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This paper reports development of a two-dimensional solver for compressible viscous flow using spectral
difference (SD) method and its applications on simulating laminar flow past two side-by-side cylinders at
various spacings. The high-order spectral difference solver is based on unstructured quadrilateral grids.
High-order curved wall boundary representation is developed for cylinders. Nine different spacings (cen-
ter-to-center distance/diameter s = 1.1, 1.4, 1.5, 1.7, 2, 2.5, 3, 3.4 and 4) are investigated. The simulation
results are compared to experimental results and other numerical results. As s increases, single bluff-
body, flip-flopping, anti-symmetric and symmetric wake patterns are predicted.
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1. Introduction

1.1. Flow past two side-by-side cylinders

Investigations of the fluid flow and vortex dynamics about sim-
ple configurations of two cylinders help our understanding of the
flows around more complex and larger-scale structures, for in-
stance the flow around tube banks employed in process industries
[14] and especially in the power generation and oil industry as well
as flow around neighboring buildings and river flow vegetation,
etc. Other applications are also related to two cylinders such as
hollow fiber arrays with many applications in absorption, extrac-
tion and ultra-filtration [12] or paper machine forming fabrics
[9]. In the latter examples, the flows are laminar with Reynolds
number in the range of 150–200.

Zdravkovich [34,35] has reviewed the problem of mutual inter-
ference between pairs of cylinders in a steady flow. Much attention
was paid to the side-by-side and inline arrangements of the cylin-
der pair. Williamson [31] suggested that a spacing between two
side-by-side cylinders with the ratio of distance between cylinder
centers to the diameter (s) in the range of 2–6 produces vortex-
shedding synchronization. The resulting wake configuration will
be either two parallel streets in antiphase mode or a binary-vortex
street mode which consists of a street being composed of pairs of
like-signed vortices rotating around one another with Reynolds
number in the range of 100–200. Experimental results were also
obtained by Zhou et al. [36] at relatively low Reynolds numbers
(150–450). They suggested that the flow pattern is very much
Ltd.
independent of Reynolds number of this range. At s = 3, they ob-
served the anti-phase flow patterns for all Reynolds numbers using
more advanced flow visualization methods. Chang and Song [3]
made an early investigation of laminar flow past two side-by-side
cylinders using a blending technique of finite-element method and
finite-difference method. Recently, numerical simulations have
been performed for incompressible laminar flow past two side-
by-side cylinders by various methods. For instance, Meneghini
et al. [18] used a finite-element unstructured method, Kang [10]
and Lee et al. [11] employed a finite-volume structured method
with immersed boundary technique and Ding et al. [7] developed
a mesh-free finite-difference method and studied this particular
configuration.

The above studies mentioned are all about incompressible
flows. The simulation codes commonly attained at best second-or-
der accuracy in space. Furthermore, all the above discussed numer-
ical simulations employed only piecewise linear wall boundary
conditions or some kind of interpolation schemes to satisfy no-slip
condition for immersed boundary method. The present simulation
uses a recently developed Spectral Difference high-order unstruc-
tured method to simulate a low-Mach number compressible lami-
nar flow past two side-by-side cylinders. A cubic spline curve
fitting routine is programmed into our solver and it allows an auto-
matic construction of a cubic curved wall boundary condition for
each cylinder.

1.2. Spectral difference method

Until recently, compressible flow computations on unstruc-
tured meshes have generally been dominated by schemes re-
stricted to second order accuracy. However, the need for highly
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Fig. 1. Distribution of flux and solution points for the third order SD scheme.
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accurate methods in applications such as large eddy simulation, di-
rect numerical simulation, computational aero-acoustics etc., has
seen the development of higher order schemes for unstructured
meshes such as the discontinuous Galerkin (DG) method [4,5,1],
spectral volume (SV) method [29,17,30] and spectral difference
(SD) method [16,28,13]. The SD method is a newly developed effi-
cient high-order approach based on differential form of the govern-
ing equation. It was originally proposed by Liu et al. [16] and
developed for wave equations in their paper on triangular grids.
Wang et al. [28] extended it to 2D Euler equations on triangular
grids and Liang et al. [13] improved the convergence of the method
using implicit LU-SGS and p-multigrid schemes. Recently, Sun et al.
[27] further developed it for three-dimensional Navier–Stokes
equations on hexahedral unstructured meshes. Mohammad et al.
[21] investigated flow past a circular cylinder at subcritical Rey-
nolds number using the SD method. The SD method combines ele-
ments from finite-volume and finite-difference techniques. Similar
to the discontinuous Galerkin (DG) and spectral volume (SV) meth-
ods, the SD scheme achieves high-order accuracy by locally
approximating the solutions as a high degree polynomial inside
each cell. However, being based on the differential form of the
equations, its formulation is simpler than that of the DG and SV
methods as no test function or surface integral is involved. Conser-
vation properties are still maintained by a judicious placement of
the nodes at quadrature points of the chosen simplex.

This paper presents development of a new in-house two-
dimensional high-order SD code for viscous compressible flow.
The formulations are similar to the ones used by Sun et al. [27].
Previous numerical studies on two side-by-side cylinders have
not concluded the effect of tube spacings on flow separation points,
wake flow pattern and force coefficients. The SD method is em-
ployed in this paper to study the unsteady laminar flow past a pair
of side-by-side cylinders with nine different spacings (center-to-
center distance/diameter s = 1.1, 1.4, 1.5, 1.7, 2, 2.5, 3, 3.4 and 4).
We aim to see the effect of the spacings on flow pattern, separation
points and flow exerted forces.

The paper is organized as follows. Section 2 describes the
numerical approach and solution methods. In order to validate
the spatial accuracy of the code, Section 3 presents two cases with
analytical solutions and simulation results obtained by the SD
method in addition to a simulation of flow past an isolated cylinder
with detailed comparisons to other results. Section 4 reports the
simulation results obtained for laminar viscous flows past two
side-by-side cylinders. Finally, Section 5 summarizes the main
findings of this work.
2. Numerical formulation

The formulation of the equations is similar to the formulation of
Sun et al. [27] for unstructured hexahedral grids.

Consider the unsteady compressible 2D Navier–Stokes equa-
tions in conservative form

@Q
@t
þ @F
@x
þ @G
@y
¼ 0 ð1Þ

where Q is the vector of conserved variables; F and G are the total
fluxes including both inviscid and viscous flux vectors. To achieve
an efficient implementation, all elements in the physical domain
ðx; yÞ are transformed into a standard square element
(0 6 n 6 1;0 6 g 6 1) as shown in Fig. 1. The transformation can
be written as

x

y

� �
¼
XK

i¼1

Miðn;gÞ
xi

yi

� �
ð2Þ
where K is the total number of points used to define the physical
element, ðxi; yiÞ are the cartesian coordinates of those points, and
Miðn;gÞ are the shape functions. For elements with straight edges,
K is equal to 4. For elements lying on curved boundaries, 8 points
(four mid-edge and four corner points) can define a quadratic rep-
resentation and 12 points can determine a third-order cubic repre-
sentation. The metrics and the Jacobian of the transformation can
be computed for each element. The Jacobian can be expressed as
follows:

J ¼
xn xg

yn yg

 !
ð3Þ

The governing equations in the physical domain are then trans-
ferred into the computational domain, and the transformed equa-
tions take the following form:

@ ~Q
@t
þ @

~F
@n
þ @

~G
@g
¼ 0 ð4Þ

where ~Q ¼ jJj � Q and

~F
~G

 !
¼ jJjJ�1 F

G

� �
ð5Þ

In the standard element, two sets of points are defined, namely the
solution points and the flux points as illustrated in Fig. 1.

In order to construct a degree (N � 1) polynomial in each coor-
dinate direction, solutions at N points are required. The solution
points in 1D are chosen to be the Gauss points defined by

Xs ¼
1
2

1� cos
2s� 1

2N
� p

� �� �
; s ¼ 1;2; . . . ;N ð6Þ

The flux points are selected to be the Gauss–Lobatto points given
by

Xsþ1=2 ¼
1
2

1� cos
s
N
� p

� �h i
; s ¼ 0;1; . . . ;N ð7Þ

Using the solutions at N solution points, a degree (N � 1) polyno-
mial can be built using the following Lagrange basis:

hiðXÞ ¼
YN

s¼0;s–i

X � Xs

Xi � Xs

� �
ð8Þ

Similarly, using the fluxes at (N þ 1) flux points, a degree N polyno-
mial can be built for the flux using a similar Lagrange basis

liþ1=2ðXÞ ¼
YN

s¼0;s–i

X � Xsþ1=2

Xiþ1=2 � Xsþ1=2

� �
ð9Þ
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The reconstructed solution for the conserved variables in the stan-
dard element is just the tensor products of the two one-dimensional
polynomials,

~Qðn;gÞ ¼
XN

j¼1

XN

i¼1

~Q i;jhiðnÞ � hjðgÞ ð10Þ

Similarly, the reconstructed flux polynomials take the following
form:

~Fðn;gÞ ¼
XN

j¼1

XN

i¼0

~Fiþ1=2;jliþ1=2ðnÞ � hjðgÞ;

~Gðn;gÞ ¼
XN

j¼0

XN

i¼1

~Gi;jþ1=2hiðnÞ � ljþ1=2ðgÞ ð11Þ

The reconstructed fluxes are only element-wise continuous, but dis-
continuous across cell interfaces. For the inviscid flux, a Riemann
solver is employed to compute a common flux at interfaces to en-
sure conservation and stability. In our case, we have used the Rie-
mann problem solver (Rusanov [24] or Roe [23] with entropy
fixing approach like Harten and Hyman [8]) to compute the inter-
face fluxes.

In summary, the algorithm to compute the inviscid flux deriva-
tives consists of the following steps:

(1) Given the conservative variables at the solution points, the
conservative variables are computed at the flux points

(2) The inviscid fluxes at the interior flux points are computed
using the solutions computed at Step (1)

(3) The inviscid fluxes at the element interfaces are computed
using the Rusanov/Roe solver. Given the normal direction
of the interface n, and the averaged normal velocity compo-
nent Vn and the sound speed c, the inviscid flux on the inter-
face can be determined.

(4) The derivatives of the fluxes are computed at the solution
points using the derivatives of Lagrange operators l
 !

@~F
@n

i;j

¼
XN

r¼0

~Frþ1=2;j � l0rþ1=2ðniÞ;

@~G
@g

 !
i;j

¼
XN

r¼0

~Gi;rþ1=2 � l0rþ1=2ðgjÞ
ð12Þ
We write inviscid and viscous fluxes separately for Eq. (1) as

@Q
@t
þrFeðQÞ � rFvðQ ;rQÞ ¼ 0 ð13Þ
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Fig. 2. Supersonic vortex flow ob
where the conservative variables Q and Cartesian components feðQÞ
and geðQÞ of the inviscid flux vector FeðQÞ are given by

Q ¼

q
qu

qv
E

8>>><
>>>:

9>>>=
>>>;
; f eðQÞ ¼

qu

qu2 þ p

quv
uðEþ pÞ

8>>><
>>>:

9>>>=
>>>;
; geðQÞ ¼

qv
quv

qv2 þ p

vðEþ pÞ

8>>><
>>>:

9>>>=
>>>;
ð14Þ

Here q is the density, u and v are the velocity components in x and y
directions, p stands for pressure and E is the total energy. The pres-
sure is related to the total energy by

E ¼ p
c� 1

þ 1
2
qðu2 þ v2Þ ð15Þ

with a constant ratio of specific heat c. For all test cases in the pres-
ent study, c is going to be 1.4 for air.

The Cartesian components fvðQ ;rQÞ and gv ðQ ;rQÞ of viscous
flux vector FvðQ ;rQÞ are given by

fvðQ ;rQÞ ¼ l

0
2ux þ kðux þ vyÞ

vx þ uy

u½2ux þ kðux þ vyÞ� þ vðvx þ uyÞ þ Cp

Pr
Tx

8>>>><
>>>>:

9>>>>=
>>>>;
;

gvðQ ;rQÞ ¼ l

0
vx þ uy

2vy þ kðux þ vyÞ
v ½2vy þ kðux þ vyÞ� þ uðvx þ uyÞ þ Cp

Pr
Ty

8>>>><
>>>>:

9>>>>=
>>>>;

ð16Þ

where l is the dynamic viscosity, Cp is the specific heat and Pr

stands for Prandtl number. T is temperature which can be derived
from the perfect gas assumption. k is set to �2/3 according to the
Stokes hypothesis.

The solution procedures to get viscous fluxes can be described
as the following steps.

� Reconstruct Qf at the flux points from the conservative variables
at the solution points using Eq. (10).

� Average the field of Qf on the element interfaces as
Qf ¼ 1

2 ðQ
L
f þ QR

f Þ. For interior flux points, Q f ¼ Qf . Meanwhile,
appropriate boundary conditions shall be applied for specific
edge flux points.

� Evaluate rQ from Q f using Eq. (12) where rQ ¼ Q x

Qy

� 	
and

Qx ¼ @Q
@n nx þ @Q

@g gx, etc.
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Table 1
L2 errors and orders of accuracy of inviscid supersonic vortex flow.

No. of elements No. of DOFs L2-error Order

2nd order SD
40 160 4.7249E�03 –
90 360 1.9881E�03 2.135
360 1440 4.4721E�04 2.152
1440 5760 1.0196E�04 2.133

3rd order SD
40 360 3.3393E�04 –
90 810 9.8833E�05 3.003
360 3240 1.2242E�05 3.013
1440 12960 1.5230E�06 3.007

4th order SD
40 640 1.9238E�05 –
90 1440 3.7883E�06 4.008
360 5760 2.3651E�07 4.002
1440 23040 1.4743E�08 4.004
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� ReconstructrQ , from Eq. (10) and applying appropriate bound-
ary conditions for specific flux points and average them on the
element interfaces as rQ f ¼ 1

2 ðrQL
f þrQ R

f Þ.
� Use Q f and rQ f in order to compute viscous flux vectors

described in Eq. (16) at the element interfaces.

Flows with either steady or unsteady solutions are considered
in this paper. In order to solve the flow to a steady state from a
nearly arbitrary initial guess, a relaxation scheme is needed. There-
Fig. 3. Mach contour obtained by different order SD me
fore, the time derivative term is retained for both steady and un-
steady cases.

All computations in this paper are advanced in time using a
fourth-order strong-stability-preserving five-stage Runge–Kutta
scheme. It is written in the form of Eq. (17).

Q ð0Þ ¼ Qn;

Q ðiÞ ¼
Xi�1

k¼0

½ai;kQ k þ Dtbi;kRðQ kÞ�; i ¼ 1;2; . . . ; s;

Q ðnþ1Þ ¼ Q s ð17Þ

where s ¼ 5 for a five stage Runge–Kutta scheme. The coefficients
aik and bik are taken from the table of SSPRK(5,4) in Spiteri and
Ruuth [26]. The suitability of this Runge–Kutta scheme for future
study of unsteady turbulent flow using LES or DNS is not investi-
gated here as this paper focuses on low Reynolds number laminar
flow. Interested readers can refer to Debonis and Scott [6] and Ra-
gab and El-Okda [22] for their Large Eddy Simulation investigations
with an explicit five-stage fourth-order Runge–Kutta scheme.
3. Accuracy validation

In the following, an inviscid flow case with analytical solution is
chosen to demonstrate the order of accuracy. An inviscid flow past
a circle case is used to illustrate the effects of grid-refinement and
increment of polynomial order. A viscous flow case with analytical
solution is also selected in order to demonstrate the order of accu-
thods on cubic wall boundaries using grid 16� 16.



Fig. 4. Mach number contour predicted by the 4th order SD with linear or cubic wall boundaries using grid 32� 32.
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racy of the implemented SD method for both inviscid and viscous
fluxes. It is followed by the classical test case of laminar flow past
an isolated cylinder at Re = 100.

3.1. Validation using supersonic vortex flow

The supersonic vortex flow problem is one of the few non-trivial
problems of the compressible 2D Euler equations for which a
smooth analytical solution is known. The inviscid, isentropic,
supersonic flow of a compressible fluid between concentric circular
arcs presents a flow where the velocity varies inversely with ra-
dius. The expression for density as a function of radius r is given by

qðrÞ ¼ qi 1þ c� 1
2

M2
i 1� ri

r

� �2
� �� 	 1

c�1

ð18Þ

where Mi and ri are the Mach number and the radius at the inner
arc. In the present calculation, the Mach number, density and pres-
sure at the inner radius ri are specified to be 2.25, 1 and 1=c respec-
tively. The inner and outer radii are 1 and 1.384. The outer arc and
bottom boundaries are fixed with analytical solutions. The zero-gra-
dient extrapolation boundary is employed for the exit. In the fol-
lowing, the numerical solution to this problem are computed for
Fig. 5. Grid 24� 2 for Taylor-Couette Flow.
the 2nd, 3rd and 4th order SD method on successively refined grids.
All the computations are initialized using constant density and
pressure. The L2 error of the density is evaluated.

The four meshes used in the computation were of sizes 10� 4,
15� 6, 30� 12, and 60� 24. A sample 15� 6 mesh is shown in
Fig. 2a. Fig. 2b shows the pressure contours in the flow field ob-
tained by the 3rd order SD method. The details of the order calcu-
lation and verification are shown in Table 1. The results obtained in
the table clearly indicate that the SD method applied to the steady
compressible Euler equations exhibits a full order of convergence
on smooth solutions. It provides the details of the spatial accuracy
of the SD method for different orders for this numerical experi-
ment. One can also see the L2-error of the SD method at different
order against the number of degrees of freedom. One can also
clearly see that a higher order SD method requires a less number
of degrees of freedom than a lower order SD method in order to
achieve the same accuracy.

3.2. Inviscid flow past a circle

Fig. 3a shows a grid with only 16 cells around the periphery of a
circle. The inviscid Euler equations are solved using the SD method.
The Dirichlet boundary condition is used for the outer circle. For
the near wall cells, we can have both 8-point quadratic representa-
tion and 12-point cubic representation as aforementioned. Varying
the polynomial order N and using the cubic representation for the
wall boundary, we can show that the predicted results are improv-
ing gradually on the mesh with 16� 16 cells as the order increases.
Fig. 3b–d show the Mach number contour obtained by the 3rd-or-
der, 4th-order and fifth-order SD methods respectively.

For high-order numerical schemes, inviscid flow past a circle re-
quires a good curved wall representation for high-order schemes
as already discussed by Bassi and Rebay [1]. In order to demon-
Table 2
L2 errors and orders of accuracy of viscous Taylor-Couette flow.

No. of elements No. of DOFs L2-error Order

3rd order SD
48 432 8.896e-4 –
192 1728 1.002e-4 3.15
768 6912 1.084e-5 3.21

4th order SD
48 768 1.482e-4 –
192 3072 1.004e-5 3.88
768 12288 6.575e-7 3.93



Fig. 6. Computational grid for unsteady flow past a cylinder.
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strate its effect, we use another computational grid with 32� 32
cells. As shown in Fig. 4a, the linear wall representation deterio-
rates the results predicted by the 4th-order SD method on the finer
mesh. The results are even less accurate than the ones obtained by
the 3th-order SD method on a computational grid with 16� 16
with a cubic wall boundary shown in Fig. 3b. Nevertheless, the
symmetrical Mach number contour is predicted correctly by the
4th-order SD method when a cubic wall representation is used as
shown in Fig. 4b.

3.3. Validation using compressible Taylor-Couette flow

The numerical order of accuracy is validated using compressible
Taylor-Couette flow with analytical solution. This test problem was
taken from a recent paper presented by Michalak and Ollivier-
Gooch [19]. The Reynolds number is 10 based on inner cylinder
spinning tangential velocity and its radius (=1). The temperature
and pressure are prescribed for the inner cylinder which determine
a Mach number equal to 0.5. An adiabatic wall boundary condition
is employed for the stationary outer cylinder. A grid with 24� 2
cells is shown in Fig. 5. Two other finer grids are obtained using
Table 3
Comparison of present results against other results for flow over a cylinder at
Reynolds number 100.

Investigator Present Sharman 05 Mene-01 Kang [10] Ding 07

Re no. 100 100 100 100 100
Nodes 33400 14,441 13,696 62,127 23,033
Blockage 0.0312 0.02 0.047 – –
C0l 0.232 0.23 – 0.32 0.287
Cd 1.365 1.33 1.37 1.33 1.356
C0d 0.0086 0.0064 – – 0.01
St. no. 0.164 0.164 0.165 0.165 0.166

Fig. 7. Computational grid for flow past
successive grid refinements in both directions. A cubic curved wall
boundary is programmed for both inner and outer cylinders. We
obtained desired numerical order L2 accuracy as shown in Table
2. The maximum accuracy of fourth-order is demonstrated for y
velocity in the table. The explicit Runge–Kutta scheme becomes
slow when the polynomial order is increased. However, the fifth-
order and even higher accuracy can also be demonstrated using
the implicit LU-SGS method and p-multigrid approach with a sig-
nificantly shorter CPU time [13].
two side-by-side cylinders at s = 3.

360
180

Fig. 8. Degree definition of a cylinder for skin friction coefficient.
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Having validated the order of spatial accuracy using test prob-
lems with steady flow solutions, we will look at the simulation
of the unsteady flow past an isolated cylinder at Re = 100 with
comparison between our results and other published results.

3.4. Viscous flow past one cylinder

Fig. 6 shows the computational grid for the unsteady flow past a
single cylinder. There are 32 cells around the circumference of the
cylinder. The first cell next to the cylinder wall has a spacing
around 11% cylinder radius in the normal direction. The level of
grid resolution is much coarser than the one used in Maeneghini
et al. [18] who employed 128 points around the cylinder wall
and the first node had a distance about 1% of cylinder radius for
an isolated cylinder case. The computation for this case is per-
formed using the fifth-order SD method and a cubic curved wall
Fig. 9. Streamlines for s = 1.1 and Re = 100.

Fig. 10. Time history of lift coefficients for Re = 100 and s = 1.1.
boundary condition is employed for the cylinder surface. Dirichlet
boundary condition is used for the inlet and fixed-pressure is
adopted for the outlet boundary condition. Inviscid symmetry
boundary conditions are applied on the two lateral sides. The ini-
tial condition is provided according to the free-stream condition
as u ¼ u1;v ¼ 0; p ¼ p1 and q ¼ q1.

The SD method offers a flexibility in adjusting the number of de-
grees of freedom for different grid resolution. We only need to vary
one parameter in our solver for the polynomial degree N. The dif-
ference of the fluctuating lift coefficient C0l predicted by the 4th-or-
der (total DOFs 21,376) and the fifth-order SD methods (total DOFs
33,400) and the difference of coefficient C0d are all less than 2%. In
the following for an isolated cylinder case, we only present the re-
sults obtained by the fifth-order SD method.

Table 3 reports the comparison between present computation
of compressible viscous flow at Mach number 0.2 to other numer-
ical and experimental studies for incompressible viscous flow at
the same Reynolds number 100. The Strouhal number predicted
by the SD method on a mesh with degree-of-freedom 33,400 is
identical to the one predicted by Sharman et al. [25] and the mea-
sured value by Williamson [32]. There is a separate compressible
flow simulation which is not included in the table. Mittal and Tez-
duyar [20] also predicted 0.164 using a finite-element compress-
ible flow solver at Re = 100 and Mach number 0.2. The SD
method predicted C0l is identical to the one predicted by the
Fig. 11. Velocity streamlines for s = 1.4 and Re = 100.

Fig. 12. Streamlines for s = 1.5 and Re = 100.



Fig. 13. Streamlines for s = 1.7 and Re = 100.
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incompressible solver of Sharman et al. [25]. Kang [10] and Ding
et al. [7] predicted higher C0l probably due to insufficient near wall
grid resolution and lower-order spatial piecewise schemes which
are unable to resolve the wall curvature. The mean and rms drag
coefficients are slightly higher than the ones predicted by Sharman
et al. [25]. However, the presently predicted Cd ¼ 1:365 is close to
1.37 predicted by Meneghini et al. [18] and 1.356 predicted by
Ding et al. [7]. The low compressibility of the present flow condi-
tion may also slightly affect mean drag coefficient but its impact
is very small. Mittal and Tezduyar [20] also predicted the mean
Cd around the level of 1.4 as can be seen from Fig. 7 in their paper
for Mach 0.2 and Re = 100. Overall, this validation proves that the
SD method predicts the correct physics for flow past a cylinder.
4. Flow past two side-by-side cylinders

4.1. Computational condition

In the following, we report simulations of flow past two side-
by-side cylinders using either the third-order or 4th-order accurate
SD methods. Iso-thermal wall boundary condition is employed for
temperature field. Dirichlet boundary condition is applied for the
left inlet boundary. The top and bottom boundaries again use sym-
metrical slip condition like the standard inviscid wall boundary
condition Liang et al. [15]. For the right boundary, fixed pressure
Fig. 14. Streamlines and vorticity for s = 2 when
is specified and other values are extrapolated. If not stated other-
wise, the normalized time step size DtU1

D is 8� 10�4 for all compu-
tations using the 3rd order SD method and 4� 10�4 for all
computations using the 4th order SD method.

Simulations have been carried out with two cylinders in a side-
by-side arrangement for gaps/diameter in the range 1:1 6 s 6 4.
The point with coordinate (0, 0) is located at the middle distance
between the cylinders. The free-stream Mach number is 0.1 (for
s = 1.1, 1.4, 1.5 and 1.7) or 0.2 (for s = 2, 2.5, 3, 3.4 and 4) and Rey-
nolds number is 100. As shown in Fig. 7, The inflow boundary is lo-
cated at 16d in front of the cylinders. The outflow boundary is
located at 32d behind the cylinders. The distance between the
top and bottom boundaries is chosen as 32d. The typical computa-
tional grid for s = 3 case has 5106 cells (total DOFs are 45,954 and
81,696 for the 3rd-order and 4th-order SD methods respectively).
Only 60 cells are used around the periphery of a cylinder surface
but this number is already nearly double of the one used for the
isolated cylinder testing case. The first cell near the cylinder wall
is located at a distance of about 2.8% of the cylinder radius. How-
ever, considering the third-order SD method and a cubic curved
boundary condition applied for the wall, the present simulation
has a finer resolution than Meneghini et al. [18] who employed
128 points around the cylinder wall and the first node had a dis-
tance about 1% of cylinder radius. The present near wall grid reso-
lution is also finer than the one used by Kang [10] with the
immersed boundary method.

4.2. Results for Re = 100

In order to facilitate the discussion of flow separation points ob-
tained from viscous skin friction coefficients, we define angular de-
grees in clockwise direction of a cylinder as illustrated in the Fig. 8.

At s ¼ 1:1, there is no vortex generated in the gap between the
two cylinders and vortices are generally shed alternately from the
free-stream sides of the cylinders, thus generating a single vortex
street as shown in Fig. 9. This time instant corresponds to point
a, which is shown in Fig. 10. At this time instant, the lift coefficients
are close to the minimum for both cylinders. For the upper cylin-
der, Cl ¼ 0:86 and Cd = 2.07. The front stagnation point of the upper
cylinder is at 329.5�. There is only one separation point at 133.2�
and a small recirculation bubble is formed after the separation
point and before the reattachment point at 141.3�. A saddle point
at 243� is formed by fluid from both sides of the cylinder. The front
stagnation point of the lower cylinder is at 40.8�. The fluid in the
gap flows downwards and the fluid does not separate until the
rear-cylinder saddle point at 248�.

As s increases, the flow regime is switched to asymmetric flow
regime due to the deflected gap flow. Narrow and wide wakes are
divided by the biased gap flow. As shown in Fig. 11 for s ¼ 1:4,
the gap flow upward or downward biased.



Fig. 17. Transition from anti-phase regime to in-phase regime for flow past two
cylinders s = 3 and Re = 100.

Fig. 15. Force coefficients at the time instant when the gap flow is deflected downwards for s = 2.
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there are individual vortices shedding behind respective cylinders
and their sizes are at times comparable to the cylinder diameter. At
this time instant, both upper and lower cylinders have two separa-
tion points and only one reattachment point. The front stagnation
point of the upper cylinder is at 342� which is nearly symmetrical
to the front stagnation point of the lower cylinder at 18.3�. Two
separation points of the upper cylinder are located at 107.4� and
232�. The recirculation zone reattaches to the back of cylinder at
164.8�. The horizontal length of the separation bubble formed at
232� is about two cylinder diameters. There is no noticeable recir-
culation bubble near the cylinder which is associated with the sep-
aration point at 107.4�. However, the separation point contributes
to a recirculation bubble at x ¼ 5d, which again has the size com-
parable to cylinder diameter. For the lower cylinder, the gap region
fluid flow separates at 107.2� to form a small recirculation bubble
as the flow reattaches at 178�. The bottom free-stream flow sepa-
rates at 230.7� to form a recirculation bubble which is slightly big-
ger than the cylinder. The stream of fluid recirculates backward
and joins the top side fluid flow and finally reattaches at the same
location of 178�.

A little increase of cylinder spacing results in a reasonable
change of wake pattern. We choose a time instant for s = 1.5, at
which the bottom cylinder has a quite similar wake pattern as
the one for s = 1.4. However, as shown in Fig. 12, the vortex street
of the top cylinder travels in a quite different path from the one
for s = 1.4. The stagnation point of the upper cylinder is located
at 343.5�. Both cylinders have two separation points and two
Fig. 16. Transition from anti-phase regime to in-phase regime for flow past two
cylinders s = 2.5 and Re = 100.
counter-recirculating bubble zones which are produced by the
two separation points and a recirculation point. The upper
Fig. 18. Definition of four-phase snapshots for an in-phase vortex shedding flow
period of flow past two cylinders with s = 2.5 and Re = 100.
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cylinder top separation point is located at 108� and bottom sepa-
ration point is located at 230.7�. The recirculation bubbles of the
upper cylinder reattach at 171.9� which is smaller than its coun-
terpart when s = 1.4. The gap flow contributes to a clockwise recir-
Fig. 19. Streamlines and
culation zone at x ¼ 4:5d and counter-clockwise recirculation zone
at x ¼ 6d.

The gap flow is deflected downwards at the time instant shown
in Fig. 13 for s = 1.7. The upper cylinder has a front stagnation point
vorticity for s = 2.5.
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at 346.8� from freestream flow. Separation points are located at
234.8� and 109�. The reattachment point is at 193.7�. For the lower
cylinder, the front stagnation point is located at 15.2�. The free-
stream flow and gap flow separates at 250.3� and 129.8� respec-
tively. Similar to the upper cylinder, the reattachment point of
the lower cylinder is again greater than 180� and is located at
211.6�. However, as a result of the gap flow deflection, the lift coef-
ficients for upper and lower cylinders have different signs with
Cupper

l ¼ 0:39226 and Clower
l ¼ �0:17664 respectively. The instanta-

neous drag coefficients are Cupper
d ¼ 1:44921 and Clower

d ¼ 1:56845
for the upper and lower cylinders respectively.

When s ¼ 2, it is known that the near wake of the cylinder pair
is asymmetric and the gap flow also becomes biased [3]. Fig. 14a
and b shows the downward biased gap flow streamline and vortic-
ity field respectively. The flow pattern has similarity with the ones
at s = 1.4, 1.5 and 1.7. At the time instant shown for Fig. 14 when
the gap flow is deflected downwards, the lower cylinder has a big-
ger Cd and higher shedding frequency than the upper one since the
lower cylinder is relatively in suction pressure (see Fig. 15). This is
in a good agreement with the experimental observation of Bear-
mann and Wadcock [2]. The lift coefficient shown in Fig. 15 also
indicates that the higher-drag cylinder has a higher shedding fre-
quency. Two Strouhal numbers 0.175 and 0.225 are identified
Fig. 20. Instantaneous Mach number contour computed for flow past two cylinders
s = 3 and Re = 100.

Fig. 21. Instantaneous vorticity contour computed for flow past two cylinders s = 3
and Re = 100.
through Fourier transformation. The former one is close to the
one predicted by Kang [10].

Figs. 16 and 17 demonstrate the transition of vortex shedding
wake pattern from symmetric anti-phase regime to anti-symmet-
ric in-phase regime at Reynolds number 100. The cylinder spacings
are s = 2.5 and s = 3 respectively. Initially, the lift coefficients for
two cylinders are in antiphase mode (of 180� phase difference).
In an interval of around 16 vortex shedding periods, the difference
gradually reduces and converges to in-phase mode (0� phase dif-
ference). Chang and Song [3] also observed from the time history
of Cl that the vortex drifts with time from the anti-phase regime
to in-phase regime. During the in-phase regime, the top separation
point angle of the upper cylinder h1

upper is located at an identical de-
gree to the one of the lower cylinder h1

lower .
Fig. 18 defines four-phase snapshots for an in-phase vortex

shedding period for s = 2.5 and Re = 100 case using the time history
of Cl. Fig. 19 visualizes the streamlines and vorticity contour for
four different phases defined in Fig. 18. At phase a, the fluid which
flows from the bottom side of the cylinders forms a pair of vortices
with identical size as seen in the streamlines. At this time instant,
both cylinders are having negative lift force. Further downstream
Fig. 22. Instantaneous streamlines computed for flow past two cylinders s = 3 and
Re = 100.

Fig. 23. Definition of three-phase snapshots for an anti-phase vortex shedding flow
period of flow past two cylinders with s = 3.4 and Re = 100.
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when x P 5, vortices from upper and bottom merge across the cen-
terline to form an elongated single vortex and simultaneously two
Fig. 24. Streamlines and

Fig. 25. Streamlines and
vortex streets merge to a single wide vortex street. Similarly, at
phase b, the fluid which flows from the top side of cylinders start
vorticity for s = 3.4.

vorticity for s = 4.



Fig. 26. Force coefficients for the case of Re = 150 and s = 3.
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to form vortices in proximity of the top corners of the cylinder pair.
These vortices grow in size and result in top-side low pressure re-
gions leading to two positive lift force coefficients for two cylinders
at the time instant of phase c. As the two big vortices convect away,
Cl decreases as shown for phase d. A dramatic feature of these
phases is that upper and lower cylinders are having nearly identi-
cal flow structures in their near wakes at any time instant. At this
spacing, vortex shedding patterns from two cylinders are strongly
synchronized to form an exactly anti-symmetrical wake pattern.

Fig. 20 shows the Mach number distribution of the asymmetric
in-phase vortex shedding at Re = 100 and s = 3. The high-Mach re-
gion (0 6 x 6 4d) in the gap starts to fluctuate in the transverse
direction. In the further downstream along the center line, there
is a continuous low-Mach number distribution. Fig. 21 shows the
vorticity distribution of the asymmetric in-phase vortex shedding
at Re = 100 and s = 3. In between x = 6d and x = 13d, there is no
longer symmetric pairs of opposite-sign vortices as they are
merged into an elongated single vortices in the transverse direc-
tion. Further downstream (x 6 13), the central line region is asso-
ciated with a low-magnitude vorticity. Fig. 22 presents the
streamlines of the antisymmetric in-phase vortex shedding at
Re = 100 and s = 3. The vortex rows merge through a combination
of vortices of the same sign with a fluctuating middle stream line,
as Williamson [31] has shown using flow visualization methods. In
Fig. 27. Instantaneous streamlines for flow past side-by-side cylinders at Re = 150
and s = 3.
the downstream region, the merged vortex rows form a single vor-
tex street as already observed in the vorticity contour plot in
Fig. 21.

Wake patterns of the upper and lower cylinders have a phase
difference of 180� for the case of s = 3.4 and Re = 100. It is evident
from the lift coefficients as shown in the Fig. 23. Phase b corre-
sponds to a time instant at which the Cl is minimum and maximum
for the lower and upper cylinders respectively. The summation of
the top separation point angle of the upper cylinder h1

upper and the
bottom separation point angle of the lower cylinder h3

lower is 360�,
i.e. h1

upper þ h3
lower ¼ 360�. Fig. 24 visualizes the streamlines and vor-

ticity contour for three different phases defined in Fig. 23. The anti-
phase vortex shedding pattern is very stable and maintains a long
time period as the upper cylinder wake does not seem to interact
with the one of the lower cylinder.

Despite the difference predicted for the transitional regime at
s = 3 by different numerical methods in published literatures, pre-
vious numerical studies agree that s = 4 has a symmetric anti-
phase synchronized vortex shedding pattern [3,18,10,7]. The SD
method also predicts a very stable symmetric vortex shedding as
shown in Fig. 25. The wake patterns of streamlines and vorticity
are very similar to those obtained for s ¼ 3:4.

4.3. Reynolds number dependence

Having predicted the anti-symmetric flow pattern for Re = 100
at s = 3 and having noted that Zhou et al. [36] observed symmetric
flow pattern for Re = 150, we performed two-dimensional simula-
tions of the same flow (s = 3) at Reynolds numbers 150 and 200.
The synchronization for vortex shedding can be observed from
the time history of drag coefficients shown in Fig. 26a. This is in
a good agreement with the symmetric wake pattern visualized
by Zhou et al. [36]. The upper and lower cylinders have nearly
the same Cd in both phase and magnitude. The lift coefficients
for the upper and lower cylinders are 180� out of phase as shown
in Fig. 26b. Fig. 27 shows the streamlines at the time instant, at
which the lift coefficient of the upper cylinder attains its maximum
and the one of the lower cylinder reaches the minimum.

Fig. 28 shows the difference of mean Cl;Cd and rms Cl;Cd as well
as the Strouhal number of the upper cylinder for Reynolds num-
bers 100, 150 and 200. As the Reynolds number increases, the
mean Cl decreases but all other values increase. It is also noted that
the rms values of force coefficients are generally smaller than those
predicted by other simulations (using low-order accurate
schemes). The Strouhal number distribution has a fair agreement
with other numerical studies. It has big jump between Re 100
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and 150 and then increases slowly between 150 and 200. These
values are comparable to the experimental values for single cylin-
der presented by Williamson [32,33] as shown in Fig. 28e. The
Strouhal numbers for the cylinder pair are only slightly higher than
those of the isolated cylinders at Re 100 and 200 respectively. The
predicted Strouhal number lies just in between the ones predicted
by Meneghini et al. [18] and Ding et al. [7] for Re 200.

Fig. 29 shows the Mach number distribution of the symmetric
anti-phase vortex shedding at Re = 200 and s = 3. Along the center
line, high and low values of Mach number are alternatively distrib-
Fig. 28. Reynolds number dependence for forc
uted. In particular, these high-Mach zones are surrounded com-
pletely in all directions by low-Mach regions. They do not
fluctuate in the transverse direction and they are indeed different
from the fluctuating ones in Fig. 20. Fig. 30 shows the vorticity dis-
tribution of the symmetric anti-phase vortex shedding at Re = 200
and s = 3. The center line divides more than 10 pairs of symmetric
opposite-sign vortices in the region of 0 6 x 6 20d. In the near
wake (2d 6 x 6 15d), adjacent vortices aligned in a straight hori-
zontal line and neighboring vortices have opposite signs. Further
downstream (x P 15d), at the same streamwise location, there
e statistics and Strouhal number at s = 3.



Fig. 31. Instantaneous streamlines computed for flow past two cylinders s = 3 and
Re = 200.

Fig. 30. Instantaneous vorticity contour computed for flow past two cylinders s = 3
and Re = 200.

Fig. 29. Instantaneous Mach number contour computed for flow past two cylinders
s = 3 and Re = 200.
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are two pairs of opposite-sign vortices in the transverse direction.
In contrast to Fig. 22, Fig. 31 presents the streamlines of the sym-
metric anti-phase vortex shedding at Re = 200 and s = 3. The vortex
rows do not merge across the middle straight line.
5. Conclusion

We have developed a high-order unstructured solver with the
spectral difference method for inviscid and viscous flows. We ver-
ified that our presently developed two-dimensional solver on
quadrilateral grids could achieve the desired numerical order on
both inviscid and viscous flows. The SD method is then applied
to simulate flow past two side-by-side cylinders. At s = 1.1, wake
flow pattern resembles the vortex street of a single bluff body. At
s = 1.4, 1.5, 1.7 and 2, we predicted asymmetric flow patterns for
flow past the cylinder pair and the separation points of the upper
and lower cylinders are not synchronized. Anti-symmetric in-
phase flow patterns are predicted for arrangements with s = 2.5
and 3 at Reynolds number 100. The unsteady flow of the upper
and lower cylinders separate at locations of the same degrees on
the cylinder surfaces. On further increasing the distance between
two cylinders to s = 3.4 and 4, the symmetric anti-phase flow pat-
terns are observed. The separation points of the upper and the low-
er cylinders are symmetrical across the centerline of the gap flow.
Some flow parameters such as the Strouhal number, mean and rms
values of lift and drag coefficients, which quantitatively character-
ize the flow fields are predicted and are in good comparison with
those of previous studies for s = 3 and Re = 100. The flow patterns
of the Reynolds numbers 150 and 200 for s = 3 are no longer in-
phase synchronized but maintain a stable symmetric anti-phase
synchronized vortex shedding pattern.
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