center, Moffett Field, Califor-
nia, July 1974.

[2] R. M. Hicks and P. A. Henne. Wing design by
numerical optimization. Journal of Aircraft,
15:407-412, 1978.

[3] J. L. Lions. Optimal Control of Systems
Governed by Partial Differential Equations.
Springer-Verlag, New York, 1971. Translated
by S.K. Mitter.

[4] A. E. Bryson and Y. C. Ho. Applied Optimal
Control. Hemisphere, Washington, DC, 1975.

[5] 0. Pironneau. Optimal Shape Design for Ellip-
tic Systems. Springer-Verlag, New York, 1984.

[6] A. Jameson. Optimum aerodynamic design us-
ing CFD and control theory. AIAA paper 95-
1729, AIAA 12th Computational Fluid Dy-
namics Conference, San Diego, CA, June 1995.

[7] A. Jameson. Aerodynamic design via con-
trol theory. Journal of Scientific Computing,
3:233-260, 1988.

[8] A. Jameson and J.J. Alonso. Automatic aero-
dynamic optimization on distributed mem-
ory architectures. AIAA paper 96-0409,
34th Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, January 1996.

[9] A. Jameson. Re-engineering the design process
through computation. AIAA paper 97-0641,
35th Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, January 1997.

[10] A. Jameson, N. Pierce, and L. Martinelli. Op-
timum aerodynamic design using the Navier-
Stokes equations. AIAA paper 97-0101,
35th Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, January 1997.

[11] A. Jameson, L. Martinelli, and N. A.
Pierce. Optimum aerodynamic design using
the Navier-Stokes equations. Theoret. Corn-
put. Fluid Dynamics, 10:213-237, 1998.

[12] A. Jameson. Automatic design of transonic
airfoils to reduce the shock induced pressure
drag. In Proceedings of the 31st Israel Annual
Conference on Aviation and Aeronautics, Tel
Aviv, pages 5-17, February 1990.

[13] A. Jameson. Optimum aerodynamic design via
boundary control. In AGARD- VKI Lecture
Series, Optimum Design Methods in Aerody-
namics, von Karman Institute for Fluid Dy-
namics, 1994.

[14] J. Reuther, A. Jameson, J. J. Alonso, M. J.
Rimlinger, and D. Saunders. Constrained mul-
tipoint aerodynamic shape optimization using
an adjoint formulation and parallel computers.
AIAA paper 97-0103, 35th Aerospace Sciences
Meeting and Exhibit, Reno, Nevada, January
1997.

[15] J. Reuther, J. J. Alonso, J. C. Vassberg,
A. Jameson, and L. Martinelli. An efficient
multiblock method for aerodynamic analysis
and design on distributed memory systems.
AIAA paper 97-1893, June 1997.

19



Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

[16] O. Baysal and M. E. Eleshaky. Aerodynamic
design optimization using sensitivity analy-
sis and computational fluid dynamics. AIAA
Journal, 30(3):718-725, 1992.

[17] J.C. Huan and V. Modi. Optimum design for
drag minimizing bodies in incompressible flow.
Inverse Problems in Engineering, 1:1-25,1994.

[18] M. Desai and K. Ito. Optimal controls of
Navier-Stokes equations. SIAM J. Control and
Optimization, 32(5): 1428-1446, 1994.

[19] W. K. Anderson and V. Venkatakrishnan.
Aerodynamic design optimization on unstruc-
tured grids with a continuous adjoint formu-
lation. AIAA paper 97-0643, 35th Aerospace
Sciences Meeting and Exhibit, Reno, Nevada,
January 1997.

[20] J. Elliott and J. Peraire. 3-D aerodynamic op-
timization on unstructured meshes with vis-
cous effects. AIAA paper 97-1849, June 1997.

[21] A. Jameson. Optimum aerodynamic design us-
ing CFD and control theory. AIAA Paper 95-
1729-CP, 1995.

[22] A. Jameson. Optimum aerodynamic design us-
ing control theory. Computational Fluid Dy-
namics Review, pages 495-528, 1995.

[23] A. Jameson, W. Schmidt, and E. Turkel. Nu-
merical solutions of the Euler equations by fi-
nite volume methods with Runge-Kutta time
stepping schemes. AIAA paper 81-1259, Jan-
uary 1981.

[24] L. Martinelli and A. Jameson. Validation of
a multigrid method for the Reynolds averaged
equations. AIAA paper 88-0414, 1988.

[25] S. Tatsumi, L. Martinelli, and A. Jameson. A
new high resolution scheme for compressible
viscous flows with shocks. AIAA paper To Ap-
pear, AIAA 33nd Aerospace Sciences Meeting,
Reno, Nevada, January 1995.

[26] A. Jameson. Analysis and design of numeri-
cal schemes for gas dynamics 1, artificial diffu-
sion, upwind biasing, limiters and their effect
on multigrid convergence. Int. J. of Comp.
Fluid Dyn., 4:171-218, 1995.

[27] P.L. Roe. Approximate Riemann solvers, pa-
rameter vectors, and difference schemes. Jour-
nal of Computational Physics, 43:357-372,
1981.

[28] A. Jameson. Analysis and design of numerical
schemes for gas dynamics 2, artificial diffusion
and discrete shock structure. Int. J. of Comp.
Fluid Dyn., 5:1-38, 1995.

[29] L. Martinelli. Calculations of viscous flows
with a multigrid method. Princeton Univer-
sity Thesis, May 1987.

[30] A. Jameson. Multigrid algorithms for com-
pressible flow calculations. In W. Hackbusch
and U. Trottenberg, editors, Lecture Notes in
Mathematics, Vol. 1228, pages 166-201. Pro-
ceedings of the 2nd European Conference on
Multigrid Methods, Cologne, 1985, Springer-
Verlag, 1986.

[31] J. J. Reuther, A. Jameson, J. J. Alonso,
M. Rimlinger, and D. Saunders. Constrained
multipoint aerodynamic shape optimization
using an adjoint formulation and parallel com-
puters: Part i. Journal of Aircraft, 1998. Ac-
cepted for publication.

[32] J. J. Reuther, A. Jameson, J. J. Alonso,
M. Rimlinger, and D. Saunders. Constrained
multipoint aerodynamic shape optimization
using an adjoint formulation and parallel com-
puters: Part ii. Journal of Aircraft, 1998. Ac-
cepted for publication.

[33] J.P. Steinbrenner, J.R. Chawner, and C.L.
Fouts. The GRIDGEN 3D multiple block grid
generation system. Technical report, Flight
Dynamics Laboratory, Wright Research and
Development Center, Wright-Patterson Air
Force Base, Ohio, July 1990.

[34] J. Reuther and A. Jameson. Aerodynamic
shape optimization of wing and wing-body
configurations using control theory. AIAA pa-
per 95-0123, AIAA 33rd Aerospace Sciences
Meeting, Reno, Nevada, January 1995.

[35] J. Gallman, J. Reuther, N. Pfeiffer, W. For-
rest, and D. Bernstorf. Business jet wing de-
sign using aerodynamic shape optimization.
AIAA paper 96-0554, 34th Aerospace Sciences
Meeting and Exhibit, Reno, Nevada, January
1996.

[36] J. Reuther, J.J. Alonso, M.J. Rimlinger,
and A. Jameson. Aerodynamic shape op-
timization of supersonic aircraft configura-
tions via an adjoint formulation on paral-
lel computers. AIAA paper 96-4045, 6th
AIAA/NASA/ISSMO Symposium on Multi-
disciplinary Analysis and Optimization, Belle-
vue, WA, September 1996.

20



Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

Design Conditions Initial Single Point Design Three Point Design
Mach CL Relative CD Relative CD Relative CD
0.81
0.82
0.83

0.35
0.30
0.25

1.00257
1.00000
1.08731

0.85003
0.77350
0.81407

0.85413
0.77915
0.76836

Table 1: Drag Reduction for Single and Multipoint Designs.

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
MPX5X WING-BODY

REN = 101.00 , MACH=0.860 , CL = 0.610

SYMBOL SOURCE ALPHA CD
SYN107PDESION44 2.267 0.01496

Figure 2: Pressure distribution of the MPX5X before and after optimization.
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Figure 3: Off design performance of the MPX5X below the design point.

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
MPX5X WING-BODY
REN = 101.00 , CL = 0.610

SYMBOL SOURCE MACH ALPHA CD
SYN107P DESIGN 44 0.860 2J67 0.014%
SYN107P DESIGN 44 0.865 2201 0.01530

_._._._. SYN107PDESIGN44 0.870
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Figure 4: Off design performance of the MPX5X above the design point.
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_ _ Original Configuration

030 0.30 0,« OJO 0.60 0.70 0.10

5a: span station z = 0.190

Original Configuration

5b: span station z = 0.475

0.00 0.10 020 OJO 0.40 OM OM 0.70 0.10 0.90 !.«

*c

5c: span station z = 0.665

Figure 5: Business Jet Configuration. Multipoint Drag Minimization at Fixed Lift.
Design Point 1, M = 0.81, CL = 0.35
90 Hicks-Henne variables. Spar Constraints Active.
- - -, Initial Pressures
————, Pressures After 5 Design Cycles.

0.00 0.10 0.20 OJO 0.40 OJO 0.60 0.70 0.10 0.90 l.OC

X/C

5d: span station z = 0.856

23



Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

6a: span station z = 0.190

OJO 0.40 OJO 0.60 0.70 O.SO

6b: span station z = 0.475

0.00 0.10 0.10 OJO 0.40 0.50 0.60 O.TO OJO 0.90

6c: span station z — 0.665

0.10 0.20 OJO 0.40 O.SO 0.60 0.70 0.10 0.90 1.00

6d: span station z = 0.856

Figure 6: Business Jet Configuration. Multipoint Drag Minimization at Fixed Lift.
Design Point 2, M = 0.82, CL = 0.30
90 Hicks-Henne variables. Spar Constraints Active.
- - -, Initial Pressures
————, Pressures After 5 Design Cycles.
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OJO 0.60 0.70 O.KJ 0.90

_ . Original Configuration X

7a: span station z — 0.190

0.10 0.20 0.30 0.40 OJO 060 0.70 0.10 0.90 1.00

7b: span station z = 0.475

0.10 0.20 OX OM OJO 0.60 0.70 O.M 0.90 1.00

7c: span station z = 0.665

0.20 OM O.«0 0.50 0.60 0.70 0.10 0.90 1.00

7d: span station z = 0.856

Figure 7: Business Jet Configuration. Multipoint Drag Minimization at Fixed Lift.
Design Point 3, M = 0.83, CL = 0.25
90 Hicks-Henne variables. Spar Constraints Active.
- - -, Initial Pressures
————, Pressures After 5 Design Cycles.
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0.00 0.10 0.20 0.30 0.40

8a: span station z = 0.190

Single Point Deiign

0.00 0.10 0.20 OJO 0.40 OJO 0.60 0.70 O.W 0.90

8b: span station z = 0.475

0.10 0.20 0.30 0.40 OJO 0.60 0.70 OJO O.W

8c: span station z = 0.665

0.10 OJO O30 O.W OJO DM 0.70 O.tO O.W

8d: span station z = 0.856

Figure 8: Business Jet Configuration. Single Point vs. Multipoint Drag Minimization at Fixed Lift.
Design Point 1, M = 0.81, CL = 0.35
90 Hicks-Henne variables. Spar Constraints Active.
- - -, Single Point Design Pressures.
————, Multipoint Design Pressures.
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Single Point Dciign

0.00 0.10 0.10 0.50 O.«0 0.50 0.60 0.70 O.M 0.90

9a: span station z = 0.190

_ . Single Point Dciign

0.10 0.30 O.«0 OJO 0.60 0.70 0.10 0,90 1.00

9b: span station z = 0.475

0.00 0.10 OJO O.JO 0.40 OJO 0.60 0.70 0.10 0.90

9c: span station z — 0.665

0.00 0.10 0.10 O.JO 0.40 OJO 0.60 0.70 0.10

9d: span station z = 0.856

Figure 9: Business Jet Configuration. Single Point vs. Multipoint Drag Minimization at Fixed Lift.
Design Point 2, M = 0.82, CL = 0.30
90 Hicks-Henne variables. Spar Constraints Active.
- - -, Single Point Design Pressure.
————, Multipoint Design Pressures.
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0.00 0.10 0.20 OJO 0.60 0.70

10a: span station z — 0.190

0.00 0.10 0.20 OM 0.40 OJO 0,60 0.70 0.10 0.90 1.01

10b: span station z = 0.475

0.20 030 0.40 0.50 0.60 0.70 an 0.90

lOc: span station z = 0.665

0,00 0.10 0.20 0.30 0.40 030 040 0.70 O.U 0.90 1.00

10d: span station z = 0.856

Figure 10: Business Jet Configuration. Single Point vs. Multipoint Drag Minimization at Fixed Lift.
Design Point 3, M = 0.83, CL = 0.25
90 Hicks-Henne variables. Spar Constraints Active.
- - -, Single Point Design Pressures.
————, Multipoint Design Pressure.
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Optimized Design

Figure 11: Geometry Surface Colored by local Cp Before and After Redesign.
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Figure 12: Scalability Study for Multiblock Design Method.
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Baseline Optimized Raselina Optimized

Upper Surface Lower Surface

Figure 13: Supersonic Transport Configuration. lso-Cp Contours on Upper and Lower Surfaces. Baseline
and Optimized Designs. M = 2.2, CL = 0.105.
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i i

Original Configuration

Y stretch factor 2.0

0.00 0.10 0.20 O.JO O.«0 0.50 0.60 0.70 0.10 0.90 1.00

14a: span station z = 0.194

Original Coofigurttoo

Y stretch factor 2.0

14b: span station z = 0.387

Ori|iiul Confif ration

Y ttKtcb factor: 2.0

0.10 0.20 OJO 0.70 O.K 0.90 1,00

14c: span station z = 0.581

Original Coofiguntioa

Y itretch factor 2.0

0.20 030 0.40 0.50 0.60 0.70 O.tO 0.90

14d: span station z = 0.775

Figure 14: Supersonic Transport Configuration. Drag Minimization at Fixed Lift.
M = 2.20, CL = 0.105
144 Hicks-Henne variables. Spar Constraints Active.
- - -, Initial Pressures
————, Pressures After 5 Design Cycles.
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