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Suppression of the unsteady vortex wakes of a circular cylinder pair
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SUMMARY

The present investigation examines the suppression of unsteady, two-dimensional wake instabilities of a
pair of identical circular cylinders, placed side-by-side normal to freestream at a low Reynolds number
of 150. It is found that when the cylinders are counter-rotated, unsteady vortex wakes can be completely
suppressed. At fast enough rotational speeds, a virtual elliptic body is produced by a closed streamline,
strongly resembling a doublet potential flow. Copyright q 2009 John Wiley & Sons, Ltd.

Received 13 November 2008; Revised 20 March 2009; Accepted 24 March 2009

KEY WORDS: vortex wakes; instabilities; vortex suppression; numerical simulation; virtual elliptic body;
flow control

1. INTRODUCTION

1.1. Background

The flow past a pair of identical circular cylinders has been used as a model by various investigators
who were interested in the interaction of vortex wakes of multiple bluff bodies in freestream. The
previous studies were mostly experimental. The present paper takes a numerical approach. After
comparing our results with known experimental data for stationary cylinders, we investigate the
use of counter-rotation to suppress wake instabilities.

It is well known that when a circular cylinder is placed in a uniform freestream an unsteady
separation develops, leading to a von Kármán vortex street. In the low Reynolds number range of
less than 194, the vortex wakes are purely two dimensional [1]. At higher Reynolds numbers, the
wakes become more complex and three dimensional. When a pair of identical circular cylinders is
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Figure 1. Contour plot of vorticity of an anti-phase vortex street past a
circular cylinder pair, Red=150, g=1.

Figure 2. Contour plot of vorticity of an in-phase vortex street past a
circular cylinder pair, Red=150, g=1.

placed side-by-side in a close proximity, there are strong interactions between the wakes. Following
the work of Bearman and Wadcock [2] and Zdravkovich [3], Williamson [4] classified the vortex
street of the cylinder pair into two categories—anti-phase and in-phase—for gap-to-diameter ratios
in the range of 1.0<g<5.0. As noted by Williamson, the anti-phase mode is predominant and
stable. In this case each vortex lobe generally keeps its form while being gradually dissipated
downstream of the bodies.

The results in this report have been obtained numerically with a commercial code, CFD-ACE+
from the ESI Corporation. Most commercial CFD codes today solve the incompressible Navier–
Stokes equations using the original semi-implicit method for pressure-linked equations (SIMPLE)
scheme developed by Patankar and Spalding [5] or one of its variants such as SIMPLE-C (consis-
tent) and SIMPLE-R (revised). CFD-ACE+, uses the SIMPLE-C algorithm as proposed by Van
Doormal and Raithby [6]. Details of the numerical implementation of SIMPLE-C in CFD-ACE+
can be found in the User Manual [7]. The first step of this study is to establish confidence in the
numerical simulations by comparing the results of CFD-ACE+ with some well-known numerical
and experimental work of previous investigators. Vortex interactions between a pair of cylinders
are examined in the following paragraphs.
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The CFD model used in this study uses between 150 000 and 200 000 computational cells
depending on the physical geometry such as g, which dictates the way meshes are formed around
the cylinders. The meshing pattern radiates from each cylinder in a geometrically progressive
manner. The grid spacing next to the cylinder wall surface is approximately 0.004 ·d. There are
280 grids circumferentially surrounding each cylinder surface.

Figure 1 illustrates the numerical result for the anti-phase mode, which Williamson experi-
mentally observed as being stable. Figure 2 illustrates the in-phase vortex shedding mode, which
Williamson found to be unstable. Each ‘binary’ pair of like-sign vortices tends to coalesce into
a larger single vortex cell before eventually being dissipated far downstream. To obtain a numer-
ical result for the in-phase mode, we found that one can use the technique of perturbing the
flow velocity by artificially injecting a non-streamwise component into the computational domain
for a few time steps. The purpose is to ‘trip’ the flow so that the non-streamwise compo-
nent will encourage the flow to develop into an in-phase pattern. Another method that proved
successful is to artificially increase the time step �t and/or limit the convergence criteria so
that the residual error builds up for a few time steps. When �t is throttled back down and a
reasonable convergence criterion is re-established (typically a reduction of the residual errors by
four orders of magnitude), the resulting initial disturbance tends to encourage the in-phase insta-
bility to form. The results of these simulations verify the capability of CFD-ACE+ to predict
wake instabilities at a Reynolds number of 150. Moreover simulations at the Reynolds number
of 200 with g=2.4, as shown in Figures 3 and 4, predict wake patterns, which closely resemble
the patterns observed by Williamson in his experiment, as can be seen in Figures 6(a) and
(b) of his report [4]. For these simulations, we set up the boundary conditions to replicate the
channel width, length and blockage factor used in Williamson’s experiment. Further validation
of the numerical method is also provided in the Appendix, which presents comparisons of our
numerical simulations with available numerical and experimental data for flows past a single
cylinder.

1.2. Configurations of a counter-rotating circular cylinder pair

The main body of the paper focuses on flows over counter-rotating cylinders. According to
Williamson, flow instabilities occur in the wakes of a pair of stationary cylinders with g=1 in
the Reynolds number range above 55. He also reports that the wakes remain two dimensional at
a Reynolds number of 200. If cylinders are rotated at the same speed but in opposite directions,
there is the possibility of stabilizing the wakes. It is also conceivable that a flow pattern similar
to a doublet in the potential flow theory can be produced. We focus our analysis on the control of
two-dimensional vortex wakes in a Reynolds number range below the onset of three-dimensional
effects. Specifically, we choose Red=150 and g=1 as a basis of flow for our current numerical
experiments. There are two possible configurations:

(1) A doublet-like direction (Figure 5)—top cylinder rotates clockwise and bottom counter-
clockwise at the same speed, �.

(2) A reverse-doublet-like direction (Figure 6)—top cylinder rotates counter-clockwise and
bottom clockwise at the same speed, �.

We also define the magnitude of the cylinder rotation as �=2 ·U/d. Thus, if we rotate each
cylinder at a speed of �=1�, it means that the surface velocity magnitude of the cylinder is
exactly equal to the uniform velocity magnitude.
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Figure 3. Iso-contour plot of vorticity of an anti-phase vortex street past a circular cylinder pair, Red =200,
g=2.4, for direct comparison with Williamson [4].

Figure 4. Iso-contour plot of vorticity of an in-phase vortex street past a circular cylinder pair, Red =200,
g=2.4, for direct comparison with Williamson [4].

2. NUMERICAL RESULTS FOR COUNTER-ROTATING CYLINDERS

2.1. A doublet-like rotating circular cylinder pair

Figures 7(a) and (b) show a comparison of the instantaneous vorticity of a pair of counter-rotating
cylinders in a doublet-like mode with that of a non-rotating pair of cylinders in the in-phase
shedding mode. We used the results from the in-phase shedding case of the non-rotating cylinder to
start the flow of the rotating case. In the case of g=1 at Red=150, it is apparent that the rotation
causes the wakes to coalesce much sooner than the non-rotating case. It is also clear that the
unsteady vortex wakes shed off each rotating cylinder are significantly attenuated. The reduction in
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Figure 5. A doublet-like configuration.
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Figure 6. A reverse-doublet-like configuration.

the fluctuating lift and drag, plotted against non-dimensional time, �= t ·d/U , is shown on Figures
8(a) and (b). It can be seen from the spread of the lift coefficients between the upper and lower
cylinders that the rotation has the effect of pushing the cylinders apart. The rotation also helps
streamline the flow, producing a reduction in the drag coefficient of each cylinder, leading to a
reduction in the total force on both cylinders. Both the predicted behavior of the vortex wakes and
the reduction in flow-induced forces on the bodies seem to be in a reasonable agreement with the
recently reported results of Yoon et al. [8].

2.2. Symmetrical steady shedding

When the rotational speed is further increased the vortex wakes can be completely suppressed
as seen on Figure 9, which plots the streamlines to illustrate the evolution of steady wakes as a
function of rotational speed. It appears that the flow past a circular cylinder pair stops shedding
unsteady vortex wakes at a rotational speed between 1� and 1.5�. When a steady flow is produced
by rotation, the entire force fluctuation on each cylinder is totally suppressed and, as a result,
the total sum of the lift coefficient, CL, of the cylinder pair is exactly zero. Somewhere between
the rotational speeds of 2.5� and 2.75�, a closed vortex system is formed similar to a potential
doublet in a form of virtual elliptic body (Figure 12). Figures 10(a) and (b) showthe lift and
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Figure 7. (a) Vorticity plot of flow in an in-phase mode past a non-rotating pair of circular cylinders,
Red=150, g=1 and (b) vorticity plot of flow in an in-phase mode past a doublet-like pair of circular

cylinders counter-rotating at �=1�, Red=150, g=1.

drag coefficients of a doublet-like rotating circular cylinder pair when steady flow is reached.
The total lift coefficient CL is zero, while the total drag coefficient CD of the circular cylinder
pair is significantly reduced as the rotational speed is increased. Because the flow is symmetric
along the horizontal center line (half way between the two cylinders), the drag coefficient of the
top cylinder must be precisely the same as that of the bottom cylinder. The form drag becomes
negative when the rotational velocity is increased beyond 1.8� (Figure 11). Remarkably, the total
drag coefficient is slightly negative at a rotational speed of 2.5�, indicating that the work that
is put into rotating the cylinder not only stabilizes the flow, but can be converted into forward
thrust. Thus the rotational speed is increased beyond 2.5� and a virtual elliptic body appears, the
form drag starts to increase as the size of the virtual body increases. The total drag remains small,
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Figure 8. Time response of lift and drag coefficients of each circular cylinder: (a) non-rotating pair,
Red=150, g=1 and (b) doublet-like counter-rotating pair, �=1�, Red=150, g=1.
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Figure 9. Streamlines showing the evolution of steady flow with increasing rotational speeds, Red =150,
g=1. (Unsteady flow: 1�; Steady flow: 1.5�, 2�, 2.25�, 2.5�, 2.75�, 3�, 4�, 5� and 7�).

however, because the frictional contribution to the horizontal force starts to decrease at about the
same rate. Both contributions change sign at a rotational speed around 4.3�, and eventually as the
rotational speed is further increased, net thrust is again observed.
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Figure 10. (a) Lift coefficient of a pair of counter-rotating circular cylinders (steady
flow), Red=150, g=1 and (b) drag coefficient of a pair of counter-rotating circular

cylinders (steady flow), Red=150, g=1.
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Figure 11. Pressure and frictional contributions to CD on each circular
cylinder (steady flow), Red=150, g=1.

2.3. A reverse-doublet-like rotating circular cylinder pair

One may also ask whether a steady flow solution can be produced if the cylinders rotate in a
reverse-doublet direction (Figure 6). In the reverse direction, vortex wakes from the top and bottom
cylinders are forced apart so that the chance of the vortex streets interfering with each other rapidly
diminishes with increasing rotational speeds. This lessens the ability to attenuate vortex wakes as
compared with the more effective doublet-like rotation. From our study, we confirmed that a steady
flow can be achieved at an approximate rotational speed of 3.5� and upwards. We also noticed
that CD is generally higher than when the cylinders are rotated in the doublet direction. The two
cylinders are also attracted by opposing vertical forces of equal magnitude, which increase with
the speed (Figure 13).

3. CONCLUSION

In this report we have demonstrated by numerical simulation that unsteady vortex wakes can be
completely suppressed by counter-rotating a pair of cylinders. There are essentially two possible
directions of counter rotation—a doublet-like direction and the reverse. We have found that
when the cylinder pair is rotated in a doublet-like direction, a significant drag reduction can
be achieved, and at high enough speeds a virtual elliptic body is formed. In the speed range
from where the steady flow first develops (1.5�) to where the virtual elliptic body is first
observed (2.75�), drag reduction is achieved mostly due to the decrease in form drag, which
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Figure 12. Virtual elliptic body (closed vortex system) at various rotational speeds, Red =150, g=1.

actually becomes negative in the range beyond 1.8�. At higher rotational speeds, the form drag
starts to increase again and becomes positive beyond 4.3�. However, the total drag remains
low because the frictional contribution to the horizontal force exhibits the opposite trend. The
net positive thrust is observed at rotational speed of 2.5�, and again at very high rotational
speeds. Unsteady vortex wakes can also be completely suppressed by rotating the cylinder pair
in the reverse-doublet-like direction. This is not as effective, however, as the doublet direction.
It takes approximately 3.5� to achieve steadiness, while the drag coefficient of each cylinder
remains high.

We have also verified our results with two other codes—another commercial solver (STAR-
CD), and a higher-order spectral difference scheme developed by Liang et al. for simulation of
compressible viscous flow [9]. In the latter case simulations were performed at a Mach number
of 0.1. Both of these codes verify the formation of a virtual elliptic body at high rotational
speeds. They also confirm a reduction in drag with increasing rotational speed, and finally the
production of thrust as predicted in this work. However, it is not easy to quantify the accuracy of
the force predictions. With the settings we used, CFD-ACE+ is nominally close to second-order
accuracy. We have generally worked with a mesh density that was sufficient to give accurate
results in a previous study of flows past a single stationary cylinder, for which experimental data
were available. We are also collaborating with researchers in Princeton University to verify our
predictions by an experimental investigation of flows past counter-rotating cylinders. We plan
further investigation with various geometric gaps between the cylinders. We also plan to investigate
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3.5Ω : CD = 0.52 (top and bottom), CL = 13.64 (bottom), CL = -13.64 (top)

3.75Ω : CD = 0.45 (top and bottom), CL = 15.55 (bottom), CL = -15.55 (top)

5Ω : CD = 0.14 (top and bottom), CL = 27.11 (bottom), CL = -27.11 (top)

Figure 13. Flow patterns of a reverse-doublet-like circular cylinder pair counter-rotating at selected speeds:
vorticity (left column), streamlines (right column), Red =150, g=1.

asymmetric configurations, including cases in which the cylinders are counter-rotated at different
speeds, and cases in which the cylinders have different diameters.

APPENDIX A

In order to reinforce confidence in the results obtained with CFD-ACE+, we present some compar-
isons with other known experimental and numerical results from the work of Williamson [1] and
Belov et al. [10, 11]. We focus on the unbounded flow past a circular cylinder at Red=150, taking
the numerical result of Belov as a baseline for comparison. Our modified O-mesh is shown on an
x-y Cartesian coordinate system in Figure A1.

Our simulation uses the same number of computational cells as Belov, 256×256. While the
circumferential spacing is uniform, the normal spacing is increased geometrically with the grid
layer next to cylinder surface being 0.0003 ·d, which is the same as that used by Belov. It should
also be noted that Belov used a central differencing scheme (CDS) for the convection term,
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Figure A1. Modified O-mesh around circular cylinder.

together with a third-order artificial dissipation term similar to that used by Farmer [12]. For time
discretization, Belov implemented the second-order accurate implicit backward difference scheme

d�

dt
≈ 3�n+1−4�n+�n−1

2�t

CFD-ACE+ offers options for time discretization by the Crank–Nicolson (CN) scheme and a
first-order backward Euler scheme. When using the CN scheme, we found that spatial discretization
with the 2nd order upwind difference scheme (2UDS) and CDS produce very similar results.
Qualitatively, the instantaneous plot of the z-component of vorticity, shown on Figure A2, reveals
the typical von Kármán vortex street as one would expect from flow past a circular cylinder
at Red =150. It shows the formation of two rows of alternating vortices in the wake of the
cylinder. This asymmetrical flow pattern produces an oscillating pressure distribution (Figure A3)
on the cylinder, and leads to fluctuating CL and CD. Note that CD oscillates twice as fast as CL.
The shedding pattern is regular but is subjected to viscous dissipation as each vortex moves
further downstream away from the obstructing body. The rate of decay may be exaggerated in the
simulations due to numerical dissipation. However, no spurious reflection is observed downstream
confirming the correct pressure setting at the far right boundary.

When a first-order backward Euler scheme is used for time discretization, the Strouhal number
as well as the amplitudes of the drag and lift coefficients are significantly different. Figures A4
and A5 illustrate the difference between the solutions obtained from the backward Euler scheme as
compared with that from CN. Note that the plots correspond to flow solutions in which the steady
asymmetric shedding characteristics are established. One of the techniques used to accelerate the
shedding is to perturb the initial condition by using very large �t (e.g. 0.1) in the first few steps.
Once the mean flow is established throughout the domain, �t is then throttled back to the desired
target (e.g. 0.0001 s).
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Figure A2. Instantaneous plot of vorticity of flow past a circular cylinder, 2UDS, CN, Red =150.

Figure A3. Instantaneous Cp plot showing isobar of flow past a circular cylinder, 2UDS, CN, Red =150.

The shortcomings of the first-order time discretization become even more apparent in solutions
on coarser grids. We have investigated coarser grids in the interest of saving computational time
to enable the study of numerous variations. Table AI shows the comparison of the results for flow
past a singular circular cylinder at Red =150 using these different schemes. It is obvious that the
accuracy of St and Cpb suffers markedly when the backward Euler scheme is used. Thus, the
2UDS and the CN scheme have been chosen for our study of wake flow behind a pair of cylinders.
It is noted that a coarse mesh can produce reasonable results when the proper temporal and spatial
differencing schemes are used.
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Figure A4. CL and CD of flow past a circular cylinder, unbounded, 2UDS, Euler.
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Figure A5. CL and CD of flow past a circular cylinder, unbounded, 2UDS, CN.
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Table AI. Comparison of properties for flow past a circular cylinder at Red=150.

Source Total cells CL CD St Cpb

Belov [10, 11] 65 536 0.000±0.486 1.168±0.025 0.182 −0.85
2UDS, Euler 65 536 0.000±0.401 1.268±0.017 0.174 −0.73
CDS, CN 65 536 0.000±0.531 1.331±0.028 0.181 −0.80
2UDS, CN 65 536 0.000±0.492 1.319±0.023 0.180 −0.79
2UDS, Euler (Coarse) 27 200 0.000±0.146 1.132±0.002 0.154 −0.57
CDS, CN (Coarse) 27 200 0.000±0.439 1.281±0.019 0.175 −0.76
2UDS, CN (Coarse) 27 200 0.000±0.411 1.278±0.017 0.174 −0.75
Williamson, exp. [1] — — — 0.184 −0.86

0 50 100 150

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Nondimensional Time,

L
if

t a
nd

 D
ra

g
 C

o
ef

fi
ci

en
ts

,C
L 

an
d
C

D

Time Response, Viscous Flow Over Circular Cylinder

CD

CL

Figure A6. Numerical oscillation appears in flow solution using traditional
Crank–Nicolson scheme (i.e. blending factor=0.5).

It is well known that the CN scheme can sometimes lead to non-physical, oscillatory solutions
when the time step �t is set too large. In the interest of saving computational time, we aim to
use the largest possible time step that will not produce oscillations. CFD-ACE+ allows a biasing
scheme where the two-level time discretization can be modified so that the code will solve the
solution with more or less implicit information. For example, when the blending factor (also known
as weighting or biasing factor) is set to 0.5, it produces the traditional CN scheme where the
variables at time step n and n+1 have equal weighting of first-order explicit and backward implicit
Euler schemes. When it is set to 1.0, it recovers the implicit Euler method. The blending scheme
employed in the code essentially follows the theta method used for solving initial value problems
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Figure A7. Flow solution with blending factor of 0.6.

of stiff systems of differential equations. It has been found by Prothero and Robinson [14] and
Berzins and Furzeland [13] that a factor of 0.55 produces accurate and stable results for large
non-linear systems of stiff equations. We have found that a default setting of 0.6 is sufficient to
inhibit oscillation in the solutions. Figure A6 shows a diverged solution when the pure CN scheme
(blending factor=0.5) is used with �t=0.0001, while Figure A7 shows a stable solution with no
significant deviation in CD, CL, or St from the references when the blending factor is set at 0.6.

NOMENCLATURE

CD drag coefficient
CL lift coefficient
Cpb base pressure coefficient at 180◦ from the front stagnation point
d diameter of circular cylinder
g gap (between two circular cylinders) to diameter ratio
Red Reynolds number based on diameter of a circular cylinder
St Strouhal number
t real time
U uniform freestream velocity
�t time step
� rotational velocity magnitude of circular cylinder
� rotational velocity magnitude of circular cylinder at 2 ·U/d
� non-dimensional time, t ·U/d
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